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Abstract. We study the automorphic Green function grΓ on quotients of the hyperbolic
plane by cofinite Fuchsian groups Γ, and the canonical Green function grcan

X on the stan-
dard compactification X of such a quotient.

We use a limiting procedure, starting from the resolvent kernel, and lattice point
estimates for the action of Γ on the hyperbolic plane to prove an “approximate spectral
representation” for grΓ. Combining this with bounds on Maaß forms and Eisenstein series
for Γ, we prove explicit bounds on grΓ. From these results on grΓ and new explicit bounds
on the canonical (1, 1)-form of X, we deduce explicit bounds on grcan

X .

1. Introduction and statement of results

1.1. Automorphic Green functions

Let H = {z ∈ C | =z > 0} be the hyperbolic plane, and let Γ be a cofinite Fuchsian group. The
automorphic Green function grΓ for the Laplace operator ∆Γ on Γ\H is an important object in
the theory of automorphic forms. The first goal of this paper is to study grΓ quantitatively, and
in particular to obtain explicit upper and lower bounds. One result that can be stated without
introducing too much notation is the following corollary of Theorem 5.1. The function u(z, w) is the
hyperbolic cosine of the hyperbolic distance, and Lδ(z, w), defined in (2.2) below, is a real-valued
function outside the diagonal on H×H with a logarithmic singularity of the form − 1

2π log |z −w|
as z → w.

Theorem 1.1. Let Γ0 be a cofinite Fuchsian group, let Y0 be a compact subset of Γ0\H, and let
δ > 1 and η > 0 be real numbers. There exist real numbers A and B such that the following holds.
Let Γ be a subgroup of finite index in Γ0 such that all non-zero eigenvalues of −∆Γ are at least η.
Then for all z, w ∈ H whose images in Γ0\H lie in Y0, we have

A ≤ grΓ(z, w) +
∑
γ∈Γ

u(z,γw)≤δ

Lδ(z, γw) ≤ B.

1.2. Canonical Green functions

Every compact connected Riemann surface of positive genus has a canonical Green function grcan
X .

This is a fundamental object in the intersection theory on arithmetic surfaces developed by
Arakelov [1], Faltings [8] and others, where it is used to define local intersection numbers of
horizontal divisors at Archimedean places.

Let X be the standard compactification of Γ\H obtained by adding the cusps. We assume
that X has positive genus. The second goal of this paper is to derive explicit bounds on grcan

X from
our bounds on grΓ. The following theorem illustrates our results. For simplicity, we only give an
upper bound; see Theorem 7.1 for more precise results.

Theorem 1.2. Let Γ be a congruence subgroup of level n of SL2(Z) such that the compactifica-
tion X of Γ\H has positive genus. Then the canonical Green function grcan

X satisfies

sup
X×X

grcan
X ≤ 1.6 · 104 + 7.7n+ 0.088n2.
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1.3. Overview

In Sections 2 and 3, we collect the necessary results about Fuchsian groups, making them more
explicit where necessary. In Section 4, we give a construction of the automorphic Green function grΓ

involving the resolvent kernel and use this to “sandwich” grΓ (with the logarithmic singularity
removed) between two functions that, unlike grΓ itself, admit spectral representations. In Section 5,
we bound these functions in a way that lends itself to explicit evaluation, obtaining results implying
Theorem 1.1. We then extend our bounds on grΓ(z, w) to the case where Y0 is obtained by cutting
out discs around the cusps in Γ0\H and where one or both of z and w lie in such a disc.

Let X be the compactification of Γ\H; we assume that X has positive genus. We give
new explicit bounds on the canonical (1, 1)-form of X in Section 6 and on the canonical Green
function grcan

X in Section 7. We apply our results to congruence subgroups of SL2(Z) in Section 8.
Finally, a number of bounds on Legendre functions that we will need have been collected in an
appendix.

1.4. Remarks

Our results are valid for any cofinite Fuchsian group, although we are motivated by the case of
arithmetic groups, and in particular congruence subgroups of SL2(Z). Bounds on the canonical
Green functions of the modular curves X1(n), i.e. in the case Γ = Γ1(n), are relevant to recent
work of Edixhoven, Couveignes et al. [5] and of the author [3], where Arakelov theory is employed
to obtain a polynomial-time algorithm for computing Galois representations attached to Hecke
eigenforms over finite fields.

This article may be compared with earlier work of Jorgenson and Kramer on bounding canon-
ical and automorphic Green functions of compact Riemann surfaces [14, especially Theorem 4.5].
Jorgenson and Kramer consider compact Riemann surfaces X of genus at least 2, which are of
the form X = Γ\H for a cofinite Fuchsian group Γ without elliptic and parabolic elements. They
obtain bounds on the automorphic Green function by comparing it to the heat kernel on X. They
also find an interesting expression for the canonical Green function in terms of data associated to
the hyperbolic metric. The work of Jorgenson and Kramer will be generalised to cofinite Fuchsian
groups with parabolic elements by A. Aryasomayajula in his forthcoming thesis [2].

Our method starts likewise with comparing grΓ to a kernel that can be written as a sum
over Γ. However, the subsequent arguments are rather different and altogether less involved. Let
us note some of the differences. First, we allow arbitrary cofinite Fuchsian groups, which is the
natural setting for modular curves. Second, the procedure that we apply in § 4.1 to construct grΓ

as a limit of a family of kernels Ka for a→ 1 leads to bounds that are independent of the specific
family. We take Ka to be the resolvent kernel with parameter a → 1, but the heat kernel with
parameter t→∞ could have been used with the same result; see [3, § II.5.2]. Finally, our bounds
are much easier to make explicit than those in [14]; this is illustrated in Section 8.

Acknowledgements. Part of this paper was written during a stay at the Max-Planck-Institut für
Mathematik in Bonn; I am grateful for its hospitality. I thank Ariyan Javanpeykar for comments
on an earlier version. The computations outlined in Section 8 were carried out using pari/gp [17].

2. Fuchsian groups and Green functions

2.1. Hyperbolic geometry

The hyperbolic plane H is the unique two-dimensional, complete, connected and simply connected
Riemannian manifold with constant Gaussian curvature −1. We identify H with the complex
upper half-plane; this gives H a complex structure. In terms of the standard coordinate z = x+ iy,
the Riemannian metric is

dz dz̄

(=z)2
=
dx2 + dy2

y2
,

and the associated volume form is

µH =
i dz ∧ dz̄
2(=z)2

=
dx ∧ dy
y2

.
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Instead of using the geodesic distance r(z, w) on H directly, we use the more convenient function

u(z, w) = cosh r(z, w)

= 1 +
|z − w|2

2(=z)(=w)
.

Let ∆ denote the Laplace–Beltrami operator on H, given by

∆ = y2(∂2
x + ∂2

y).

The Green function for ∆ is the unique smooth real-valued function grH outside the diagonal
on H×H satisfying

grH(z, w) =
1

2π
log |z − w|+O(1) as z → w,

∆ grH( , w) = δw for all w ∈ H,

grH(z, w) = O(u(z, w)−1) as u(z, w)→∞,
where ∆ is taken with respect to the first variable. It is given by

grH(z, w) = −L(u(z, w)),

where

L(u) =
1

4π
log

u+ 1

u− 1
. (2.1)

For later use, we define

Lδ(z, w) = L(u(z, w))− L(δ) for δ > 1 and z, w ∈ H. (2.2)

The group SL2(R) acts on H by isometries. Under the identification of H with the complex
upper half-plane, this action on H is the restriction of the action on P1(C) by Möbius transforma-
tions. Elements of SL2(R) \ {±1} are classified according to their fixed points in P1(C) as elliptic
(two conjugate fixed points in P1(C) \ P1(R)), parabolic (a unique fixed point in P1(R)), and
hyperbolic (two distinct fixed points in P1(R)).

2.2. Fuchsian groups

A Fuchsian group is a discrete subgroup of SL2(R). A Fuchsian group Γ is cofinite if Γ\H has
finite volume with respect to the measure induced by µH. We will exclusively consider cofinite
Fuchsian groups, and for such a group Γ we write

volΓ =

∫
Γ\H

µH.

Let Γ be a cofinite Fuchsian group. We define the quotient Γ\H in a stack-like way. The terms
smooth function on Γ\H and smooth Γ-invariant functions on H will have the same meaning.
Furthermore, the value of an integral over Γ\H is 1/#(Γ ∩ {±1}) times the integral over the
corresponding Riemann surface. This implies that if f is a Γ-invariant function on H and Γ′ is a
subgroup of finite index in Γ, then∫

Γ′\H
fµH = (Γ : Γ′) ·

∫
Γ\H

fµH.

Furthermore, this definition justifies the method of “unfolding”: if f is a smooth function with
compact support on H and F is the function on Γ\H defined by

F (z) =
∑
γ∈Γ

f(γz),

then ∫
Γ\H

FµH =

∫
H

fµH.

Let X be the standard compactification of Γ\H. It is useful to keep in mind that the space
of cusp forms of weight 2 for Γ, the space of holomorphic differentials on X, and the space of
holomorphic differentials on the coarse moduli space of X are all isomorphic. We write gX for
the dimension of these spaces, and call it the genus of X. To avoid any subtleties, the reader
can restrict himself to groups containing neither −1 nor any elliptic elements and with all cusps
regular, such as Γ1(n) for n ≥ 5.

3



2.3. Cusps

Let Γ be a cofinite Fuchsian group. The cusps of Γ correspond to the conjugacy classes of non-
trivial maximal parabolic subgroups in Γ. Every such subgroup has a unique fixed point in P1(R).
Let c be a cusp of Γ. We choose a representative Γc of the corresponding conjugacy class and an
element σc ∈ SL2(R) such that σc∞ ∈ P1(R) is the unique fixed point of Γc in P1(R) and such
that

{±1}σ−1
c Γcσc = {±1}

{(
1
0
b
1

) ∣∣ b ∈ Z
}
.

Such a σc exists and is unique up to multiplication from the right by a matrix of the form ±
(

1
0
x
1

)
with x ∈ R; see Iwaniec [12, § 2.2]. We define

qc:H→ C

z 7→ exp(2πiσ−1
c z)

and
yc:H→ (0,∞)

z 7→ =σ−1
c z = − log |qc(z)|

2π
.

For all γ ∈ Γ, we write

Cc(γ) = |c| if σ−1
c γσc =

(
a

c

b

d

)
.

Then we have
Γc = {γ ∈ Γ | Cc(γ) = 0}.

It is known that the set {Cc(γ) | γ ∈ Γ, γ 6∈ Γc} is bounded from below by a positive number, and
that if ε is a real number satisfying the inequality

0 < ε ≤ min
γ∈Γ
γ 6∈Γc

Cc(γ), (2.3)

then for all z ∈ H and γ ∈ Γ one has the implication

yc(z) > 1/ε and yc(γz) > 1/ε =⇒ γ ∈ Γc.

For any ε satisfying (2.3), the image of the strip

{x+ iy | 0 ≤ x < 1 and y > 1/ε} ⊂ H

under the map
H

σc−→ H −→ Γ\H

is an open disc Dc(ε) around c, and the map qc induces a chart on Γ\H identifying Dc(ε) with
the punctured disc {z ∈ C | 0 < |z| < exp(−2π/ε)}. A compactification of Γ\H can be obtained
by adding a point for every cusp c in such a way that qc extends to a chart with image equal to
the disc {z ∈ C | |z| < exp(−2π/ε)}. Let D̄c(ε) denote the compactification of Dc(ε) obtained by
adding the boundary ∂D̄c(ε) in Γ\H and the cusp c.

Remark . Let us fix a point w ∈ H and write Γw for the stabiliser of w in Γ. The behaviour of
grΓ(z, w) as z → w is

grΓ(z, w) =
#Γw
2π

log |z − w| as z → w.

Furthermore, the behaviour of grΓ(z, w) as z moves toward a cusp c of Γ is

grΓ(z, w) =
1

volΓ
log yc(z) +O(1) as yc(z)→∞.
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2.4. The automorphic Green function

Let Γ be a cofinite Fuchsian group. The restriction of the Laplace operator ∆ to the space of smooth
and bounded functions on Γ\H can be extended to an (unbounded, densely defined) self-adjoint
operator on the Hilbert space L2(Γ\H), which we denote by ∆Γ.

The operator ∆Γ is invertible on the orthogonal complement of the constant functions in the
following sense: there exists a unique bounded self-adjoint operator GΓ on L2(Γ\H, µH) such that
for all smooth and bounded functions f on Γ\H the function GΓf satisfies

∆ΓGΓf = f − 1

volΓ

∫
Γ\H

fµH and

∫
Γ\H

GΓfµH = 0.

There exists a unique function grΓ on Γ\H × Γ\H that satisfies grΓ(z, w) = grΓ(w, z), is smooth
except for logarithmic singularities at points of the form (z, γz), and has the property that if f is
a smooth and bounded function on Γ\H, then the function GΓf is given by

GΓf(z) =

∫
w∈Γ\H

grΓ(z, w)f(w)µH(w).

The function grΓ is called the automorphic Green function of the Fuchsian group Γ.

2.5. The canonical (1, 1)-form

Let X be a compact connected Riemann surface of genus gX ≥ 1. The C-vector space Ω1(X) of
global holomorphic differentials on X has dimension gX and is equipped with the inner product

〈α, β〉 =
i

2

∫
X

α ∧ β̄.

The canonical (1, 1)-form on X is

µcan
X =

i

2gX

∑
α∈B

α ∧ ᾱ,

where B is any orthonormal basis of Ω1(X) with respect to 〈 , 〉. The form µcan
X is independent

of the choice of B.
Let us now assume that X is (the coarse moduli space associated to) the compactification of

Γ\H with Γ a cofinite Fuchsian group. We define a smooth and bounded function FΓ on Γ\H by

FΓ(z) =
∑
f∈B

(=z)2|f(z)|2,

where B is any orthonormal basis for the space of holomorphic cusp forms of weight 2 for Γ. The
(1, 1)-forms µcan

X and µH are related by

µcan
X =

1

gX
FΓµH. (2.4)

2.6. The canonical Green function of a Riemann surface

Let X be a compact, connected Riemann surface of positive genus. Let ∗ denote the star operator
on smooth 1-forms, given with respect to any local holomorphic coordinate z = x+ iy by

∗dx = dy, ∗dy = −dx.
If we identify X locally with the hyperbolic plane, the operator d∗d sending functions to (1, 1)-forms
is related to the Laplace operator ∆ as follows: if f is any smooth function on X, then

d ∗ df = ∆f · µH.

For every smooth (1, 1)-form α on X, there exists a unique smooth function hα on X such that

d ∗ dhα = α−
(∫

X

α

)
µcan
X and

∫
X

hαµ
can
X = 0.

There exists a unique function grcan
X on X ×X that satisfies grcan

X (z, w) = grcan
X (w, z), is smooth

except for a logarithmic singularity along the diagonal, and has the property that if α is a smooth
(1, 1)-form on X, then the function hα is given by

hα(z) =

∫
w∈X

grcan
X (z, w)α(w).

The function grcan
X is called the canonical Green function of X.
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2.7. Comparison of automorphic and canonical Green functions

There is a standard way to relate the automorphic and canonical Green functions, which we will
use to find explicit bounds on the canonical Green function. Let Γ be a cofinite Fuchsian group,
and let X be the compactification of Γ\H. We define a function hΓ: Γ\H→ R by

hΓ(z) =

∫
w∈Γ\H

grΓ(z, w)µcan
X (w)

=
1

gX

∫
w∈Γ\H

grΓ(z, w)FΓ(w)µH(w).

(2.5)

By the defining properties of grΓ, the function hΓ satisfies

∆hΓ =
1

gX
FΓ −

1

gX volΓ

∫
Γ\H

FΓµH

=
1

gX
FΓ −

1

volΓ
.

This implies that the canonical Green function grcan
X can be expressed as

grcan
X (z, w) = grΓ(z, w)− hΓ(z)− hΓ(w) +

∫
Γ\H

hΓµ
can
X . (2.6)

3. Tools

3.1. The Selberg–Harish-Chandra transform

Let Pν denote the Legendre function of the first kind of degree ν; see for example Iwaniec [12]equa-
tion 1.43 or Erdélyi et al. [6, § 3.6.1].

Let θ: [1,∞)→ R be a smooth function with compact support. The Selberg–Harish-Chandra
transform, or Mehler–Fock transform, of θ is defined by

hθ(s) = 2π

∫ ∞
1

θ(u)Ps−1(u)du, (3.1)

see for example Iwaniec [12, equation 1.62′]. The function θ can be recovered from hθ.
Let f :H→ C be an eigenfunction of −∆ with eigenvalue λ = s(1− s). Then we have

−∆f = s(1− s)f =⇒
∫
w∈H

θ(u(z, w))f(w)µH(w) = hθ(s)f(z). (3.2)

In particular, taking f = 1, we see that

hθ(0) = hθ(1) = 2π

∫ ∞
1

θ(u)du. (3.3)

The identity (3.2) holds more generally than just for smooth functions θ with compact support; see
Selberg [19, pages 60–61]. It will be enough for us to state a slightly weaker, but more convenient
sufficient condition (cf. Selberg [19, page 72] or Iwaniec [12, equation 1.63]). Let ε > 0 and β > 1,
and let h be a holomorphic function on the strip {s ∈ C

∣∣ −ε < <s < 1+ε} such that h(s) = h(1−s)
and such that s 7→ |h(s)||s(1−s)|β is bounded on this strip. Then h is the Selberg–Harish-Chandra
transform of a suitable function θ, and (3.2) holds for the pair (θ, h).

More generally, let k be a real number, and let ∆k = y2(∂2
x + ∂2

y)− iky∂x denote the Laplace
operator of weight k on H. Let θ: [1,∞) → R be a piecewise smooth function with compact
support. We define

θ(k)(z, w) =

(
w − z̄
z − w̄

)k/2
θ(u(z, w)).

6



Let Ps,k be the generalisation of the Legendre function Ps−1(u) given by Fay [9, § 1] (note
that our definition of weight is twice that of [9]):

Ps,k =

(
2

u+ 1

)s
F

(
s− k

2
, s+

k

2
; 1;

u− 1

u+ 1

)
. (3.4)

We define the Selberg–Harish-Chandra transform of weight k of the function θ as

h
(k)
θ (s) = 2π

∫ ∞
1

θ(u)Ps,k(u)du. (3.5)

If f is an eigenfunction of −∆k with eigenvalue s(1− s), then we have∫
w∈H

θ(k)(z, w)f(w)dw = h
(k)
θ (s)f(z); (3.6)

see Fay [9, Theorem 1.5].

3.2. Automorphic forms

For simplicity, we take k ∈ {0, 2} from now on. We write

ν(k)(γ, z) =

(
cz + d

cz̄ + d

)k/2
=

(cz + d)k

|cz + d|k
for γ =

(
a

c

b

d

)
∈ SL2(R) and z ∈ H.

We recall that an automorphic form (of Maaß) of weight k for Γ is a smooth function f :H→ C
with the following properties:

(1) the function f satisfies the transformation formula

f(γz) = ν(k)(γ, z)f(z) for all γ ∈ Γ and z ∈ H;

(2) for every cusp c of Γ, there exists κ ∈ R such that |f(z)| = O(yc(z)
κ) as yc(z)→∞.

A cusp form of weight k for Γ is a function f satisfying (1) and the following strengthening of (2):

(2′) for every cusp c of Γ there exists ε > 0 such that |f(z)| = O(exp(−εycz)) as yc(z)→∞.

Let L2(Γ\H, k) denote the Hilbert space of square-integrable automorphic forms of weight k
for Γ, equipped with the Petersson inner product.

Let θ: [1,∞)→ R be a smooth function with compact support. Then we have

θ(k)(γz, γw) =
ν(k)(γ, z)

ν(k)(γ,w)
θ(k)(z, w) for all γ ∈ SL2(R) and z, w ∈ H.

Let Γ be a cofinite Fuchsian group. We define

K
(k)
Γ,θ(z, w) =

∑
γ∈Γ

ν(k)(γ,w)θ(k)(z, γw). (3.7)

This function satisfies

K
(k)
Γ,θ(w, z) = K

(k)
Γ,θ(z, w)

and, for all γ ∈ Γ,

K
(k)
Γ,θ(γz, w) = ν(k)(γ, z)K

(k)
Γ,θ(z, w),

K
(k)
Γ,θ(z, γw) = ν(k)(γ,w)−1K

(k)
Γ,θ(z, w).

Now (3.6) implies that if f is an automorphic form of weight k for Γ satisfying −∆kf = s(1− s)f ,
then ∫

w∈Γ\H
K

(k)
Γ,θ(z, w)f(w)µH(w) = h

(k)
θ (s)f(z). (3.8)
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3.3. Spectral theory of the Laplace operator for Fuchsian groups

Let Γ be a cofinite Fuchsian group. The spectrum of −∆Γ on L2(Γ\H) consists of a discrete part
and a continuous part.

The discrete spectrum consists of eigenvalues of −∆Γ and is of the form {λj}∞j=0 with

0 = λ0 < λ1 ≤ λ2 ≤ . . . , λj →∞ as j →∞.

Let {φj}∞j=0 be a corresponding orthonormal set of eigenfunctions. For each j ≥ 0, we define
sj ∈ C by

λj = sj(1− sj),

with sj ∈ [1/2, 1] if λj ≤ 1/4. For λj > 1/4, the sj are only determined up to sj ↔ 1− sj .
The continuous part of the spectrum of −∆Γ is the interval [1/4,∞) with multiplicity equal to

the number of cusps of Γ. The continuous spectrum does not correspond to eigenfunctions, but to
“wave packets” constructed from the non-holomorphic Eisenstein series introduced by Maaß [16].
These series are defined as follows: for every cusp c of Γ the series

Ec(z, s) =
∑

γ∈Γc\Γ

(yc(γz))
s (z ∈ H, s ∈ C with <s > 1)

converges uniformly on sets of the form K × {s ∈ C | <s ≥ δ} with K a compact subset of H
and δ > 1. In particular, Ec(z, s) is a holomorphic function of s for <s > 1. The Eisenstein–Maaß
series admit a meromorphic continuation and functional equation (Selberg [20]; cf. Faddeev [7, § 4],
Hejhal [10, §VI.11 or Appendix F] or Iwaniec [12, Chapter 6]). The function z 7→ Ec(z, s), for s
not a pole, satisfies the differential equation

−∆ΓEc( , s) = s(1− s)Ec( , s).

For s ∈ C with <s = 1/2, the Eisenstein–Maaß series z 7→ Ec(z, s) are integrable, but not square-
integrable, on Γ\H. In contrast, the “wave packets” mentioned above are square-integrable.

In the remainder of the article, we will often consider integrals over the line <s = 1/2. For
this we need an orientation; we fix one by requiring that the map t 7→ 1/2 + it from R with the
usual orientation to the line <s = 1/2 preserves orientations.

It is known (see Iwaniec [12, Theorems 4.7 and 7.3]; cf. Faddeev [7, Theorem 4.1]) that every
smooth and bounded function f : Γ\H→ C has the spectral representation

f(z) =

∞∑
j=0

bjφj(z) +
∑
c

1

4πi

∫
<s=1/2

bc(s)Ec(z, s)ds, (3.9)

where c runs over the cusps of Γ and the coefficients bj and bc(s) are given by

bj =

∫
Γ\H

fφ̄jµH and bc(s) =

∫
Γ\H

fĒc( , s)µH.

The right-hand side of (3.9) converges to f in the Hilbert space L2(Γ\H). If in addition the smooth
function ∆f : Γ\H→ C is bounded, the convergence is uniform on compact subsets of H.

With regard to these spectral representations, the effect of the operator GΓ from the intro-
duction is as follows: if f has the spectral representation (3.9), then GΓf has the corresponding
spectral representation

GΓf(z) = −
∞∑
j=1

bj
λj
φj(z)−

∑
c

1

4πi

∫
<s=1/2

bc(s)

s(1− s)
Ec(z, s)ds. (3.10)

(Note the absence of the eigenvalue λ0 = 0.)
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There is an analogous result (see Iwaniec [12, Theorem 7.4]) for functions on H×H of the form∑
γ∈Γ θ(u(z, γw)), where θ: [1,∞)→ R is a function whose Selberg–Harish-Chandra transform hθ

exists and satisfies the conditions of § 3.1. In this situation, the function

Kθ:H×H −→ R

(z, w) 7−→
∑
γ∈Γ

θ(u(z, γw))

is Γ-invariant with respect to both variables and admits the spectral representation

Kθ(z, w) =

∞∑
j=0

hθ(sj)φj(z)φ̄j(w) +
∑
c

1

4πi

∫
<s=1/2

hθ(s)Ec(z, s)Ēc(w, s)ds, (3.11)

where the expression on the right-hand side converges uniformly to Kθ for (z, w) in compact subsets
of Γ\H×Γ\H, and also with respect to the L2-norm in the variable w, uniformly for z in compact
subsets of Γ\H.

3.4. A point counting function

We fix a real number U ≥ 1, and define

θU : [1,∞) −→ R

u 7−→
{

1 if u ≤ U ;
0 if u > U .

(3.12)

From (3.1) and the formula for
∫ z

1
Pν(w)dw found in Erdélyi et al. [6, § 3.6.1, equation 8], we see

that the Selberg–Harish-Chandra transform of θU is

hU (s) = 2π
√
U2 − 1P−1

s−1(U). (3.13)

Here Pµν is the Legendre function of the first kind of degree ν and order µ; see [6, § 3.2].
Now let Γ be a cofinite Fuchsian group. We introduce the following point counting function.

For any two points z, w in H and any U ≥ 1, we denote by NΓ(z, w, U) the number of translates
of w by elements of Γ lying in a disc around z of radius r given by cosh(r) = U , i.e.

NΓ(z, w, U) = #{γ ∈ Γ | u(z, γw) ≤ U}

=
∑
γ∈Γ

θU (u(z, γw)). (3.14)

This is Γ-invariant in z and w separately.

Lemma 3.1. Let U ∈ [1, 3], and let s ∈ C be such that s(1− s)(U − 1) ∈ [0, 1/2]. Then hU (s) is
a real number satisfying

(4π − 8)(U − 1) ≤ hU (s) ≤ 8(U − 1).

Proof . This follows from (3.13) and Lemma A.1.

3.5. Bounds on eigenfunctions

The convergence of the spectral representation (3.11) can be deduced from suitable bounds on the
function

ΦΓ:H× [0,∞) −→ [0,∞)

(z, λ) 7−→
∑

j:λj≤λ

|φj(z)|2 +
∑
c

1

4πi

∫
<s=1/2
s(1−s)≤λ

∣∣Ec(z, s)
∣∣2ds. (3.15)

We will prove a bound on ΦΓ which holds uniformly for all subgroups Γ of finite index in a given
cofinite Fuchsian group Γ0. This will give a similar uniformity in Section 5.
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Lemma 3.2. Let Γ be a cofinite Fuchsian group. Then the function ΦΓ(z, λ) satisfies

ΦΓ(z, λ) ≤ π

(2π − 4)2
NΓ(z, z, 17)λ for all z ∈ H and all λ ≥ 1/4.

Proof . Let z ∈ H and λ ≥ 1/4. We put

U = 1 +
1

2λ
∈ (1, 3].

From Bessel’s inequality one can deduce (see Iwaniec [12, § 7.2]) that∑
j:λj≤λ

|hU (sj)φj(z)|2 +
∑
c

1

4πi

∫
<s=1/2
s(1−s)≤λ

∣∣hU (s)Ec(z, s)
∣∣2ds ≤ ∫

w∈Γ\H
NΓ(z, w, U)2µH(w).

From the definition (3.15) of ΦΓ and the bound hU (s) ≥ (2π−4)/λ given by Lemma 3.1, we deduce

ΦΓ(z, λ) ≤ λ2

(2π − 4)2

∫
w∈Γ\H

NΓ(z, w, U)2µH(w).

We rewrite the integral on the right-hand side by partial unfolding as follows [12, page 109]:∫
w∈Γ\H

NΓ(z, w, U)2µH(w) =
∑
γ,γ′∈Γ

∫
w∈Γ\H

θU (z, γ′w)θU (γz, γ′w)µH(w)

=
∑
γ∈Γ

∫
w∈H

θU (z, w)θU (γz, w)µH(w).

The last integral can be interpreted as the area of the intersection of the discs of radius r around
the points z and γz of H, where cosh r = U . By the triangle inequality for the hyperbolic distance,
this intersection is empty unless

u(z, γz) ≤ cosh(2r) = 2U2 − 1;

furthermore, the area of this intersection is at most 2π(U − 1) = π/λ. From this we deduce that∫
w∈Γ\H

NΓ(z, w, U)2µH(w) ≤ π

λ
NΓ(z, z, 2U2 − 1)

Since 2U2 − 1 ≤ 17, this proves the lemma.

3.6. The hyperbolic lattice point problem

Let Γ be a cofinite Fuchsian group. The hyperbolic lattice point problem for Γ is the following
question: what is the asymptotic behaviour of the point counting function NΓ(z, w, U) from (3.14)
as U → ∞? This question has been studied intensively, for example by Delsarte [4], Huber [11,
Satz B], Patterson [18, Theorem 2] and Selberg, using spectral theory on Γ\H; see Iwaniec [12,
Chapter 12]. We consider functions

θ+
U , θ

−
U : [1,∞)→ R

of the form

θ+
U (u) =

{
1 if 1 ≤ u ≤ U ,
V−u
V−U if U ≤ u ≤ V ,
0 if V ≤ u,

θ−U (u) =

{
1 if 1 ≤ u ≤ T ,
U−u
U−T if T ≤ u ≤ U ,
0 if U ≤ u

for certain T , V , depending on U , with 1 ≤ T < U < V ; these will be chosen below.

0

1

1 T U V

θ−U θ+U

Figure 1: The functions θ+
U and θ−U .
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By (3.1), the Selberg–Harish-Chandra transforms of θ±U are

h+
U (s) = 2π

∫ V

1

Ps−1(u)
V − u
V − U

du− 2π

∫ V

1

Ps−1(u)
U − u
V − U

du,

h−U (s) = 2π

∫ U

1

Ps−1(u)
U − u
U − T

du− 2π

∫ T

1

Ps−1(u)
T − u
U − T

du.

Integrating by parts and applying the integral relation between the Legendre functions Pν and P−2
ν

given in Erdélyi et al. [6, § 3.6.1, equation 8], we get

h+
U (s) = 2π

(V 2 − 1)P−2
s−1(V )− (U2 − 1)P−2

s−1(U)

V − U
,

h−U (s) = 2π
(U2 − 1)P−2

s−1(U)− (T 2 − 1)P−2
s−1(T )

U − T
.

(3.16)

In particular, it follows from (3.3) or the formula P−2
0 (u) = (u− 1)/(2u+ 2) that

h+
U (1) = 2π(U − 1) + π(V − U) and h−U (1) = 2π(U − 1)− π(U − T ). (3.17)

We define functions K+
U and K−U on Γ\H×Γ\H by the following sums, which are finite because

the functions θ±U have compact support:

K±U (z, w) =
∑
γ∈Γ

θ±U (u(z, γw)).

Our choice of θ±U implies the inequalities

K−U (z, w) ≤ NΓ(z, w, U) ≤ K+
U (z, w) for all z, w ∈ H and U > 1. (3.18)

The functions h±U satisfy the conditions of § 3.1, so the functions K±U have spectral representations

K±U (z, w) =

∞∑
j=0

h±U (sj)φj(z)φ̄j(w) +
∑
c

1

4πi

∫
<s=1/2

h±U (s)Ec(z, s)Ēc(w, s)ds. (3.19)

We now explain how to choose T and V as functions of U such that (3.19) gives good estimates
for NΓ(z, w, U) as U →∞. Let δ ≥ 1 be given. We fix parameters α+, α−, β+ and β− satisfying

α± ∈ (0, 1/2), β± > 0, β− ≤ δ1+α−

δ + 1
. (3.20)

We choose T and V as functions of U as follows:

T (U) = U − β−U−1−α−(U2 − 1), V (U) = U + β+U−1−α+

(U2 − 1). (3.21)

The last inequality in (3.20) ensures that if U ≥ δ, then T (U) ≥ 1.
For later use, we will keep the parameters α± and β± variable for greater flexibility. To obtain

the best known error bound in the hyperbolic lattice point problem, the right choice is α± = 1/3,
so that

V − U ∼ β+U2/3 and U − T ∼ β−U2/3 as U →∞.

This choice leads to the estimate

NΓ(z, w, U) =
∑

j: 2/3<sj≤1

2sj
√
π

Γ
(
sj − 1

2

)
Γ(sj + 1)

φj(z)φ̄j(w)Usj +O(U2/3) as U →∞, (3.22)

with an implied constant depending on Γ and the points z and w.
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The dominant term in (3.19) as U →∞ comes from the eigenvalue λ0 = 0, corresponding to
s0 = 1. Since |φ0|2 is the constant function 1/volΓ, the number of lattice points inside a disc of
radius r, where cosh r = U , is asymptotically equivalent to the area 2π(U − 1) of this disc divided
by the area of a fundamental domain for the action of Γ, as one would intuitively expect.

4. An approximate spectral representation of the automorphic Green function

Let Γ be a cofinite Fuchsian group. The automorphic Green function grΓ formally has the spectral
representation

grΓ(z, w)
?
= −

∞∑
j=1

1

λj
φj(z)φ̄j(w)−

∑
c

1

4πi

∫
<s=1/2

1

s(1− s)
Ec(z, s)Ēc(w, s)ds.

The problem is that this expansion does not converge. Neither should one be tempted to write grΓ

by “averaging” grH as a (likewise divergent) sum

grΓ(z, w)
?
=
∑
γ∈Γ

grH(z, γw).

However, both of these divergent expressions have at least some value as guiding ideas for what
follows. In fact, we will bound grΓ(z, w) by means of certain functions R±Γ,δ(z, w), defined in (4.5)
below, that reflect the above formal spectral representation of grΓ.

4.1. A construction of grΓ using the resolvent kernel

We will give a construction of the automorphic Green function grΓ using the family of auxiliary
functions

ga: (1,∞) −→ [0,∞)

u 7−→ 1

2π
Qa−1(u)

for a ≥ 1, where Qν is the Legendre function of the second kind of degree ν; see Erdélyi et al. [6,
§ 3.6.1]. By [6, § 3.6.2, equation 20], we have

Q0(u) =
1

2
log

u+ 1

u− 1
,

which shows that g1 equals the function L from (2.1). By (3.1) and [6, § 3.12, equation 4], the
Selberg–Harish-Chandra transform of ga is

ha(s) =

∫ ∞
1

Ps−1(u)Qa−1(u)du

=
1

(a− s)(a− 1 + s)

=
1

s(1− s) + a(a− 1)
.

(4.1)

For all a > 1, the sum
∑
γ∈Γ ga(u(z, γw)) converges uniformly on compact subsets of H×H not

containing any points of the form (z, γz) and defines a continuous function that is square-integrable
in each variable; see Fay [9, Theorem 1.5]. We can therefore define

KΓ
a : {(z, w) ∈ H×H | z 6∈ Γw} −→ R

(z, w) 7−→
∑
γ∈Γ

ga(u(z, γw))− ca, (4.2)

where

ca =
2π

volΓ

∫ ∞
1

ga(u)du =
1

volΓ
ha(1) =

1

volΓ a(a− 1)
.

The constant ca is such that the integral of KΓ
a over Γ\H with respect to each of the variables

vanishes. Up to this constant, KΓ
a is the resolvent kernel with parameter a.

The resolvent kernel admits a meromorphic continuation in the variable a, and the constant
term in the Laurent expansion at a = 1 equals − grΓ. The following proposition makes this precise.
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Proposition 4.1. The family of functions {KΓ
a }a>1 converges uniformly to − grΓ on compact

subsets of Γ\H× Γ\H, and also with respect to the L2-norm in the variable w, uniformly for z in
compact subsets of Γ\H.

Proof . This is presumably well known (cf. Fay [9, Theorem 2.3] or Iwaniec [12, Theorem 7.5]), but
lacking a reference for this precise result, we sketch a proof.

For all a, b > 1, one shows using (4.1) that ha(s) − hb(s) satisfies the conditions of § 3.1, so
that the function

(KΓ
a −KΓ

b )(z, w) =
∑
γ∈Γ

(
ga(u(z, γw))− gb(u(z, γw))

)
− ca + cb

has the spectral representation (without the eigenvalue λ0 = 0, because of the definition of ca)

(KΓ
a −KΓ

b )(z, w) =

∞∑
j=1

(ha(sj)− hb(sj))φj(z)φ̄j(w)

+
∑
c

1

4πi

∫
<s=1/2

(ha(s)− hb(s))Ec(z, s)Ēc(w, s)ds.

(4.3)

We claim that {KΓ
a −KΓ

b }a,b>1 converges to 0 in the desired sense as a, b↘ 1. In particular,
{KΓ

a }a>1 converges to a symmetric continuous function outside the diagonal on Γ\H× Γ\H that
is square-integrable with respect to each variable separately. We fix σ ∈ (0, 1/2) such that the
spectrum of −∆Γ is contained in {0} ∪ [σ(1− σ),∞).

Again using (4.1), one finds real numbers Ca,b,σ, with Ca,b,σ → 0 as a, b ↘ 1, such that the
following holds. We have

∣∣KΓ
a −KΓ

b

∣∣(z, w) ≤
∞∑
j=1

|ha(sj)− hb(sj)| · |φj(z)φ̄j(w)|

+
∑
c

1

4πi

∫
<s=1/2

|ha(s)− hb(s)| ·
∣∣Ec(z, s

)
Ēc(w, s)

∣∣ds
≤ Ca,b,σ

( ∞∑
j=1

(
sj(1− sj)

)−2|φj(z)φ̄j(w)|

+
∑
c

1

4πi

∫
<s=1/2

(
s(1− s)

)−2∣∣Ec(z, s)Ēc(w, s)
∣∣ds).

By the Cauchy–Schwarz inequality and Lemma 3.2, the right-hand side converges to 0 uniformly
on compact subsets of Γ\H× Γ\H. Furthermore, by (4.3) and Plancherel’s theorem, we have∫

w∈Γ\H

∣∣KΓ
a −KΓ

b

∣∣2(z, w)µH(w) =

∞∑
j=1

∣∣ha(sj)− hb(sj)
∣∣2|φj(z)|2

+
∑
c

1

4πi

∫
<s=1/2

∣∣ha(s)− hb(s)
∣∣2∣∣Ec(z, s)

∣∣2ds
≤ C2

a,b,σ

( ∞∑
j=1

(
sj(1− sj)

)−4|φj(z)|2

+
∑
c

1

4πi

∫
<s=1/2

(
s(1− s)

)−4∣∣Ec(z, s)
∣∣2ds).

By Lemma 3.2, the last factor is bounded on compact subsets of Γ\H. This implies that the
right-hand side converges to 0 uniformly on compact subsets of Γ\H as a, b ↘ 1, and hence
{KΓ

a −KΓ
b }a,b>1 converges to 0 with respect to the L2-norm in the variable w, uniformly for z in

compact subsets of Γ\H.
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The fundamental property (3.2) of the Selberg–Harish-Chandra transform implies that if f is
a smooth and bounded function on Γ\H, with spectral representation (3.9), then∫

w∈Γ\H
KΓ
a (z, w)f(w)µH(w) =

∞∑
j=1

bjha(sj)φj(z) +
∑
c

1

4πi

∫
<s=1/2

bc(s)ha(s)Ec(z, s)ds.

Taking the limit, using the L2-convergence that we just proved and applying (3.10), we get∫
w∈Γ\H

lim
a↘1

KΓ
a (z, w)f(w)µH(w) = lim

a↘1

∫
w∈Γ\H

KΓ
a (z, w)f(w)µH(w)

=

∞∑
j=1

bj
sj(1− sj)

φj(z) +
∑
c

1

4πi

∫
<s=1/2

bc(s)

s(1− s)
Ec(z, s)ds

= −GΓf(z)

= −
∫
w∈Γ\H

grΓ(z, w)f(w)µH(w).

Since the set of smooth and bounded functions is dense in L2(Γ\H), this proves that the limit of
the convergent family of functions {KΓ

a }a>1 equals − grΓ.

4.2. An approximate spectral representation

We now exploit the estimates for the hyperbolic lattice point problem given in § 3.6. We choose
parameters α± and β± satisfying (3.20). Using these, we define functions T (U), V (U), θ±U (u),
h±U (s) and K±U (z, w) as in § 3.6. Furthermore, we fix a real number δ > 1. In the following, we will
treat elements γ ∈ Γ differently depending on whethere u(z, γw) ≤ δ or u(z, γw) > δ.

We define

I±δ (s) =
1

2π

∫ ∞
δ

h±U (s)

U2 − 1
dU for 0 < <s < 1, (4.4)

R±Γ,δ(z, w) =

∞∑
j=1

I±δ (sj)φj(z)φ̄j(w) +
∑
c

1

4πi

∫
<s=1/2

I±δ (s)Ec(z, s)Ēc(w, s)ds, (4.5)

q+
Γ,δ =

1

volΓ

(
β+

2α+δα+ − log
δ + 1

2

)
, q−Γ,δ = − 1

volΓ

(
β−

2α−δα−
+ log

δ + 1

2

)
. (4.6)

The intuition behind the following theorem is that although the automorphic Green func-
tion grΓ does not admit a spectral representation, it can be bounded (after removing the loga-
rithmic singularity) by functions that do admit spectral representations. The terms q±Γ,δ below

correspond to the eigenvalue 0, while the terms R±Γ,δ(z, w) correspond to the non-zero part of the
spectrum.

Theorem 4.2. Let Γ be a cofinite Fuchsian group. For all δ > 1 and for every choice of the
parameters α± and β± satisfying (3.20), the automorphic Green function of Γ satisfies the in-
equalities

−q+
Γ,δ −R

+
Γ,δ(z, w) ≤ grΓ(z, w) +

∑
γ∈Γ

u(z,γw)≤δ

Lδ(z, γw) ≤ −q−Γ,δ −R
−
Γ,δ(z, w).

Proof . For any U ≥ δ, the inequality (3.18) implies that the number of elements γ ∈ Γ with
δ < u(z, γw) ≤ U can be bounded as

A(U) ≤ #{γ ∈ Γ | δ < u(z, γw) ≤ U} ≤ B(U), (4.7)

where the functions A,B: [δ,∞)→ R are defined by

A(U) = K−U (z, w)−NΓ(z, w, δ) and B(U) = K+
U (z, w)−NΓ(z, w, δ).

The functions A and B are continuous and increasing. By the estimates from § 3.6, they are
bounded linearly in U as U →∞, with an implied constant depending on the group Γ, the points
z and w and the functions T and V .
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Let {ha}a>1, {ga}a>1 and {KΓ
a }a>1 be as in § 4.1. For all a > 1, applying partial summation

and (4.7) gives

−
∫ ∞
δ

g′a(U)A(U)dU ≤
∑
γ∈Γ

u(z,γw)>δ

ga(u(z, γw)) ≤ −
∫ ∞
δ

g′a(U)B(U)dU.

Using the definition (4.2) of KΓ
a , we deduce the upper bound

KΓ
a (z, w) ≤

∑
γ∈Γ

u(z,γw)≤δ

ga(u(z, γw))−
∫ ∞
δ

g′a(U)B(U)dU − 2π

volΓ

∫ ∞
1

ga(u)du.

The definition of B implies∫ ∞
δ

g′a(U)B(U)dU =

∫ ∞
δ

g′a(U)K+
U (z, w)dU −NΓ(z, w, δ)

∫ ∞
δ

g′a(U)dU

=

∫ ∞
δ

g′a(U)
(
K+
U (z, w)− 2π

volΓ
(U − 1)

)
dU +

2π

volΓ

∫ ∞
δ

g′a(U)(U − 1)dU

+NΓ(z, w, δ)ga(δ).

Using integration by parts, we rewrite the second integral in the last expression as follows:∫ ∞
δ

g′a(U)(U − 1)dU =

∫ ∞
1

g′a(U)(U − 1)dU −
∫ δ

1

g′a(U)(U − 1)dU

= −
∫ ∞

1

ga(U)dU −
∫ δ

1

g′a(U)(U − 1)dU.

We can now rewrite our upper bound for KΓ
a (z, w) as

KΓ
a (z, w) ≤

∑
γ∈Γ

u(z,γw)≤δ

(
ga(u(z, γw))− ga(δ)

)
−
∫ ∞
δ

g′a(U)
(
K+
U (z, w)− 2π

volΓ
(U − 1)

)
dU

+
2π

volΓ

∫ δ

1

g′a(U)(U − 1)dU.

Lemma A.2 implies

1

2π

(
2

u+ 1

)a−1
1

u2 − 1
≤ g′a(u) ≤ 0,

and equality holds for a = 1. By the dominated convergence theorem, we may take the limit a↘ 1
inside the integrals. Together with Proposition 4.1, this leads to

grΓ(z, w) +
∑
γ∈Γ

u(z,γw)≤δ

Lδ(z, γw) ≥ − 1

2π

∫ ∞
δ

(
K+
U (z, w)− 2π

volΓ
(U − 1)

) dU

U2 − 1
+

1

volΓ
log

δ + 1

2
.

In the integral, we insert the spectral representation (3.19) of K+
U , the formula (3.17) for h+

U (1)
and the fact that |φ0|2 = 1/volΓ. We then interchange the resulting sums and integrals with the
integral over U ; this is permitted because the double sums and integrals converge absolutely, as
one deduces from Lemma 3.2 and (3.22). This yields

1

2π

∫ ∞
δ

(
K+
U (z, w)− 2π

volΓ
(U − 1)

) dU

U2 − 1
= R+

Γ,δ(z, w) +
1

2 volΓ

∫ ∞
δ

V − U
U2 − 1

dU.

Finally, we note that ∫ ∞
δ

V − U
U2 − 1

dU = β+

∫ ∞
δ

U−1−α+

dU

=
β+

α+δα+ .

This proves the lower bound of the theorem. The proof of the upper bound is similar.

Remark . The only inequality responsible for the fact that the inequalities in Theorem 4.2 are not
equalities is (4.7).
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5. Bounds on the automorphic Green function

5.1. Bounds on h±U (s) and I±δ (s)

We keep the notation of § 4.2. In addition, we choose real numbers σ± such that

0 < α+ < σ+ < 1/2 and 0 < α− < σ− < 1/2.

Given a real number σ < 1/2, we consider the strip

Sσ = {s ∈ C | σ ≤ <s ≤ 1− σ}. (5.1)

Let s ∈ Sσ+ , and let pσ+(u) be the elementary function defined by (A.6) below. From (3.16),
Corollary A.6 and (3.21), we obtain

|h+
U (s)| ≤ 2π

(V 2 − 1)
∣∣P−2
s−1(V )

∣∣+ (U2 − 1)
∣∣P−2
s−1(U)

∣∣
V − U

≤ 2π
∣∣s(1− s)∣∣−5/4 pσ+(V ) + pσ+(U)

V − U

= 2π
∣∣s(1− s)∣∣−5/4

(
pσ+(V ) + pσ+(U)

)
U1+α+

β+(U2 − 1)
.

Similarly, for s ∈ Sσ− ,

|h−U (s)| ≤ 2π
∣∣s(1− s)∣∣−5/4

(
pσ−(U) + pσ−(T )

)
U1+α−

β−(U2 − 1)
.

Substituting this in the definition (4.4) of I, we obtain

|I+
δ (s)| ≤ D+

δ

∣∣s(1− s)∣∣−5/4
and |I−δ (s)| ≤ D−δ

∣∣s(1− s)∣∣−5/4
, (5.2)

where

D+
δ =

1

β+

∫ ∞
δ

(
pσ+(V ) + pσ+(U)

)
U1+α+

(U2 − 1)2
dU,

D−δ =
1

β−

∫ ∞
δ

(
pσ−(U) + pσ−(T )

)
U1+α−

(U2 − 1)2
dU.

(5.3)

5.2. Bounds on grΓ

Theorem 5.1. Let Γ be a cofinite Fuchsian group. Let δ > 1 and η ∈ (0, 1/4] be real numbers
such that the spectrum of −∆Γ is contained in {0} ∪ [η,∞). Let σ+, σ−, α+, α−, β+, β− be real
numbers satisfying (3.20) and the inequalities

0 < α+ < σ+ < 1/2, 0 < α− < σ− < 1/2 and σ±(1− σ±) ≤ η.

Then the automorphic Green function grΓ satisfies the inequalities

A(z, w) ≤ grΓ(z, w) +
∑
γ∈Γ

u(z,γw)≤δ

Lδ(z, γw) ≤ B(z, w) for all z, w ∈ H,

where

A(z, w) = −q+
Γ,δ −D

+
δ

π

(2π − 4)2

(
η−5/4

4
+ 4
√

2

)
NΓ(z, z, 17) +NΓ(w,w, 17)

2
,

B(z, w) = −q−Γ,δ +D−δ
π

(2π − 4)2

(
η−5/4

4
+ 4
√

2

)
NΓ(z, z, 17) +NΓ(w,w, 17)

2
.
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Proof . In view of Theorem 4.2, we have to bound the absolute values of the functions R±Γ,δ(z, w)
from (4.5). Applying the triangle inequality and the Cauchy–Schwarz inequality, we see that

∣∣R±Γ,δ(z, w)
∣∣ ≤ S±(z) + S±(w)

2
,

where S+ and S− are defined by

S±(z) =

∞∑
j=1

|I±δ (sj)||φj(z)|2 +
∑
c

1

4πi

∫
<s=1/2

|I±δ (s)|
∣∣Ec(z, s)

∣∣2ds.
Let ΦΓ(z, λ) be as in (3.15). Applying (5.2), we obtain (with ∂ΦΓ/∂λ taken in a distributional
sense)

S±(z)/D±δ ≤
∞∑
j=1

λ
−5/4
j |φj(z)|2 +

∑
c

1

4πi

∫
<s=1/2

(
s(1− s)

)−5/4∣∣Ec(z, s)
∣∣2ds

≤ η−5/4
∑

j:λj≤1/4

|φj(z)|2 +

∫ ∞
1/4

λ−5/4 ∂ΦΓ

∂λ
(z, λ)dλ

= η−5/4ΦΓ(z, 1/4) +
[
λ−5/4ΦΓ(z, λ)

]∞
λ=1/4

+
5

4

∫ ∞
1/4

λ−9/4ΦΓ(z, λ)dλ

=
(
η−5/4 − 25/2

)
ΦΓ(z, 1/4) +

5

4

∫ ∞
1/4

λ−9/4ΦΓ(z, λ)dλ.

The bound on ΦΓ(z, λ) given by Lemma 3.2 implies

S±(z) ≤ D±δ
π

(2π − 4)2
NΓ(z, z, 17)

((
η−5/4 − 25/2

)
· 1

4
+

5

4

∫ ∞
1/4

λ−9/4λ dλ

)
= D±δ

π

(2π − 4)2
NΓ(z, z, 17)

(
η−5/4

4
+ 4
√

2

)
.

This proves the theorem.

We emphasise that the choice of the parameters δ, η, σ±, α±, β± (satisfying the conditions of
the theorem) only has a quantitative influence on the bounds. In principle, the same values can be
taken simultaneously for all groups satisfying the condition that η imposes on the spectrum. The
optimal choice depends on the behaviour of the function NΓ(z, z, 17); see Section 8.

Proof of Theorem 1.1. Let the notation be as in the theorem; we may assume η ≤ 1/4. We apply
Theorem 5.1 to Γ, with parameters σ±, α± and β± depending only on η and not on Γ. It is clear
that the factor 1/volΓ occurring in the definition (4.6) is bounded by 1/volΓ0 , and that NΓ(z, z, 17)
is bounded by NΓ0

(z, z, 17). It remains to remark that NΓ0
(z, z, 17) is bounded on Y0.

The bounds given by Theorem 5.1 are easy to make explicit. First, the real numbers D±δ
from (5.3) can be bounded in elementary ways or approximated by numerical integration. Second,
a straightforward computation shows that for z = x+ iy ∈ H and γ =

(
a
c
b
d

)
∈ SL2(R), we have

u(z, γz) =
1

2

(
(a− cx)2 +

(
b+ (a− d)x− cx2

y

)2

+ (cy)2 + (d+ cx)2

)
. (5.4)

This can be used for concrete groups Γ to find an upper bound on NΓ(z, z, U) for U > 1, as we
will show in Section 8.
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5.3. Extension to neighbourhoods of the cusps

The bounds given by Theorem 5.1 do not have the right asymptotic behaviour when z or w are
near the cusps of Γ. This means that we have to do some more work to find suitable bounds on
the automorphic Green function grΓ(z, w) in this case.

Let D and D̄ denote the open and closed unit discs in C, respectively. We recall that the
Poisson kernel on D is defined by

P (ζ) =
1− |ζ|2

|1− ζ|2

= 1 +

∞∑
n=1

ζn +

∞∑
n=1

ζ̄n.

We will use the notation
P̃ (t, ζ) = P (exp(2πit)ζ).

Lemma 5.2. The Poisson kernel satisfies∫ 1

0

P̃ (a, ζ)P̃ (−a, η)da = P (ζη) for all ζ, η ∈ D (5.5)

and

P̃ (t, ζ) =
d

dt

(
t+

1

2πi

(
log

1− exp(−2πit)ζ̄

1− exp(2πit)ζ
− log

1− ζ̄
1− ζ

))
for all ζ ∈ D. (5.6)

Proof . The first claim can be verified in several ways, for example using the residue theorem,
Fourier series, or the fact that the Poisson kernel solves the Laplace equation with Dirichlet bound-
ary conditions. The second claim is straightforward to check.

Let grD̄ denote the Green function for the Laplace operator on D̄; this is an integral kernel
for the Poisson equation ∆f = g with boundary condition f = 0 on ∂D̄. It is given explicitly by

grD̄(ζ, η) =
1

2π
log

∣∣∣∣ ζ − η1− ζη̄

∣∣∣∣ for all ζ, η ∈ D with ζ 6= η.

For all ξ ∈ D and t ∈ R, we write

λ(ξ, t) =
1

2πi

(
log(1− exp(−2πit)ξ)− log(1− exp(2πit)ξ)

)
.

Lemma 5.3. The function λ(ξ, t) satisfies∣∣∣∣∫ t

0

λ(ξ, y)

y
dy +

1

2
log(1− ξ)

∣∣∣∣ ≤ 1

12t
for all t > 0.

Proof . We expand λ(ξ, t) for ξ ∈ D in a Fourier series:

λ(ξ, t) =
1

2πi

( ∞∑
n=1

ξn exp(2πint)

n
−
∞∑
n=1

ξn exp(−2πint)

n

)

=
1

π

∞∑
n=1

ξn sin(2πnt)

n
.

This implies ∫ t

0

λ(ξ, y)

y
dy =

1

π

∞∑
n=1

ξn

n

∫ t

0

sin(2πny)

y
dy

=
1

π

∞∑
n=1

ξn

n

∫ 2πnt

0

sinx

x
dx

=
1

π

∞∑
n=1

ξn

n
(si(0)− si(2πnt)).
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Here si(y) is the sine integral function normalised such that limy→∞ si(y) = 0:

si(y) =

∫ ∞
y

sinx

x
dx.

It is known that

si(0) =
π

2
and |si(x)| ≤ 1

x
for all x > 0.

From this we get ∫ t

0

λ(ξ, y)

y
dy =

1

2

∞∑
n=1

ξn

n
− 1

π

∞∑
n=1

ξn si(2πnt)

n

= −1

2
log(1− ξ)− 1

π

∞∑
n=1

ξn si(2πnt)

n

and ∣∣∣∣∣
∞∑
n=1

ξn si(2πnt)

n

∣∣∣∣∣ ≤
∞∑
n=1

1

n(2πnt)

=
1

2πt

∞∑
n=1

1

n2

=
1

2πt

π2

6
.

This proves the claim.

For δ > 1 and u > 1, we write

Jδ(u) = max{0, L(u)− L(δ)}.

For ξ ∈ D, δ > 1 and ε > 0, we write

Nδ,ε(ξ) =

∫
t∈R

Jδ

(
1 +

(εt)2

2

)
P (exp(2πit)ξ)dt.

Lemma 5.4. The function Nδ,ε satisfies∣∣∣∣∣Nδ,ε(ξ)− 1

ε
· 2

π
arctan

√
δ − 1

2
+

1

2π
log |1− ξ|

∣∣∣∣∣ ≤ εrδ for all ξ ∈ D,

where

rδ =
1

24π

(√
2

δ − 1
+ arctan

√
δ − 1

2

)
. (5.7)

Proof . We note that

1 +
(εt)2

2
≤ δ ⇐⇒ |t| ≤ τ,

where

τ =

√
2δ − 2

ε
.

By the definition of Jδ, this gives

Nδ,ε(ξ) =

∫ τ

−τ

(
L

(
1 +

(εt)2

2

)
− L(δ)

)
P̃ (t, ξ)dt.
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Using (5.6), integrating by parts, and taking the contributions for positive and negative t together,
we obtain

Nδ,ε(ξ) = −
∫ τ

−τ
ε2tL′(1 + (εt)2/2)

(
t+

1

2πi

(
log

1− exp(−2πit)ξ̄

1− exp(2πit)ξ
− log

1− ξ̄
1− ξ

))
dt

= −
∫ τ

0

ε2tL′(1 + (εt)2/2)

(
2t+

1

2πi

(
log

1− exp(−2πit)ξ̄

1− exp(2πit)ξ
− log

1− exp(2πit)ξ̄

1− exp(−2πit)ξ

))
dt

= −
∫ τ

0

ε2tL′(1 + (εt)2/2)
(
2t+ λ(ξ, t) + λ(ξ̄, t)

)
dt.

Using the definition (2.1) of L and rearranging gives

Nδ,ε(ξ) =
1

2π

∫ τ

0

ε2t

(
1

(εt)2
− 1

4 + (εt)2

)(
2t+ λ(ξ, t) + λ(ξ̄, t)

)
dt

=
1

2π

∫ τ

0

(
2− 2(εt)2

4 + (εt)2

)
dt+

1

2π

∫ τ

0

(
1− (εt)2

4 + (εt)2

)
λ(ξ, t) + λ(ξ̄, t)

t
dt

=
1

2π

∫ τ

0

8

4 + (εt)2
dt+

1

2π

∫ τ

0

4

4 + (εt)2

λ(ξ, t) + λ(ξ̄, t)

t
dt.

(5.8)

We consider the two integrals in the last expression one by one. As for the first integral, we have∫ τ

0

8

4 + (εt)2
dt =

2

ε

∫ ετ/2

0

2

1 + x2
dx

=
4

ε
arctan

ετ

2

=
4

ε
arctan

√
δ − 1

2
.

(5.9)

As for the second integral in (5.8), let us write for convenience

Iξ =

∫ τ

0

4

4 + (εt)2

λ(ξ, t) + λ(ξ̄, t)

t
dt

and

Λξ(t) =

∫ t

0

λ(ξ, y) + λ(ξ̄, y)

y
dy + log |1− ξ|.

Then we have

Λ′ξ(t) =
λ(ξ, t) + λ(ξ̄, t)

t
and Λξ(0) = log |1 + ξ|.

Integration by parts gives

Iξ = − log |1− ξ|+ 4

4 + (ετ)2
Λξ(τ) +

∫ τ

0

8ε2t

(4 + (εt)2)2
Λξ(t)dt.

By Lemma 5.3, it follows that

∣∣Iξ + log |1− ξ|
∣∣ ≤ +

4

4 + (ετ)2

1

6τ
+

∫ τ

0

8ε2t

(4 + (εt)2)2

1

6t
dt.

The integral can be evaluated by elementary means, and the result is∣∣Iξ + log |1− ξ|
∣∣ ≤ 1

6τ
+

ε

12
arctan

ετ

2

=
ε

12

(√
2

δ − 1
+ arctan

√
δ − 1

2

)
.

Combining this with (5.8) and (5.9) proves the claim.
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Lemma 5.5. Let Γ be a cofinite Fuchsian group, and let δ > 1 and ε′ > ε > 0 be real numbers
satisfying the inequalities(

δ +
√
δ2 − 1

)1/2
ε′ ≤ min

γ∈Γ
γ 6∈Γc

Cc(γ) and
(
δ +

√
δ2 − 1

)
ε ≤ ε′.

(a) For all z, w ∈ H with yc(z) ≥ 1/ε′ and yc(w) ≥ 1/ε′ and all γ ∈ Γ, we have

u(z, γw) < δ =⇒ γ ∈ Γc.

(b) For all z, w ∈ H such that yc(z) ≥ 1/ε and such that the image of w in Γ\H lies outside Dc(ε
′),

and for all γ ∈ Γ, we have u(z, γw) ≥ δ.

Proof . Let z, w and γ be as in (a). We write

σ−1
c γσc = γ′ =

(
a

c

b

d

)
.

Suppose γ 6∈ Γc. Then our assumptions imply

|c|/ε′ ≥
(
δ +

√
δ2 − 1

)1/2
. (5.10)

We have
u(z, γw) = u(σ−1

c z, σ−1
c γw)

= u(σ−1
c z, γ′σ−1

c w)

= 1 +
|σ−1

c z − γ′σ−1
c w|2

2(=σ−1
c z)(=γ′σ−1

c w)

≥ 1 +
(=σ−1

c z −=γ′σ−1
c w)2

2(=σ−1
c z)(=γ′σ−1

c w)

=
1

2

(
=σ−1

c z

=γ′σ−1
c w

+
=γ′σ−1

c w

=σ−1
c z

)
=

1

2

(
yc(z)|cσ−1

c w + d|2

yc(w)
+

yc(w)

yc(z)|cσ−1
c w + d|2

)
.

From (5.10), we deduce
yc(z)|cσ−1

c w + d|2

yc(w)
≥ yc(z)(cyc(w))2

yc(w)

= c2yc(z)yc(w)

≥ (|c|/ε′)2

≥ δ +
√
δ2 − 1.

Using the fact that the function x 7→ x+ x−1 is increasing for x ≥ 1, we obtain

u(z, γw) ≥ 1

2

((
δ +

√
δ2 − 1

)
+

1

δ +
√
δ2 − 1

)
= δ.

This proves (a).
Now let z, w and γ be as in (b). Our assumption that the image of w in Γ\H lies outside Dc(ε

′)
implies

yc(γw) ≤ 1/ε′

and hence
yc(z)

yc(γw)
≥ ε′

ε

≥ δ +
√
δ2 − 1.
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Using the fact that the function x 7→ x−1 is increasing for x ≥ 1 as in the proof of (a), we get

u(z, γw) = u(σ−1
c z, σ−1

c γw)

≥ 1

2

(
yc(z)

yc(γw)
+
yc(γw)

yc(z)

)
≥ 1

2

((
δ +

√
δ2 − 1

)
+

1

δ +
√
δ2 − 1

)
= δ.

This proves (b).

In the following proposition, we extend our bounds on grΓ to the neighbourhoods Dc(εc) of
the cusps. We will commit the following abuse of notation: for z ∈ H and S a subset of Γ\H, we
write z ∈ S if the image of z in Γ\H lies in S.

Proposition 5.6. Let Γ be a cofinite Fuchsian group, and let δ be a real number with δ > 1. For
every cusp c of Γ, let ε′c > εc > 0 be real numbers satisfying the inequalities

ε′c
(
δ +

√
δ2 − 1

)1/2 ≤ min
γ∈Γ
γ 6∈Γc

Cc(γ), and
(
δ +

√
δ2 − 1

)
εc ≤ ε′c

and small enough such that the discs Dc(ε
′
c) are pairwise disjoint. Let

Y = (Γ\H)
∖⊔

c

Dc(εc).

Let A and B be real numbers satisfying

A ≤ grΓ(z, w) +
∑
γ∈Γ

u(z,γw)≤δ

Lδ(z, γw) ≤ B for all z, w ∈ Y. (5.11)

(a) If c is a cusp such that z ∈ Dc(εc), w ∈ Y and w 6∈ Dc(ε
′
c), we have

A ≤ grΓ(z, w)− 1

volΓ
log(εcyc(z)) ≤ B.

(a′) If c is a cusp such that w ∈ Dc(εc), z ∈ Y and z 6∈ Dc(ε
′
c), we have

A ≤ grΓ(z, w)− 1

volΓ
log(εcyc(w)) ≤ B.

(b) If c, d are two distinct cusps such that z ∈ Dc(εc) and w ∈ Dd(εd), we have

A ≤ grΓ(z, w)− 1

volΓ
log(εcyc(z))−

1

volΓ
log(εcyc(w)) ≤ B.

(c) If c is a cusp such that z, w ∈ Dc(ε
′
c), we have

Ãc ≤ grΓ(z, w)−#(Γ ∩ {±1}) · 1

2π
log |qc(z)− qc(w)|

− 1

volΓ
log(ε′cyc(z))−

1

volΓ
log(ε′cyc(w)) ≤ B̃c,

where Ãc and B̃c are defined using the function rδ from (5.7) by

Ãc = A+ #(Γ ∩ {±1})
[

1

ε′c

(
1− 2

π
arctan

√
δ − 1

2

)
− ε′crδ

]
,

B̃c = B + #(Γ ∩ {±1})
[

1

ε′c

(
1− 2

π
arctan

√
δ − 1

2

)
+ ε′crδ

]
.
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Proof . In view of § 2.3 (or Lemma 5.5(a)), the discs Dc(ε
′
c) ⊃ Dc(εc) are well defined. Further-

more, the assumption that the discs Dc(ε
′
c) are pairwise disjoint implies that for every cusp c, the

boundaries of D̄c(εc) and D̄c(ε
′
c) are contained in Y .

Let us prove part (a). We keep w ∈ Y fixed and consider grΓ(z, w) as a function of z ∈ Dc(εc).
The defining properties of grΓ imply

grΓ(z, w) =
1

volΓ
log(εcyc(z)) + hw(z) for all z ∈ Dc(εc),

with hw a real-valued harmonic function on D̄c(εc). By construction, hw(z) coincides with grΓ(z, w)
for z on the boundary of D̄c(εc). This implies

hw(z) =

∫ 1

0

grΓ(σc(a+ i/εc), w)P̃ (−a, qc(z) exp(2π/εc))da.

By Lemma 5.5(b), there are no γ ∈ Γ such that u(z, γw) < δ. By the assumption (5.11) on A
and B, we conclude

A ≤ hw(z) ≤ B for all z ∈ Dc(ε).

This proves (a). Part (a′) is equivalent to (a) by symmetry, and (b) is proved in a similar way.
It remains to prove part (c). We identify D̄c(ε

′
c) with the closed unit disc D̄ via the map

D̄c(ε
′
c)
∼−→ D̄

z 7−→ ζz = qc(z) exp(2π/ε′c).

Let grD̄c(ε′c) be the Green function for the Laplace operator on D̄c(ε
′
c), given in terms of grD by

grD̄c(ε′c)(z, w) = #(Γ ∩ {±1}) · grD(ζz, ζw).

The factor #(Γ ∩ {±1}) arises because of how we defined integration on Γ\H in Section 1.
Fixing w and considering grΓ as a function of z, we have

grΓ(z, w) = grD̄c(ε′c)(z, w) +
1

volΓ
log(ε′cyc(z)) + hw(z) for all z ∈ Dc(ε

′
c),

where hw is a real-valued harmonic function on D̄c(ε
′
c). By construction, hw(z) coincides with

grΓ(z, w) for z on the boundary of D̄c(ε
′
c). This implies

hw(z) =

∫ 1

0

grΓ(σc(a+ i/ε′c), w)P̃ (−a, ζz)da.

Applying the same argument to grΓ(σc(a+ i/ε′c), w) as a function of w, we obtain

grΓ(z, w) = grD̄c(ε′c)(z, w) +
1

volΓ
log(ε′cyc(z)) +

1

volΓ
log(ε′cyc(w)) +K(z, w), (5.12)

where K is the function on Dc(ε
′
c)×Dc(ε

′
c) defined by

K(z, w) =

∫ 1

a=0

∫ 1

b=0

grΓ(σc(a+ i/ε′c), σc(b+ i/ε′c))P̃ (−b, ζw)P̃ (−a, ζz)db da.

In (5.11), we may replace Γ by Γc in view of Lemma 5.5(a), i.e., we have

A ≤ grΓ(z, w) +
∑
γ∈Γc

u(z,γw)≤δ

Lδ(z, γw) ≤ B for all z, w ∈ ∂D̄c(ε
′
c).
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Substituting this in the definition of K(z, w) and “unfolding” the action of Γc, we get

A ≤ K(z, w) + #(Γ ∩ {±1})M(ζz, ζw) ≤ B, (5.13)

where M is the function on D ×D defined by

M(ζ, η) =

∫ 1

a=0

∫
b∈R

Jδ(u(σc(a+ i/ε′c), σc(b+ i/ε′c)))P̃ (−b, η)P̃ (−a, ζ)db da.

Making the change of variables

b = a+ t

and noting that
u(σc(a+ i/ε′c), σc(b+ i/ε′c)) = u(a+ i/ε′c, b+ i/ε′c)

= 1 +
(b− a)2

2/ε′2c

= 1 +
(ε′ct)

2

2
,

we obtain

M(ζ, η) =

∫ 1

a=0

∫
t∈R

Jδ

(
1 +

(ε′ct)
2

2

)
P̃ (−a− t, η)P̃ (−a, ζ)dt da.

Interchanging the order of integration, noting that

P̃ (−a− t, η) = P̃ (a, exp(2πit)η̄)

and using (5.5), we simplify this to

M(ζ, η) =

∫
t∈R

Jδ

(
1 +

(ε′ct)
2

2

)
P̃ (t, ζη̄)dt

= Nδ,ε′c(ζη̄).

Applying Lemma 5.4, we conclude from (5.13) that

K(z, w) ≤ B + #(Γ ∩ {±1})
(

1

2π
log |1− ζz ζ̄w| −

1

ε′c
· 2

π
arctan

√
δ − 1

2
+ ε′crδ

)
,

K(z, w) ≥ A+ #(Γ ∩ {±1})
(

1

2π
log |1− ζz ζ̄w| −

1

ε′c
· 2

π
arctan

√
δ − 1

2
− ε′crδ

)
.

We now note that

grD̄c(ε′c)(z, w) = #(Γ ∩ {±1}) · 1

2π
log

∣∣∣∣ ζz − ζw1− ζz ζ̄w

∣∣∣∣
= #(Γ ∩ {±1})

[
1

2π
log |qc(z)− qc(w)|+ 1

ε′c
− 1

2π
log |1− ζz ζ̄w|

]
.

Combining this with (5.12) and the above bounds on K(z, w) yields the proposition.

6. Bounds on the canonical (1, 1)-form

Let Γ be a cofinite Fuchsian group. In this section we find bounds on the function FΓ that are
easy to evaluate explicitly in concrete cases. We essentially adapt the methods of Iwaniec [12,
§ 7.2] from weight 0 to weight 2. This method is more elementary than that of Jorgenson and
Kramer [13], and our bounds are easy to make explicit, as the example in Section 8 shows.
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Proposition 6.1. For every cofinite Fuchsian group Γ, all z ∈ H and all a > 1, we have

FΓ(z) ≤ (a− 1)NΓ(z, z, 2a2 − 1)

8π
(
log a+1

2

)2 .

Proof . Let (f1, . . . , fg) be an orthonormal basis of the space of holomorphic cusp forms of weight 2
for Γ. We write

φj(z) = (=z)fj(z).

Then the φj are annihilated by the operator ∆2, and (φ1, . . . , φg) is an orthonormal system in the
Hilbert space L2(Γ\H, 2) of automorphic forms of weight 2 for Γ.

Let z ∈ H and a > 1 be given. We apply §§ 3.1 and 3.2 with

θ(u) =
{

1 if 1 ≤ u ≤ a,
0 if u > a.

In the Hilbert space L2(Γ\H, 2), we consider K
(2)
Γ,θ(z, w), as a function of w, and the orthonormal

system (φ1, . . . , φg). From Bessel’s inequality and (3.8), we obtain

g∑
j=1

∣∣h(2)
θ (0)φj(z)

∣∣2 ≤ ∫
w∈Γ\H

∣∣K(2)
Γ,θ(z, w)

∣∣2µH(w).

The left-hand side is equal to
∣∣h(2)
θ (0)

∣∣2FΓ(z). The right-hand side is a function Γ\H → [0,∞),
which we denote by κ(z). The definition (3.7) gives

κ(z) =
∑

γ1,γ2∈Γ

ν(2)(γ1, w)θ(2)(z, γ1w)ν(2)(γ2, w)θ(2)(z, γ2w)µH(w).

Putting γ = γ1γ
−1
2 , we obtain after a straightforward computation

κ(z) =
∑
γ∈Γ

ν(2)(γ, z)

∫
w∈H

θ(2)(z, w)θ(2)(γz, w)µH(w).

This implies

κ(z) ≤
∑
γ∈Γ

∫
w∈H

θ(u(z, w))θ(u(γz, w))µH(w).

By the definition of θ, the integral on the right-hand side can be interpreted as the area of the
intersection of the discs of area 2π(a− 1) around z and γz, respectively. By the triangle inequality
for the hyperbolic distance, this intersection is empty unless

u(z, γz) ≤ 2a2 − 1.

This implies
κ(z) ≤ 2π(a− 1)NΓ(z, z, 2a2 − 1),

and hence
|h(2)
θ (0)|2FΓ(z) ≤ 2π(a− 1)NΓ(z, z, 2a2 − 1).

We evaluate h
(2)
θ (0) using (3.4) and (3.5). The hypergeometric series terminates after two

terms and gives

P0,2(u) =
2

u+ 1
.

This implies

h
(2)
θ (0) = 4π log

u+ 1

2
.

This finishes the proof.
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The above proposition does not give the correct asymptotic behaviour of FΓ(z) for z close to
a cusp of Γ. The following result extends our bounds to neighbourhoods of the cusps.

Lemma 6.2 (cf. Jorgenson and Kramer [13, Theorem 3.1]). Let Γ be a cofinite Fuchsian group,
let c be a cusp of Γ, and let ε be a real number satisfying (2.3). Then for all z ∈ Dc(ε), we have

FΓ(z) ≤ (εyc(z))
2 exp(4π/ε− 4πyc(z)) sup

∂D̄c(ε)

FΓ

≤


sup
∂D̄c(ε)

FΓ if ε ≤ 2π,( ε

2π
exp(2π/ε− 1)

)2

sup
∂D̄c(ε)

FΓ if ε > 2π.

Proof . Every holomorphic cusp form f of weight 2 for Γ has a q-expansion of the form

f(z)dz =

∞∑
n=1

ac,n(f)qc(z)
n · d(σ−1

c z) with ac,n(f) ∈ C.

This implies

(=z)2|f(z)|2 = yc(z)
2

∣∣∣∣ ∞∑
n=1

ac,n(f)qc(z)
n

∣∣∣∣2.
Applying this to an orthonormal basis of the space of holomorphic cusp forms of weight 2, we see
that the function

yc(z)
−2 exp(4πyc(z))FΓ(z) =

∑
f∈B

∣∣∣∣ f(z)

qc(z)

∣∣∣∣2
extends to a subharmonic function on D̄c(ε). By the maximum principle for subharmonic functions,
the function assumes its maximum on the boundary. This implies the first inequality. The second
inequality follows from the easily checked fact that the function (εyc(z))

2 exp(4π/ε− 4πyc(z)) for
y ≥ 1/ε assumes its maximum at y = 1/(2π) if ε > 2π, and at y = 1/ε if ε ≤ 2π.

7. Bounds on the canonical Green function

If Γ is a Fuchsian group and X is the compactification of Γ\H obtained by adding the cusps, we
write

ζΓ =
1

gX

∫
Γ\H

FΓµ
can
X − 1

volΓ
. (7.1)

It follows from Lemma 3.2 that for any compact subset Y of Γ\H, there exists C > 0 such that
the function ΦΓ(z, λ) defined by (3.15) satisfies

ΦΓ(z, λ) ≤ Cλ for all z ∈ Y and λ ≥ 1/4. (7.2)

Theorem 7.1. Let Γ be a cofinite Fuchsian group, and let X be the compactification of Γ\H
obtained by adding the cusps. Let δ be a real number with δ > 1. For every cusp c of Γ, let
ε′c > εc > 0 be real numbers satisfying the inequalities

ε′c
(
δ +

√
δ2 − 1

)1/2 ≤ min
γ∈Γ
γ 6∈Γc

Cc(γ) and
(
δ +

√
δ2 − 1

)
εc ≤ ε′c

and small enough such that the discs Dc(ε
′
c) are pairwise disjoint. Let Y be the compact subset

of Γ\H defined by

Y = (Γ\H)
∖ ⊔

c cusp

Dc(εc).
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Let A and B be real numbers such that the automorphic Green function grΓ satisfies (5.11), and
let C > 0 be such that the function ΦΓ(z, λ) satisfies (7.2). Let η ∈ (0, 1/4] be such that the
spectrum of −∆Γ is contained in {0} ∪ [η,∞). With the notation

S =

√(
1

4η2
+ 4

)
CζΓ,

T (ε) =
supY FΓ

gX

( ε

4π

)2

for all ε > 0,

rδ =
1

24π

(√
2

δ − 1
+ arctan

√
δ − 1

2

)
,

Ãc = A+ #(Γ ∩ {±1})
[

1

ε′c

(
1− 2

π
arctan

√
δ − 1

2

)
− ε′crδ

]
,

B̃c = B + #(Γ ∩ {±1})
[

1

ε′c

(
1− 2

π
arctan

√
δ − 1

2

)
+ ε′crδ

]
,

we have the following bounds on the canonical Green function grcan
X (z, w):

(a) If z, w ∈ Y , we have

A− 2S − ζΓ/η ≤ grcan
X (z, w) +

∑
γ∈Γ

u(z,γw)≤δ

Lδ(z, γw) ≤ B + 2S.

(b) If c is a cusp such that z ∈ Dc(εc), w ∈ Y and w 6∈ Dc(ε
′
c), or such that w ∈ Dc(εc), z ∈ Y and

z 6∈ Dc(ε
′
c), then we have

A− 2S − ζΓ/η ≤ grcan
X (z, w) ≤ B + 2S + T (εc).

(c) If c, d are two distinct cusps such that z ∈ Dc(εc) and w ∈ Dd(εd), we have

A− 2S − ζΓ/η ≤ grcan
X (z, w) ≤ B + 2S + T (εc) + T (εd).

(d) If c is a cusp such that z, w ∈ Dc(ε
′
c), we have

Ãc − 2S − ζΓ/η ≤ grcan
X (z, w)−#(Γ ∩ {±1}) · 1

2π
log |qc(z)− qc(w)| ≤ B̃c + 2S + 2T (ε′c).

Our proof of Theorem 7.1 is based on the equation (2.6), the bounds on the automorphic
Green function from § 5, and on bounds on the function hΓ defined by (2.5). The proof of the
latter bounds occupies most of this section; Theorem 7.1 then follows without difficulties.

Lemma 7.2. Let Γ, Y , η and C be as in Theorem 7.1. Then the function

MΓ(z) =
∑
j≥1

1

λ2
j

|φj(z)|2 +
∑
c

1

4πi

∫
<s=1/2

1

(s(1− s))2
|Ec(z, s)|2ds

satisfies

MΓ(z) ≤
(

1

4η2
+ 4

)
C for all z ∈ Y.

Proof . Separating the terms with λj ≤ 1/4, we get (with ∂ΦΓ/∂λ taken in a distributional sense)

MΓ(z) =
∑

j: 0<λj≤1/4

1

λ2
j

|φj(z)|2 +

∫ ∞
1/4

1

λ2

∂ΦΓ(z, λ)

∂λ
dλ

≤ 1

η2
Φ(z, 1/4) +

[ 1

λ2
ΦΓ(z, λ)

]∞
λ=1/4

+ 2

∫ ∞
1/4

λ−3ΦΓ(z, λ)dλ

=

(
1

η2
− 16

)
ΦΓ(z, 1/4) + 2

∫ ∞
1/4

λ−3ΦΓ(z, λ)dλ

≤
(

1

η2
− 16

)
C

4
+ 2C

∫ ∞
1/4

λ−2dλ

=

(
1

η2
− 16

)
C

4
+ 8C

=

(
1

4η2
+ 4

)
C,
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where the second inequality follows from (7.2).

Lemma 7.3. Let Γ, Y , η and C be as in Theorem 7.1, and let ζΓ be as in (7.1). Then we have

|hΓ(z)|2 ≤
(

1

4η2
+ 4

)
CζΓ for all z ∈ Y.

Proof . Let X be the compactification of Γ\H. Since the function FΓ is smooth and bounded, we
may consider its spectral representation, say

1

gX
FΓ(z) =

∑
j≥0

bjφj(z) +
∑
c

1

4πi

∫
<s=1/2

bc(s)Ec(z, s)ds. (7.3)

Then the definition of hΓ implies that it has the spectral representation

hΓ(z) = −
∑
j≥1

bj
λj
φj(z)−

∑
c

1

4πi

∫
<s=1/2

bc(s)

s(1− s)
Ec(z, s)ds; (7.4)

note the absence of the term corresponding to j = 0. Now the Cauchy–Schwarz inequality implies

hΓ(z)2 ≤MΓ(z)

(∑
j≥1

|bj |2 +
∑
c

1

4πi

∫
<s=1/2

|bc(s)|2
)
.

Next, it follows from (7.3), the identity |a2
0| = 1/volΓ and (2.4) that∑

j≥1

|bj |2 +
∑
c

1

4πi

∫
<s=1/2

|bc(s)|2 =

∫
z∈Γ\H

(
1

gX
FΓ(z)− 1

volΓ

)2

µH(z)

=
1

g2
X

∫
z∈Γ\H

FΓ(z)2µH(z)− 1

volΓ

=
1

gX

∫
Γ\H

FΓµ
can
X − 1

volΓ
.

(7.5)

Together with Lemma 7.2 and the definition of ζΓ, this finishes the proof.

We now extend our bounds on hΓ to the discs around the cusps.

Lemma 7.4. Let Γ be a cofinite Fuchsian group, and let X be the compactification of Γ\H. Let
c be a cusp of Γ, and let ε be a real number satisfying (2.3). For all z ∈ Dc(ε), we have

h−Γ,c(z) ≤ hΓ(z) ≤ h+
Γ,c(z),

where

h+
Γ,c(z) = sup

∂D̄c(ε)

hΓ +
1

volΓ
log(εyc(z))

and

h−Γ,c(z) = inf
∂D̄c(ε)

hΓ −
sup∂D̄c(ε) FΓ

gX

( ε

4π

)2(
1− exp(4π/ε− 4πyc(z))

)
+

1

volΓ
log(εyc(z)).

Proof . We note that

∆h+
Γ,c(z) = − 1

volΓ

and

∆h−Γ,c(z) =
sup∂D̄c(ε) FΓ

gX
(εyc(z))

2 exp(4π/ε− 4πyc(z))−
1

volΓ
.

By the non-negativity of FΓ and Lemma 6.2, this implies

∆h+
Γ,c(z) ≤ ∆hΓ(z) ≤ ∆h−Γ,c(z).

Therefore h+
Γ,c−hΓ and hΓ−h−Γ,c are subharmonic functions on D̄c(ε). By the maximum principle

for subharmonic functions, each of these functions assumes its maximum on the boundary. The
definitions of h±Γ,c imply that these maxima are non-negative.
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Finally, we prove bounds on the integral
∫

Γ\H hΓµ
can
X .

Lemma 7.5. Let Γ be a cofinite Fuchsian group, let X be the compactification of Γ\H, and let
η > 0 be such that the spectrum of −∆Γ is contained in {0} ∪ [η,∞). Then we have

−ζΓ/η ≤
∫

Γ\H
hΓµ

can
X ≤ 0.

Proof . We use the spectral representations (7.3) and (7.4). We obtain∫
Γ\H

hΓµ
can
X =

∫
z∈Γ\H

hΓ(z) · 1

gX
FΓ(z)µH(z)

= −
∑
j≥1

|bj |2

λj
−
∑
c

1

4πi

∫
<s=1/2

|bc(s)|2

s(1− s)
.

We note that the right-hand side is non-positive. Next, the assumption that the spectrum of −∆Γ

is contained in {0} ∪ [η,∞) implies∫
Γ\H

hΓµ
can
X ≥ −1

η

(∑
j≥1

|bj |2 +
∑
c

1

4πi

∫
<s=1/2

|bc(s)|2ds

)
.

Together with (7.5), this proves the claim.

Proof of Theorem 7.1. Part (a) of the theorem follows from the comparison formula (2.6), the
bound (5.11) for grΓ, the bound on for hΓ given by Lemma 7.3, and the bound on

∫
Γ\H hΓµ

can
X

given by Lemma 7.5.
The proof of parts (b)–(d) is similar. We first note that, by Lemmata 7.3 and 7.4,

−S − T (εc) ≤ hΓ(z)− 1

volΓ
log(εcyc(z)) ≤ S for all z ∈ Dc(εc),

and similarly with ε′c in place of εc. Instead of (5.11) we now invoke Proposition 5.6, which gives
bounds for the function grΓ when one or both variables are near a cusp. As in the proof of (a), it
remains to apply the formula (2.6) and Lemma 7.5.

8. Example: congruence subgroups of SL2(Z)

8.1. The automorphic Green function

Let us consider the case where Γ0 = SL2(Z). We will make the bounds from Theorem 1.1 explicit
for congruence subgroups Γ ⊆ SL2(Z). By our convention for integration on Γ\H if −1 ∈ Γ, we
have

1

volΓ
≤ 1

volSL2(Z)
=

6

π
.

We start by fixing the various parameters. We choose

δ = 2.

Selberg conjectured in [21] that the least non-zero eigenvalue λ1 of −∆Γ is at least 1/4, and he
proved that λ1 ≥ 3/16. The sharpest bound so far, due to Kim and Sarnak [15, Appendix 2], is
λ1 ≥ (25/64)(1− 25/64) = 975/4096. We may therefore take

η = 975/4096.

We now consider the point counting function NSL2(Z)(z, z, U) defined by (3.14) on a rectangle
of the form

R = {x+ iy ∈ H | xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}
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for given real numbers xmin < xmax and 0 < ymin < ymax. The function z 7→ NSL2(Z)(z, z, U) on R

is clearly bounded from above by the number of matrices γ =
(
a
c
b
d

)
∈ SL2(Z) such that for some

z ∈ R, the inequality

u(z, γz) ≤ U (8.1)

holds. We now show how to enumerate these matrices. We distinguish the cases c = 0 and c 6= 0.
We assume (after multiplying by −1 if necessary) that a = d = 1 in the first case, and that c > 0
in the second case. The total number of matrices γ as above is then twice the number produced
by our enumeration.

In the case c = 0, by (5.4), the inequality (8.1) reduces to

1 + 1
2 (b/y)2 ≤ U.

This implies

|b| ≤ ymax

√
2U − 2.

In the case c > 0, it follows from (5.4) and (8.1) that

|c| ≤
√

2U/ymin,

−
√

2U + cxmin ≤ a ≤
√

2U + cxmax,

−
√

2U − cxmax ≤ d ≤
√

2U − cxmin.

Since c 6= 0, the coefficients a, c, d and the condition ad − bc = 1 determine b. If γ is a matrix
obtained in this way, we compute the minimum of u(z, γz) for z ∈ R using (5.4) to decide whether
there exists a point z ∈ R satisfying (8.1).

Let Y0 denote the compact subset in SL2(Z)\H which is the image of the rectangle

{x+ iy ∈ H | −1/2 ≤ x ≤ 1/2 and
√

3/2 ≤ y ≤ 2}.

This is the complement of a disc around the unique cusp of SL2(Z). Dividing this rectangle into
100× 100 small rectangles and bounding NSL2(Z)(z, z, U) on each of them as described above, we
get

NΓ0
(z, z, 17) ≤ 216 for all z ∈ Y0.

Given this upper bound for NSL2(Z)(z, z, 17), we fix the the remaining parameters experimentally
to optimise the bounds in the theorem below. This leads to the following values:

α+ = 0.0366, β+ = 2.72, σ+ = 0.306,

α− = 2.96 · 10−3, β− = 0.668, σ− = 0.250.

With these choices, a numerical calculation gives

q+
Γ,δ < 69.0, q−Γ,δ > −216, D+

δ < 18.5, D−δ < 9.61.

This implies the following explicit bounds on automorphic Green functions of congruence sub-
groups.

Theorem 8.1. Let Γ be a congruence subgroup of SL2(Z). Then for all z, w ∈ H whose images
in SL2(Z)\H lie in Y0, we have

−2.87 · 104 ≤ grΓ(z, w) +
∑
γ∈Γ

u(z,γw)≤2

L2(z, γw) ≤ 1.51 · 104.
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8.2. The canonical Green function

Let Γ be a congruence subgroup of SL2(Z) such that the corresponding modular curve X has
positive genus. Let n be the level of Γ, i.e. the minimal positive integer with the property that Γ
contains the kernel of the reduction map SL2(Z)→ SL2(Z/nZ).

We define

ε = (δ +
√
δ2 − 1)−3/2 ≈ 0.139 and ε′ = (δ +

√
δ2 − 1)−1/2 ≈ 0.518.

Let Y0 denote the compact subset of SL2(Z)\H which is the image of the strip

{x+ iy ∈ H | |x| ≤ 1/2 and
√

3/2 ≤ y ≤ 1/ε}.

For every cusp c of Γ, we let mc denote the ramification index of c over the unique cusp∞ of SL2(Z);
this equals the index of the corresponding maximal parabolic subgroups considered modulo {±1}.
For the parameters εc and ε′c, we take

εc = mcε and ε′c = mcε
′.

Using the definition of Cc(γ), it is not hard to show that

min
γ∈Γ
γ 6∈Γc

Cc(γ) ≥ mc.

This implies that the parameters εc and ε′c satisfy the conditions in Theorem 7.1. As in Theorem 7.1,
let Y be the complement of the discs Dc(εc). Then Y is the inverse image of Y0 in Γ\H.

We will need an upper bound on the point counting function NΓ(z, z, 17) for z ∈ Y0. It is
clear from the definition of NΓ(z, z, U) that

sup
z∈Y

NΓ(z, z, U) ≤ sup
z∈Y0

NSL2(Z)(z, U).

Using the methods of § 8.1, we have

NSL2(Z)(z, 17) ≤ 226 for all z ∈ Y0. (8.2)

We next compute suitable A and B satisfying (5.11). For this we use (8.2) and the remaining part
of § 8.1, with the same parameters α±, β± and γ±. The result is

A = −3.00 · 104 and B = 1.58 · 104.

We next find a suitable value of the parameter C. We use Lemma 3.2, which says

ΦΓ(z, λ) ≤ π

(2π − 4)2
NSL2(Z)(z, 17)λ for all z ∈ H and all λ ≥ 1/4.

The inequality (8.2) implies that we can take

C = 137.

We continue with explicit bounds on the canonical (1, 1)-form. For the parameter a from
Proposition 6.1, we take

a = 1.44.

Again using the method from § 8.1, we compute an upper bound for NSL2(Z)(z, 2a
2−1) for z ∈ Y0.

The result is
NSL2(Z)(z, 2a

2 − 1) ≤ 58 for all z ∈ Y0.

Substituting this in the bound from Proposition 6.1, we see that

sup
Y
FΓ ≤ 25.7.
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For every cusp c, Lemma 7.4 implies

sup
Dc(εc)

FΓ ≤ max

{
1,
( εc

2π

)2
}

sup
Y
FΓ.

From the definition of εc and the fact that all ramification indices mc are bounded by the level n
of Γ, we conclude

sup
X
FΓ ≤ max

{
1,
(nε

2π

)2
}

sup
Y
FΓ

≤ max{25.7, 0.0126n2}.

Finally, we consider the invariant ζΓ. Using
∫
X
µcan
X = 1 and gX ≥ 1, we make the rather

coarse estimate
ζΓ ≤ sup

X
FΓ ≤ max{25.7, 0.0126n2}.

Proof of Theorem 1.2. With the above estimates, we obtain the following bounds on the various
constants in the theorem:

S ≤ max{172, 3.79n},
T (εc) ≤ 0.00313n2,

T (ε′c) ≤ 0.0436n2,

Ãc ≥ −3.00 · 104 − 0.0279n,

B̃c ≤ 1.58 · 104 + 0.0279n.

The theorem follows from Theorem 7.1 and the above bounds.

Appendix: Bounds on Legendre functions

In this appendix, we prove a number of bounds on the Legendre functions Pµν (z) and Qµν (z) that
are used in the rest of the paper.

Lemma A.1. Let u ∈ [1, 3] and λ ≥ 0 be such that λ(u − 1) ≤ 1
2 , and let s ∈ C be such that

s(1− s) = λ. Then the real number P−1
s−1(u) satisfies the inequalities

(2− 4/π)

√
u− 1

u+ 1
≤ P−1

s−1(u) ≤ (4/π)

√
u− 1

u+ 1
.

Proof . We start by expressing the Legendre function Pµν in terms of Gauß’s hypergeometric func-
tion F (a, b; c; z). Because of the many symmetries satisfied by the hypergeometric function (see
Erdélyi et al. [6, Chapter II]), there are lots of ways to do this. Using [6, § 3.2, equation 3] gives

P−1
s−1(u) =

√
u− 1

u+ 1
F

(
s, 1− s; 2;

1− u
2

)
.

Next we use the hypergeometric series for F (a, b; c; z) with z < 1 (see [6, § 2.1, equation 2]):

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn, (A.1)

where
(y)n = Γ(y + n)/Γ(y) = y(y + 1) · · · (y + n− 1).

Putting x = u−1
2 for a moment, using (A.1) and applying the triangle inequality, we get the bound

∣∣F (s, 1− s; 2;−x)− 1
∣∣ ≤∑

n≥1

∣∣∣∣ (s)n(1− s)n
(2)nn!

(−x)n
∣∣∣∣
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The assumption λ(u − 1) ≤ 1
2 is equivalent to λx ≤ 1

4 . Therefore the n-th term in the series on
the right-hand side can be bounded as follows:∣∣∣∣ (s)n(1− s)n

(2)nn!
(−x)n

∣∣∣∣ =

∏n−1
k=0

(
s(1− s)x+ k(k + 1)x

)
(2)nn!

≤
∏n−1
k=0

(
1
4 + k(k + 1)

)
(2)nn!

=

(
1
2

)
n

(
1
2

)
n

(2)nn!
.

This implies that ∣∣F (s, 1− s; 2;−x
)
− 1
∣∣ ≤ F ( 1

2 ,
1
2 ; 2; 1

)
− 1

= 4/π − 1,

where the last equality follows from the formula

F (a, b; c; 1) =
Γ(c)Γ(c− b− a)

Γ(c− a)Γ(c− b)
for <c > 0 and <c > <(a+ b) (A.2)

(see Erdélyi et al. [6, § 2.1.3, equation 14] or Iwaniec [12, equation B.20]) and the fact that Γ(3/2) =√
π/2. We conclude that∣∣∣∣P−1

s−1 −
√
u− 1

u+ 1

∣∣∣∣ =

√
u− 1

u+ 1

∣∣F (s, 1− s; 2;−x
)
− 1
∣∣

≤
√
u− 1

u+ 1
(4/π − 1)

= (4/π − 1)

√
u− 1

u+ 1
,

which is equivalent to the inequalities in the statement of the lemma.

Lemma A.2. For all real numbers ν ≥ 0 and u > 1, the real number Q′ν(u) satisfies(
2

u+ 1

)ν
1

u2 − 1
≤ Q′ν(u) ≤ 0.

Proof . We express Q′ν in terms of the hypergeometric function using [6, § 3.6.1, equation 5, and
§ 3.2, equation 36]:

Q′ν(u) = −
(

2

u+ 1

)ν
1

u2 − 1

Γ(1 + ν)Γ(2 + ν)

Γ(2 + 2ν)
F

(
ν, 1 + ν; 2 + 2ν;

2

u+ 1

)
.

Since 2/(u+ 1) < 1, the hypergeometric function is given by the series (A.1). The non-negativity
of all the arguments gives the bounds

0 ≤ F
(
ν, 1 + ν; 2 + 2ν;

2

u+ 1

)
≤ F (ν, 1 + ν; 2 + 2ν; 1)

=
Γ(2 + 2ν)Γ(1)

Γ(2 + ν)Γ(1 + ν)
;

the last equality follows from (A.2). Combining this with the above formula for Q′ν(u) yields the
claim.
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Lemma A.3. For all real numbers a, b and y with b ≥ a > 0, we have

exp

(
− 1

12

(
1

a
− 1

b

))
(a2 + y2)a/2−1/4

(b2 + y2)b/2−1/4
≤
∣∣∣∣Γ(a+ iy)

Γ(b+ iy)

∣∣∣∣
≤ exp

(
b− a+

1

12

(
1

a
− 1

b

))
(a2 + y2)a/2−1/4

(b2 + y2)b/2−1/4
.

Proof . We use Binet’s formula for log Γ (see Erdélyi et al. [6, § 1.9, equation 4]):

log Γ(z) =
(
z − 1

2

)
log z − z + 1

2 log 2π +

∫ ∞
0

B(t) exp(−zt)dt for <z > 0,

where

B(t) =
(exp(t)− 1)−1 − t−1 + 1

2

t

=
t
2 coth t

2 − 1

t2
.

We write

M(a, y) = <
∫ ∞

0

B(t) exp(−(a+ iy)t)dt

=

∫ ∞
0

B(t) exp(−at) cos(yt)dt.

Then we have

log

∣∣∣∣Γ(a+ iy)

Γ(b+ iy)

∣∣∣∣ = <
(

(a+ iy − 1/2) log(a+ iy)− (b+ iy − 1/2) log(b+ iy)
)

− a+ b+M(a, y)−M(b, y)

= (a− 1/2) log |a+ iy| − (b− 1/2) log |b+ iy|
− y arg(a+ iy) + y arg(b+ iy)− a+ b+M(a, y)−M(b, y).

We note that

y arg(a+ iy)− y arg(b+ iy) = y arctan
(b− a)y

ab+ y2
∈ [0, b− a].

Using b ≥ a, we conclude

log

∣∣∣∣Γ(a+ iy)

Γ(b+ iy)

∣∣∣∣ ≤ (a− 1/2) log |a+ iy| − (b− 1/2) log |b+ iy| − a+ b+M(a, y)−M(b, y)

and

log

∣∣∣∣Γ(a+ iy)

Γ(b+ iy)

∣∣∣∣ ≥ (a− 1/2) log |a+ iy| − (b− 1/2) log |b+ iy|+M(a, y)−M(b, y).

It remains to bound M(a, y)−M(b, y). The function B satisfies

0 < B(t) ≤ lim
x→0

B(x) = 1/12 for all t > 0.

Using this and the positivity of exp(−at)− exp(−bt), we bound M(a, y)−M(b, y) as follows:∣∣M(a, y)−M(b, y)
∣∣ ≤ ∫ ∞

0

B(t)
(
exp(−at)− exp(−bt)

)
|cos(yt)| dt

=

∫ ∞
0

B(t)
(
exp(−at)− exp(−bt)

)
dt

≤ 1

12

∫ ∞
0

(
exp(−at)− exp(−bt)

)
dt

=
1

12

(
1

a
− 1

b

)
.

This implies the inequality we wanted to prove.
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Corollary A.4. For b ≥ a > 0, b ≥ 1/2, and y ∈ R, we have∣∣∣∣Γ(a+ iy)

Γ(b+ iy)

∣∣∣∣ ≤ exp

(
b− a+

1

12

(
1

a
− 1

b

))
(a2 + y2)−(b−a)/2.

Given a real number σ ∈ (0, 1/2), we consider the strip Sσ defined by (5.1). We put

Cσ = max{1, tanπσ}(σ−1 − 1)1/4 exp

(
1

2
+

1

24σ( 1
2 + σ)

)
,

C ′σ = max{1, tanπσ}(σ−1 − 1)1/4 exp

(
1

2
+

1

24(1− σ)( 3
2 − σ)

)
.

(A.3)

Proposition A.5. Let m be an even non-negative integer, and let σ ∈ (0, 1/2). For all s ∈ Sσ
and all u > 1, we have

∣∣P−ms−1 (u)
∣∣ ≤ ∣∣s(1− s)∣∣−(2m+1)/4Cσx

m−σ + C ′σx
m−1+σ

√
π(4(u2 − 1))m/2

∞∑
n=0

|( 1
2 −m)n|
n!

x−2n,

where

x = u+
√
u2 − 1, u =

x+ x−1

2
.

Proof . We use the following expression for P−ms−1 (see Erdélyi et al. [6, § 3.2, equation 27]):

P−ms−1 (u) =
Γ(− 1

2 + s)
√
πΓ(m+ s

) xm+s−1

(x− x−1)m
F
(

1
2 −m, 1−m− s;

3
2 − s;x

−2
)

+
Γ( 1

2 − s)√
πΓ(m+ 1− s

) xm−s

(x− x−1)m
F
(

1
2 −m,−m+ s; 1

2 + s;x−2
)
.

Using the hypergeometric series (A.1) and the functional equation

Γ(z)Γ(1− z) =
π

sinπz
,

we get

√
π(x− x−1)mP−ms−1 (u) =

Γ(− 1
2 + s)

Γ(m+ s)
xm−1+s

∞∑
n=0

( 1
2 −m)n(−m+ 1− s)n

( 3
2 − s)n

x−2n

n!

+
Γ( 1

2 − s)
Γ(m+ 1− s)

xm−s
∞∑
n=0

( 1
2 −m)n(−m+ s)n

( 1
2 + s)n

x−2n

n!

=

∞∑
n=0

( 1
2 −m)n

n!

{
Γ(− 1

2 + s)

Γ(m+ s)

Γ( 3
2 − s)Γ(n−m+ 1− s)

Γ(n+ 3
2 − s)Γ(−m+ 1− s)

xm−1+s−2n

+
Γ( 1

2 − s)
Γ(m+ 1− s)

Γ( 1
2 + s)Γ(n−m+ s)

Γ(n+ 1
2 + s)Γ(−m+ s)

xm−s−2n

}
=

∞∑
n=0

( 1
2 −m)n

n!

{
sinπ(m+ s)

sinπ(− 1
2 + s)

Γ(n−m+ 1− s)
Γ(n+ 3

2 − s)
xm−1+s−2n

+
sinπ(m+ 1− s)

sinπ( 1
2 − s)

Γ(n−m+ s)

Γ(n+ 1
2 + s)

xm−s−2n

}
.

Basic trigonometric manipulations simplify this to

P−ms−1 (u) =
(−1)m tan(πs)√
π(x− x−1)m

∞∑
n=0

( 1
2 −m)n

n!

{
Γ(n−m+ s)

Γ(n+ 1
2 + s)

xm−s−2n

− Γ(n−m+ 1− s)
Γ(n+ 3

2 − s)
xm−1+s−2n

}
.

(A.4)
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On the right-hand side, the pole of tan(πs) at s = 1/2 is cancelled by a corresponding zero of the
function defined by the sum.

For fixed u > 1, we consider the holomorphic function

H(s) =
(
s(1− s)

)(2m+1)/4
tan(πs)

∞∑
n=0

( 1
2 −m)n

n!

{
Γ(n−m+ s)

Γ(n+ 1
2 + s)

xm−s−2n

− Γ(n−m+ 1− s)
Γ(n+ 3

2 − s)
xm−1+s−2n

} (A.5)

on Sσ, where we have fixed a branch of s 7→ (s(1 − s))(2m+1)/4. Because H(s) = H(1 − s), the
Phragmén–Lindelöf principle gives

sup
s∈Sσ

|H(s)| ≤ sup
y∈R
|H(σ + iy)|.

Together with (A.4), this implies

|P−ms−1 (u)| ≤
|s(1− s)|−(2m+1)/4

supy∈R |H(σ + iy)|
√
π(4(u2 − 1))m/2

for all s ∈ Sσ.

Let y ∈ R and s = σ + iy. Then we have∣∣s(1− s)∣∣(2m+1)/4
= (σ2 + y2)(2m+1)/8((1− σ)2 + y2)(2m+1)/8.

A straightforward calculation gives

|tanπs| = |tanπ(σ + iy)| ≤ max{1, tanπσ}.

Using Corollary A.3 and the assumption that m is even, we bound the quotients of Γ-functions
appearing on the right-hand side of (A.5) independently of n:

∣∣∣∣Γ(n−m+ s)

Γ(n+ 1
2 + s)

∣∣∣∣ =
|Γ(n+ s)|
|Γ(n+ 1

2 + s)|

n−1∏
j=n−m

1

|j + s|

≤ exp

(
1

2
+

1

24(n+ σ)(n+ 1
2 + σ)

)
|n+ σ + iy|−1/2 1

|σ + iy|m/2|1− σ + iy|m/2

≤ exp

(
1

2
+

1

24σ( 1
2 + σ)

)
1

(σ2 + y2)(m+1)/4((1− σ)2 + y2)m/4
.

This implies

∣∣s(1− s)∣∣(2m+1)/4
∣∣∣∣Γ(n−m+ s)

Γ(n+ 1
2 + s)

∣∣∣∣ ≤ exp

(
1

2
+

1

24σ( 1
2 + σ)

)
· (σ2 + y2)(2m+1)/8((1− σ)2 + y2)(2m+1)/8

(σ2 + y2)(m+1)/4((1− σ)2 + y2)m/4

= exp

(
1

2
+

1

24σ( 1
2 + σ)

)
((1− σ)2 + y2)1/8

(σ2 + y2)1/8

≤ exp

(
1

2
+

1

24σ( 1
2 + σ)

)
(1− σ)1/4

σ1/4

and hence ∣∣s(1− s)∣∣(2m+1)/4|tanπs|
∣∣∣∣Γ(n−m+ s)

Γ(n+ 1
2 + s)

∣∣∣∣ ≤ Cσ.
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Similarly,∣∣∣∣Γ(n−m+ 1− s)
Γ(n+ 3

2 − s)

∣∣∣∣ ≤ exp

(
1

2
+

1

24(1− σ)( 3
2 − σ)

)
1

((1− σ)2 + y2)(m+1)/4(σ2 + y2)m/4

and

∣∣s(1− s)∣∣(2m+1)/4
∣∣∣∣Γ(n−m+ 1− s)

Γ(n+ 3
2 − s)

∣∣∣∣ ≤ exp

(
1

2
+

1

24(1− σ)( 3
2 − σ)

)
· (σ2 + y2)(2m+1)/8((1− σ)2 + y2)(2m+1)/8

((1− σ)2 + y2)m/4(σ2 + y2)(m+1)/4

= exp

(
1

2
+

1

24(1− σ)( 3
2 − σ)

)
((1− σ)2 + y2)1/8

(σ2 + y2)1/8

≤ exp

(
1

2
+

1

24(1− σ)( 3
2 − σ)

)
(1− σ)1/4

σ1/4
.

This implies ∣∣s(1− s)∣∣(2m+1)/4|tanπs|
∣∣∣∣Γ(n−m+ 1− s)

Γ(n+ 3
2 − s)

∣∣∣∣ ≤ C ′σ.
We conclude that

sup
y∈R
|H(σ + iy)| ≤

∞∑
n=0

|( 1
2 −m)n|
n!

(
Cσx

m−σ−2n + C ′σx
m−1+σ−2n

)
=
(
Cσx

m−σ + C ′σx
m−1+σ

) ∞∑
n=0

|( 1
2 −m)n|
n!

x−2n.

This finishes the proof.

With Cσ and C ′σ as in (A.3), we define an elementary function pσ: [1,∞)→ R by

pσ(u) =
Cσx

2−σ + C ′σx
1+σ

4
√
π

(
(1− x−2)3/2 + 3x−2

)
, where x = u+

√
u2 − 1. (A.6)

Corollary A.6. For all σ ∈ (0, 1/2), s ∈ Sσ and u > 1, we have

|P−2
s−1(u)| ≤ |s(1− s)|−5/4 pσ(u)

u2 − 1
.

Proof . We note that

|(− 3
2 )n| =

{
−(− 3

2 )n for n = 1,
(− 3

2 )n otherwise.

This implies that for z ∈ (0, 1), we have

∞∑
n=0

|(− 3
2 )n|
n!

zn =

∞∑
n=0

(− 3
2 )n

n!
zn − 2

(− 3
2 )1

1!
z1

= (1− z)3/2 + 3z.

The claim immediately follows from this identity and Proposition A.5.
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main of a discrete group on the Lobačevskĭı plane. Transactions of the Moscow Mathematical
Society 17 (1967), 357–386. (English translation.)

[8] G. Faltings, Calculus on arithmetic surfaces. Annals of Mathematics (2) 119 (1984), 387–
424.

[9] J. D. Fay, Fourier coefficients of the resolvent for a Fuchsian group. Journal für die reine
und angewandte Mathematik 293/294 (1977), 143–203.

[10] D. A. Hejhal, The Selberg trace formula for PSL(2,R), Volume 2. Lecture Notes in Math-
ematics 1001. Springer-Verlag, Berlin/Heidelberg, 1983.
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