Formal groups

Peter Bruin 2 March 2006

0. Introduction

The topic of formal groups becomes important when we want to deal with *reduction* of elliptic curves. Let R be a discrete valuation ring with field of fractions K and residue class field k, and suppose we are given a Weierstraß equation

$$E: y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}, \quad a_{i} \in \mathbb{R}.$$

If the discriminant of E is not in the maximal ideal \mathfrak{m} of R, it makes sense to look at the solutions of the *reduced curve* \tilde{E} over k obtained by reducing the a_i modulo \mathfrak{m} . It turns out that there are natural group homomorphisms

$$E(K) \cong E(R) \to \tilde{E}(k),$$

and that the situation is relatively simple if we assume that R is a *complete* discrete valuation ring. We recall the definition of completeness of a ring with respect to an ideal.

Definition. Let A be a ring and I an ideal of A. Consider A as a topological ring by defining the sets $I \supseteq I^2 \supseteq I^3 \supseteq \cdots$ to be a basis of open neighbourhoods of 0. Then A is called *complete with respect to I* if A is Hausdorff (equivalently, $\bigcap_{n=1}^{\infty} I^n = 0$) and complete with respect to this topology. It amounts to the same to say that A is complete with respect to I if the natural homomorphism of topological rings

$$A \to \underline{\lim} A/I^n$$
,

where each A/I^n has the discrete topology, is an isomorphism.

If we assume that R is complete with respect to its maximal ideal, it turns out that we can construct a short exact sequence

$$0 \longrightarrow \hat{E}(\mathfrak{m}) \longrightarrow E(K) \longrightarrow \tilde{E}(k) \longrightarrow 0,$$

where $\hat{E}(\mathfrak{m})$ is a group that will be defined in the next section.

1. Parametrisation of an elliptic curve

Let (E, O) be an elliptic curve over a field k. We embed E in \mathbf{P}_k^2 as a Weierstraß curve

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}$$

with O = (0 : 1 : 0). We choose affine coordinates (z, w) on the open part D(Y) of \mathbf{P}_k^2 , placing O at the origin of our coordinate system:

$$z = -X/Y, \quad w = -Z/Y;$$

after dividing by Y^3 , the equation of the curve becomes

$$-w + a_1 z w + a_3 w^2 = -z^3 - a_2 z^2 w - a_4 z w^2 - a_6 w^3.$$

We put

$$f = z^{3} + a_{1}zw + a_{2}z^{2}w + a_{3}w^{2} + a_{4}zw^{2} + a_{6}w^{3} \in k[z,w]$$

and write the Weierstraß equation as

$$w = f(z, w).$$

We want to 'solve' this equation for w as a power series in z. To do this, we generalise things a bit by considering the above equation as a polynomial equation in the variable w over the ring

$$A = \mathbf{Z}[a_1, a_2, a_3, a_4, a_6][[z]]$$

which is the completion of the polynomial ring $\mathbf{Z}[a_1, a_2, a_3, a_4, a_6, z]$ with respect to the ideal (z). We put

$$F = -z^{3} + (1 - a_{1}z - a_{2}z^{2})w - (a_{3} + a_{4}z)w^{2} - a_{6}w^{3} \in A[w]$$

and apply the following version of Hensel's lemma to find a zero of F.

Hensel's lemma. Let A be a ring which is complete with respect to an ideal I, and let $F \in A[w]$ be a polynomial. If for some $m \ge 1$ we have

$$F(0) \in I^m$$
 and $F'(0) \equiv 1 \pmod{I}$,

then there is an element $\alpha \in I^m$ with $F(\alpha) = 0$, and the recursion

$$w_0 = 0$$
, $w_{n+1} = w_n - F(w_n)$ for $n \ge 0$

converges to α . If moreover A is a domain, α is the unique zero of F in I.

Proof. We first note that the assumption $F(0) \in I^m$ implies that $F(x) \in I^m$ for all $x \in I^m$, and by induction on n it follows immediately that $w_n \in I^m$ for all $n \ge 0$. Next we prove by induction on n that

$$w_{n+1} \equiv w_n \pmod{I^{m+n}}$$
 for $n \ge 0$.

For n = 0, this is just the assumption $F(0) \in I^m$. Now suppose that the congruence holds for n - 1, and write

$$F(x) - F(y) = (x - y)(F'(0) + xG(x, y) + yH(x, y))$$

where $G, H \in A[x, y]$ are certain polynomials. Then

$$\begin{split} w_{n+1} - w_n &= (w_n - F(w_n)) - (w_{n-1} - F(w_{n-1})) \\ &= (w_n - w_{n-1}) - (F(w_n) - F(w_{n-1})) \\ &= (w_n - w_{n-1}) - (w_n - w_{n-1})(F'(0) + w_n G(w_n, w_{n-1}) + w_{n-1} H(w_n, w_{n-1})) \\ &= (w_n - w_{n-1})(1 - F'(0) - w_n G(w_n, w_{n-1}) - w_{n-1} H(w_n, w_{n-1})). \end{split}$$

This is in I^{m+n} because $w_n - w_{n-1} \in I^{m+n-1}$ by the induction hypothesis and because the second factor is in I. The completeness of A with respect to I implies that the sequence $\{w_n\}_{n\geq 0}$ converges to a unique element $\alpha \in A$, which is in I^m because all the w_n are. The sequence $\{F(w_n)\}_{n\geq 0}$ converges to $F(\alpha)$, and taking the limit of the relation $w_{n+1} = w_n - F(w_n)$ as $n \to \infty$ shows that $F(\alpha) = 0$. If A is a domain and $\alpha, \beta \in I$ are zeros of F, then the equality

In and $a, p \in I$ are zeros of I, then the equality

$$0 = F(\alpha) - F(\beta) = (\alpha - \beta)(F'(0) + \alpha G(\alpha, \beta) + \beta H(\alpha, \beta))$$

shows that either $\alpha = \beta$ or $F'(0) = -\alpha G(\alpha, \beta) - \beta H(\alpha, \beta) \in I$. The second possibility contradicts our assumption $F'(0) - 1 \in I$, so $\alpha = \beta$, and we conclude that α is the unique zero of F in I.

Carrying out the first few steps of the recursion gives us the following power series expansion of w in terms of z:

$$w = z^{3}(1 + a_{1}z + (a_{1}^{2} + a_{2})z^{2} + (a_{1}^{3} + 2a_{1}a_{2} + a_{3})z^{3} + \cdots)$$

Now let K be the field of fractions of an integral local k-algebra A which is complete with respect to its maximal ideal \mathfrak{m} . Then the power series w(z) (or any power series with coefficients in A, for that matter) converges for all $z \in \mathfrak{m}$. This gives us an injective map

$$\mathfrak{m} \to E(K) z \mapsto (z:-1:w(z))$$

or (in terms of the coordinates z and w)

$$\mathfrak{m} \to E(K)$$
$$z \mapsto (z, w(z)).$$

The above version of Hensel's lemma shows that the image of this map is equal to the set of points (z, w) in E(K) with $z, w \in \mathfrak{m}$.

For $z \in \mathfrak{m}$, it is also possible to express the usual coordinates (x, y) of the point (z, w(z)) in terms of formal Laurent series in z. Since x = X/Z = z/w(z) and y = Y/Z = -1/w(z), we get

$$x = z^{-2}(1 - a_1 z - a_2 z^2 - a_3 z^3 + \cdots)$$

$$y = -z^{-3}(1 - a_1 z - a_2 z^2 - a_3 z^3 + \cdots).$$

Our next goal is to express the group operation of E in terms of the parameter z. The group operation will then give us a map

$$\Sigma: \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}.$$

Computing Σ is a matter of writing down the formulas for the "chord and tangent" algorithm in the coordinates (z, w). Recall that if E is embedded into \mathbf{P}_k^2 via a Weierstraß equation, then the points of E lying on any line in \mathbf{P}^2 add to zero. If z_1, z_2 are in \mathfrak{m} , then the slope of the line through the points $(z_1, w(z_1))$ and $(z_2, w(z_2))$ is

$$\lambda = \frac{w(z_1) - w(z_2)}{z_1 - z_2}$$

= $(z_1^2 + z_1 z_2 + z_2^2) + a_1(z_1^3 + z_1^2 z_2 + z_1 z_2^2 + z_2^3) + (a_1^2 + a_2)(z_1^4 + z_1^3 z_2 + z_1^2 z_2^2 + z_1 z_2^3 + z_2^4) + \cdots;$

the last expression is valid also when $z_1 = z_2$. The equation of this line is

$$v = \lambda z + v$$
 with $v = w_1 - \lambda z_1 = w_2 - \lambda z_2$

substituting this into the equation for the elliptic curve, we obtain a cubic equation in z whose three roots are z_1 , z_2 and the z-coordinate of a third point, say z_3 . The coefficient of the quadratic term of this equation gives us $-(z_1 + z_2 + z_3)$, and we obtain

$$z_{3} = -z_{1} - z_{2} - \frac{a_{1}\lambda + a_{2}v + a_{3}\lambda^{2} + 2a_{4}\lambda v + 3a_{6}\lambda^{2}v}{1 + a_{2}\lambda + a_{4}\lambda^{2} + a_{6}\lambda^{3}}$$

We first consider the special case where $z_1 = z$, $z_2 = 0$. Making use of $\lambda = w(z)/z$ and v = 0, we find the following formula for i(z), the z-coordinate of the inverse of the point (z, w(z)):

$$i(z) = -z - \frac{a_1 w(z)/z + a_3 (w(z)/z)^2}{1 + a_2 w(z)/z + a_4 (w(z)/z)^2 + a_6 (w(z)/z)^3}$$

= $-z - a_1 z^2 - a_1^2 z^3 - (a_1^3 + a_3) z^4 - a_1 (a_1^3 + 3a_3) z^5 + \cdots$

The z-coordinate of the sum of the two points $(z_1, w(z_1))$ and $(z_2, w(z_2))$ is now

$$\Sigma(z_1, z_2) = i(z_3)$$

= $z_1 + z_2 - a_1 z_1 z_2 - a_2 (z_1^2 z_2 + z_1 z_2^2) - (2a_3 z_1^3 z_2 - (a_1 a_2 - 3a_3) z_1^2 z_2^2 + 2a_3 z_1 z_2^3) + \cdots$

The binary operation Σ makes \mathfrak{m} into an Abelian group with neutral element 0 and inverse operation i. We denote this group by $\hat{E}(\mathfrak{m})$. As the power series Σ defining the group structure does not depend on \mathfrak{m} , it makes sense to study it on its own, for example as a power series over $\mathbf{Z}[a_1, a_2, a_3, a_4, a_6]$. It is an instance of a *formal group law*.

••.

2. Formal groups

We fix a ring R.

Definition. A formal group law over R is a power series

$$F \in R[[x, y]]$$

satisfying the following axioms:

(1) $F \equiv x + y \pmod{(x, y)^2}$.

(2) Associativity: F(x, F(y, z)) = F(F(x, y), z).

(3) Neutral element: F(x, 0) = x and F(0, y) = y.

(4) Commutativity: F(x, y) = F(y, x).

(5) Existence of inverse: F(x, i(x)) = 0 for some unique power series

$$i = -x + \dots \in R[[x]].$$

The formal group \mathfrak{F} defined by F is the rule that associates to an R-algebra which is complete with respect to an ideal I the group $\mathfrak{F}(I)$ with underlying set I and whose group operation is given by the power series I.

Implicit function theorem. Let $F \in R[[x, y]]$ be a power series of the form

$$F = ax + by + \cdots$$
 with $b \in \mathbb{R}^{\times}$.

Then there exists a unique power series $g \in R[[x]]$ such that F(x, g(x)) = 0.

Proof. We have to show that there exists a unique sequence of polynomials $g_n \in R[x]$, with g_n of degree at most n, such that

$$g_{n+1} \equiv g_n \pmod{(x)^{n+1}}$$

and

$$F(x, g_n(x)) \equiv 0 \pmod{(x)^{n+1}}.$$

For n = 1 it is clear that we must take $g_1 = -x$. To define g_n for $n \ge 2$, we note that g_n has to be of the form $g_{n-1} + \lambda x^n$ with $\lambda \in \mathbb{R}$. Since

$$F(x, g_{n-1}(x) + \lambda x^n) \equiv F(x, g_{n-1}(x)) + b\lambda x^n$$
$$\equiv c_n x^n + b\lambda x^n \pmod{(x)^{n+1}}$$

for some $c_n \in R$. From this we see that the only possibility is $\lambda = -b^{-1}c_n$. We conclude that

$$g = -x - c_2 x^2 - c_3 x^3 - \cdots$$

is the unique solution of F(x, g(x)) = 0.

Corollary. (Inversion of series) Let R be a ring, and let

$$f = ax + \dots \in R[[x]]$$

be a power series. If $a \in \mathbb{R}^{\times}$, there is a unique power series $g \in \mathbb{R}[[x]]$ such that f(g(x)) = x, and it also satisfies g(f(x)) = x.

Proof. We apply the inverse function theorem to F(x, y) = x - f(y) to obtain a unique power series g(x) with F(x, g(x)) = x - f(g(x)) = 0. We do the same for g instead of f to get a unique power series h with g(h(x)) = x; now

$$g(f(x)) = g(f(g(h(x)))) = g(h(x)) = x.$$

Proposition. Let $F \in R[[x, y]]$ be a power series satisfying the axioms (1) and (2) above. Then F also satisfies (3) and (5).

Proof. We will show that F(x,0) = x; the proof that F(0,y) = y is completely similar. Write $F(x,0) = x + a_2x^2 + a_3x^3 + \cdots$; we will prove by complete induction on n that $a_2 = a_3 = \cdots = a_n = 0$. For n = 1, there is nothing to prove. Assuming the statement for some $n \ge 1$, we have

$$F(x, F(0, 0)) = F(x, 0) = x + a_{n+1}x^{n+1} + \cdots,$$

while

$$F(F(x,0),0) = F(x + a_n x^{n+1} + \dots, 0) = (x + a_n x^{n+1}) + a_{n+1} x^{n+1} + \dots$$

since the two must be equal because of associativity, we conclude that $a_{n+1} = 0$.

The existence of a unique inverse follows directly from the implicit function theorem applied to F(x, y).

It can be shown that if R contains no torsion nilpotents (elements $x \neq 0$ such that $x^m = 0$ and nx = 0 for some m, n > 0), then (4) also follows from the first two axioms. The properties (1) and (3) are equivalent to saying that

 $F = x + y + xy \cdot (\text{power series in } x \text{ and } y).$

Some important examples of formal group laws are:

(i) The additive formal group law over **Z**: $G_a = x + y$.

(ii) The multiplicative formal group law over **Z**: $G_{\rm m} = (1+x)(1+y) - 1 = x + y + xy$.

(iii) The formal group law Σ associated to addition of points on an elliptic curve.

Definition. A homomorphism of formal groups from \mathfrak{F} to \mathfrak{G} over R is a power series $f \in R[[x]]$, without constant term, such that

$$f(F(x,y)) = G(f(x), f(y)).$$

Important examples of homomorphisms are the endomorphisms [m] of a formal group \mathfrak{F} , defined recursively for all $m \in \mathbb{Z}$ in the following way:

$$[0](x) = 0,$$

$$[m+1](x) = F([m](x), x) \quad (m \ge 0),$$

$$[m-1](x) = F([m](x), i(x)) \quad (m \le 0).$$

In particular, we see that [1](x) = x and [-1](x) = i(x).

Proposition. For all $m \in \mathbf{Z}$, we have

$$[m](x) = mx + \cdots.$$

Proof. We use induction on m. The case m = 0 is trivial; for m > 0 we have

$$[m](x) = F([m-1](x), x) = (m-1)x + x + \dots = mx + \dots,$$

and the case m < 0 is similar.

3. Groups associated to a formal group law

Let S be an R-algebra which is complete with respect to an ideal I. Then, because F has no constant term, the power series F(x, y) converges to an element of I for all $x, y \in I$. It follows immediately from the properties (2)–(5) that the set I equipped with the operation $(x, y) \mapsto F(x, y)$ is an Abelian group; we denote it by $\mathfrak{F}(I)$.

If S is complete with respect to I, then it is also complete with respect to I^n for all $n \ge 1$, and the ideals $I \supseteq I^2 \supseteq I^3 \supseteq \cdots$ gives rise to a chain of subgroups

$$\mathfrak{F}(I) \supseteq \mathfrak{F}(I^2) \supseteq \mathfrak{F}(I^3) \supseteq \cdots$$

We make $\mathfrak{F}(I)$ into a topological group by declaring these subgroups to be a basis for the open neighbourhoods of 0.

Let S and T be two R-algebras which are complete with respect to ideals I and J, and let $f: S \to T$ be an R-algebra homomorphism with $f(I) \subseteq J$. Then it is straightforward to check that f is continuous, and that the map

$$\mathfrak{F}(f):\mathfrak{F}(I)\to\mathfrak{F}(J)$$

which is equal to f on the underlying sets is a continuous group homomorphism. This makes \mathfrak{F} into a functor from a suitable "category of ideals of complete *R*-algebras" to the category of Abelian topological groups.

Proposition. Let F be a formal group over law R, and let S be an R-algebra which is complete with respect to an ideal I. Then for each $n \ge 1$, the map

$$\mathfrak{F}(I^n)/\mathfrak{F}(I^{n+1}) \to I^n/I^{n+1}$$

defined as the identity on the underlying sets is a group isomorphism. Furthermore, if S is a local ring with maximal ideal I, then the order of any torsion element of $\mathfrak{F}(I)$ is a power of p, where p is the residue characteristic of S. (If p = 0, this means that $\mathfrak{F}(I)$ is torsion-free.)

Proof. We know that the map in the first assertion is bijective, so it suffices to show that it is a homomorphism. This is clear because

$$F(x,y) \equiv x+y \pmod{I}^{2n}$$

for all $x, y \in I^n$.

For the second assertion, we have to show that there are no torsion elements of order m for any m not divisible by p, i.e. for any m not in the maximal ideal of S. We view [m] as a power series with coefficients in S; because

$$[m] = mx + \cdots$$

and $m \in S^{\times}$, the lemma on inversion of series shows that there exists a power series $g \in S[[x]]$ without constant term such that g([m](x)) = x. Therefore the map [m] is injective on $\mathfrak{F}(I)$, which was to be proved.