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1 Introduction

In classical mechanics, we are sometimes lucky enough to encounter an integrable system, one
in which there as many conserved quantities as there are degrees of freedom. Such systems
are in a sense the easiest systems to study: they can be described in terms of action-angle
variables, for which the Hamiltonian depends only on the conserved quantities (the action
variables). For these systems, the canonical equations of motion and their solutions are very
simple.

However, in many ‘real’ situations, such as the solar system, there are no longer enough
constants of motion. When the system is nearly integrable, i.e. the Hamiltonian can be
written as a small perturbation of an integrable one, it turns out that much of the nice
behaviour of integrable systems can be rescued. This is the content of a famous theorem
from 1954 by A.N. Kolmogorov [4], which was extended by V.I. Arnold and J. Moser. The
general theory describing small perturbations of integrable systems is called Kolmogorov—-
Arnold—Moser theory, or KAM theory. An overview of KAM theory is given in [2].

In section 2, the situation is explained in the case of an integrable system (the un-
perturbed system). The simple behaviour of such a system, which is called conditionally
periodic motion, is described here. Section 3 deals with small perturbations of integrable
systems and introduces Kolmogorov’s theorem. There will be no attempt at a proof of
Kolmogorov’s theorem, because it is rather long and technical; only a couple of ideas for
the proof mentioned by Arnold [1] are given.

A surprising relation to number theory appears in connection with the question under
what conditions the system will still exhibit conditionally periodic motion. This relation is
stated in section 4, along with possibly complicated behaviour in regions of the phase space
where this condition is not satisfied. In section 5 some practical considerations are given
which appear when applying KAM theory to real systems.

2 Conditionally periodic motion

Suppose we have a mechanical system with n degrees of freedom, described by a Hamilto-
nian Hy on a 2n-dimensional manifold M (the phase space) with a symplectic 2-form w.
Furthermore, we assume that the system is integrable (this means that there are n inde-
pendent first integrals, or constants of motion, Iy, I, ..., I,), and that the integral curves
of the system lie on compact sets within the phase space.

In this situation, these compact sets are n-dimensional tori in the phase space, called
invariant tori. Furthermore, it is possible to introduce action-angle variables as coordinates
on the phase space. The action variables are a set of n independent first integrals I =
(I, Iz, ..., I,),, any particular value of which fixes an invariant torus with coordinates ¢ =
(¢1, P2, - -, ®n). The symplectic 2-form can be written in these coordinates as

W = id11 /\dd)z,
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and the Hamiltonian Hy depends only on I. From this it is not hard to see that the canonical
equations of motion are

dI; do; OHy

— =0 and = w;, where w; == ——.

dt dt v Yo
From this, we see that the conserved quantities I of a given trajectory determine a set of
freqencies (w1, wa,...,wy). If there is a non-trivial Z-linear relation between the w;, i.e.

n
Zaiwi =0 with a; € Z not all 0,
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the torus on which the orbit lies is called resonant; otherwise it is called non-resonant. For
n = 2, the set of frequencies (w1, ws) is resonant precisely when w; /wa is a rational number.

3 Perturbations of conditionally periodic motion

We now look at what happens if we introduce a perturbation of an integrable Hamiltonian
system. We write the Hamiltonian as

H(I,¢) = Ho(I) + eH (1, 0),

where eH; is small compared to Hy. An important theorem of A.N. Kolmogorov from 1954
says that, under suitable conditions, most of the invariant tori of the original system are still
present in the perturbed system, only somewhat deformed. There are several versions of the
theorem; the original formulation uses the condition of non-degeneracy of the frequencies.
This condition requires the map

I— (wi,way...,w,)(I) = (5’H OH 8H>
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to have full rank on the invariant torus we are considering. Formulated more explicitly, the
non-degeneracy condition is
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Kolmogorov’s theorem says the following;:

Theorem (Kolmogorov, 1954). If the non-degeneracy condition is fulfilled and € is suf-
ficiently small, the phase space of the perturbed system is ‘mostly’ filled by deformations of
the non-resonant invariant tori of the unperturbed system, in the sense that the complement
of these deformed tori has small measure if € is small.

Kolmorogov’s theorem originally only indicated the existence of a single invariant torus
in the perturbed system. The theorem was improved upon by V.I. Arnold and J. Moser in
the 1960s, and the result is nowadays known as KAM theory.

The idea of the proof is as follows. At a particular initial point in the phase space,
the frequencies w; will generally change as a result of the perturbation. Because of the
non-degeneracy, however, we can shift the initial point a little bit so that we land on a point
with exactly the original frequencies. It turns out that it is possible to apply an iterative
procedure to the original torus; this procedure can be shown to converge to an invariant
torus in the perturbed system under a certain condition on the frequencies, which will be
described in the next section.

There are many variations on the above theorem. One important counterpart is the
1soenergetic KAM theorem, which states that the same result holds if the system is isoener-
getically non-degenerate. This means that on each energy level set, the map that associates
to a point x the ratios of the frequencies w; at that point is non-degenerate, i.e. the map
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from the (n — 1)-dimensional energy level manifold containing z to (n — 1)-dimensional
2
projective space has full rank. An equivalent condition is (note that aago is a (n x n)-

650 is a column vector)
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The conditions of non-degeneracy and isoenergetic non-degeneracy do not imply one another;
there are non-degenerate systems that are isoenergetically degenerate, and also isoenerget-
ically non-degenerate systems that are degenerate.

4 Resonance, chaos and number theory

In the proof of Kolmogorov’s theorem, the condition guaranteeing that everything converges,
so that new invariant tori can be found, is given by a so-called Diophantine condition, which
is well-known in number theory. It selects from the set of frequency vectors (wi,ws, ..., wy)
a certain subset where the ratios between the frequencies are in some sense sufficiently
irrational. More specifically, the condition on (wq,wa, . ..,wy,) is that there exist C > 0,v > 0

such that
n
S
i=1

For n = 2, the condition on o = wy /ws is similar! to the condition that for some v > 0,7 > 2
we have

> Clla||™" for all a = (a1,as,...,a,) € Z"™.
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This last condition is well-known in the theory of algebraic and transcendent numbers; it
says that o must be ‘sufficiently irrational’ and is satisfied for example by numbers a ¢ Q
which are algebraic, i.e. which are zeroes of polynomials with rational coefficients.

The cases n = 2 and n > 2 are fundamentally different in the behaviour of trajectories
lying outside the deformed non-resonant tori in the phase space. In the case of two degrees
of freedom, we have to do with a four-dimensional phase space. The regions where the value
of the Hamiltonian equals a fixed value E are three-dimensional, and each torus separates
such a hypersurface into an inner and an outer region. This means that any trajectory in the
phase space will generally lie between two deformed tori, and will be confined to a bounded
region of phase space.

For more than two degrees of freedom, this property of tori no longer holds, so the
trajectories of the system are no longer bounded. In regions of the phase space which are
not covered by deformations of the non-resonant tori, the behaviour of the perturbed system
can be influenced strongly by resonance. This may be viewed as the kind of situation in
which the effect of the perturbation is amplified because the perturbation is in some way
in phase with the motion of the system. A famous example of resonance (although not a
Hamiltonian system) is the driven pendulum: if the frequency of the driving force equals
the natural frequency of the pendulum, the oscillations are amplified, while the contribution
of the force is on average zero if the frequencies are unrelated.

The appearance of resonance often leads to chaos, i.e. strong sensitivity to initial con-
ditions. An example is the three-body problem: in almost all initial configurations of three
spherical masses attracting each other by gravity, the orbits are very complicated, and
usually one of the masses is ‘kicked away’ to infinity.

for all £ € Q.
q

5 Practical applications

A number of applications of KAM theory are given in Appendix 8 of [1]. One important
application of KAM-like ideas is the solar system (and more generally the n-body problem).
The simplest approach is to consider the Hamiltonian for two planets of mass m; and msq

!Maybe the conditions are equivalent; I haven’t checked, but it is not important here.



revolving around a fixed star with mass M,. In appropriate units where G = 1, M, = 1 and
mq, mg < 1, the Hamiltonian for this system is
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The first term on the right represents the kinetic energy and the gravitational attraction
of the planets by the star, while the second term represents the attraction between the
planets. The ‘unperturbed’ system, where this second term is neglected, is integrable; if
m1, ms are small enough, we can regard the second term as a perturbation of this integrable
system.

A number of problems arise when applying KAM theory to our own solar system. The
first difficulty is that the resonances in our own solar system appear to be too large for the
KAM theorem to apply. Furthermore, it is impossible in practice to determine the frequencies
of system exactly, which is important to decide whether they are irrational enough.

This last problem is a general ‘feature’ in actual applications of the KAM theorem. In
these cases, it is possible to make use of Nekhoroshev’s theorem [5], which gives quantitative
estimates for the stability of general trajectories in perturbed Hamiltonian systems. A
combined approach to KAM theory and Nekhoroshev’s theorem, which in a way complement
each other, is described in [3].
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