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0. Introduction

The topic of formal groups becomes important when we want to deal with reduction of elliptic curves.
Let R be a discrete valuation ring with field of fractions K and residue class field k, and suppose we
are given a Weierstraß equation

E: y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ R.

If the discriminant of E is not in the maximal ideal m of R, it makes sense to look at the solutions of
the reduced curve Ẽ over k obtained by reducing the ai modulo m. It turns out that there are natural
group homomorphisms

E(K) ∼= E(R)→ Ẽ(k),

and that the situation is relatively simple if we assume that R is a complete discrete valuation ring.
We recall the definition of completeness of a ring with respect to an ideal.

Definition. Let A be a ring and I an ideal of A. Consider A as a topological ring by defining the
sets I ⊇ I2 ⊇ I3 ⊇ · · · to be a basis of open neighbourhoods of 0. Then A is called complete with

respect to I if A is Hausdorff (equivalently,
⋂∞

n=1 In = 0) and complete with respect to this topology.
It amounts to the same to say that A is complete with respect to I if the natural homomorphism of
topological rings

A→ lim←−A/In,

where each A/In has the discrete topology, is an isomorphism.

If we assume that R is complete with respect to its maximal ideal, it turns out that we can
construct a short exact sequence

0 −→ Ê(m) −→ E(K) −→ Ẽ(k) −→ 0,

where Ê(m) is a group that will be defined in the next section.
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1. Parametrisation of an elliptic curve

Let (E, O) be an elliptic curve over a field k. We embed E in P2
k

as a Weierstraß curve

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

with O = (0 : 1 : 0). We choose affine coordinates (z, w) on the open part D(Y ) of P2
k
, placing O at

the origin of our coordinate system:

z = −X/Y, w = −Z/Y ;

after dividing by Y 3, the equation of the curve becomes

−w + a1zw + a3w
2 = −z3 − a2z

2w − a4zw2 − a6w
3.

We put
f = z3 + a1zw + a2z

2w + a3w
2 + a4zw2 + a6w

3 ∈ k[z, w]

and write the Weierstraß equation as
w = f(z, w).

We want to ‘solve’ this equation for w as a power series in z. To do this, we generalise things a bit by
considering the above equation as a polynomial equation in the variable w over the ring

A = Z[a1, a2, a3, a4, a6][[z]],

which is the completion of the polynomial ring Z[a1, a2, a3, a4, a6, z] with respect to the ideal (z). We
put

F = −z3 + (1− a1z − a2z
2)w − (a3 + a4z)w2 − a6w

3 ∈ A[w]

and apply the following version of Hensel’s lemma to find a zero of F .

Hensel’s lemma. Let A be a ring which is complete with respect to an ideal I, and let F ∈ A[w]
be a polynomial. If for some m ≥ 1 we have

F (0) ∈ Im and F ′(0) ≡ 1 (mod I),

then there is an element α ∈ Im with F (α) = 0, and the recursion

w0 = 0, wn+1 = wn − F (wn) for n ≥ 0

converges to α. If moreover A is a domain, α is the unique zero of F in I.

Proof . We first note that the assumption F (0) ∈ Im implies that F (x) ∈ Im for all x ∈ Im, and by
induction on n it follows immediately that wn ∈ Im for all n ≥ 0. Next we prove by induction on n
that

wn+1 ≡ wn (mod Im+n) for n ≥ 0.

For n = 0, this is just the assumption F (0) ∈ Im. Now suppose that the congruence holds for n− 1,
and write

F (x)− F (y) = (x− y)(F ′(0) + xG(x, y) + yH(x, y))

where G, H ∈ A[x, y] are certain polynomials. Then

wn+1 − wn = (wn − F (wn))− (wn−1 − F (wn−1))

= (wn − wn−1)− (F (wn)− F (wn−1))

= (wn − wn−1)− (wn − wn−1)(F
′(0) + wnG(wn, wn−1) + wn−1H(wn, wn−1))

= (wn − wn−1)(1 − F ′(0)− wnG(wn, wn−1)− wn−1H(wn, wn−1)).

This is in Im+n because wn − wn−1 ∈ Im+n−1 by the induction hypothesis and because the second
factor is in I. The completeness of A with respect to I implies that the sequence {wn}n≥0 converges to
a unique element α ∈ A, which is in Im because all the wn are. The sequence {F (wn)}n≥0 converges
to F (α), and taking the limit of the relation wn+1 = wn − F (wn) as n→∞ shows that F (α) = 0.

If A is a domain and α, β ∈ I are zeros of F , then the equality

0 = F (α)− F (β) = (α− β)(F ′(0) + αG(α, β) + βH(α, β))

shows that either α = β or F ′(0) = −αG(α, β) − βH(α, β) ∈ I. The second possibility contradicts
our assumption F ′(0)− 1 ∈ I, so α = β, and we conclude that α is the unique zero of F in I.
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Carrying out the first few steps of the recursion gives us the following power series expansion of
w in terms of z:

w = z3(1 + a1z + (a2
1 + a2)z

2 + (a3
1 + 2a1a2 + a3)z

3 + · · ·).

Now let K be the field of fractions of an integral local k-algebra A which is complete with respect
to its maximal ideal m. Then the power series w(z) (or any power series with coefficients in A, for
that matter) converges for all z ∈ m. This gives us an injective map

m→ E(K)

z 7→ (z : −1 : w(z)),

or (in terms of the coordinates z and w)

m→ E(K)

z 7→ (z, w(z)).

The above version of Hensel’s lemma shows that the image of this map is equal to the set of points
(z, w) in E(K) with z, w ∈ m.

For z ∈ m, it is also possible to express the usual coordinates (x, y) of the point (z, w(z)) in terms
of formal Laurent series in z. Since x = X/Z = z/w(z) and y = Y/Z = −1/w(z), we get

x = z−2(1− a1z − a2z
2 − a3z

3 + · · ·)

y = −z−3(1− a1z − a2z
2 − a3z

3 + · · ·).

Our next goal is to express the group operation of E in terms of the parameter z. The group
operation will then give us a map

Σ: m×m→ m.

Computing Σ is a matter of writing down the formulas for the “chord and tangent” algorithm in the
coordinates (z, w). Recall that if E is embedded into P2

k
via a Weierstraß equation, then the points

of E lying on any line in P2 add to zero. If z1, z2 are in m, then the slope of the line through the
points (z1, w(z1)) and (z2, w(z2)) is

λ =
w(z1)− w(z2)

z1 − z2

= (z2
1 + z1z2 + z2

2) + a1(z
3
1 + z2

1z2 + z1z
2
2 + z3

2) + (a2
1 + a2)(z

4
1 + z3

1z2 + z2
1z2

2 + z1z
3
2 + z4

2) + · · · ;

the last expression is valid also when z1 = z2. The equation of this line is

w = λz + v with v = w1 − λz1 = w2 − λz2;

substituting this into the equation for the elliptic curve, we obtain a cubic equation in z whose three
roots are z1, z2 and the z-coordinate of a third point, say z3. The coefficient of the quadratic term of
this equation gives us −(z1 + z2 + z3), and we obtain

z3 = −z1 − z2 −
a1λ + a2v + a3λ

2 + 2a4λv + 3a6λ
2v

1 + a2λ + a4λ2 + a6λ3
.

We first consider the special case where z1 = z, z2 = 0. Making use of λ = w(z)/z and v = 0, we find
the following formula for i(z), the z-coordinate of the inverse of the point (z, w(z)):

i(z) = −z −
a1w(z)/z + a3(w(z)/z)2

1 + a2w(z)/z + a4(w(z)/z)2 + a6(w(z)/z)3

= −z − a1z
2 − a2

1z
3 − (a3

1 + a3)z
4 − a1(a

3
1 + 3a3)z

5 + · · · .

The z-coordinate of the sum of the two points (z1, w(z1)) and (z2, w(z2)) is now

Σ(z1, z2) = i(z3)

= z1 + z2 − a1z1z2 − a2(z
2
1z2 + z1z

2
2)− (2a3z

3
1z2 − (a1a2 − 3a3)z

2
1z2

2 + 2a3z1z
3
2) + · · · .

The binary operation Σ makes m into an Abelian group with neutral element 0 and inverse operation
i. We denote this group by Ê(m). As the power series Σ defining the group structure does not depend
on m, it makes sense to study it on its own, for example as a power series over Z[a1, a2, a3, a4, a6]. It
is an instance of a formal group law .
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2. Formal groups

We fix a ring R.

Definition. A formal group law over R is a power series

F ∈ R[[x, y]]

satisfying the following axioms:
(1) F ≡ x + y (mod (x, y)2).
(2) Associativity: F (x, F (y, z)) = F (F (x, y), z).
(3) Neutral element: F (x, 0) = x and F (0, y) = y.
(4) Commutativity: F (x, y) = F (y, x).
(5) Existence of inverse: F (x, i(x)) = 0 for some unique power series

i = −x + · · · ∈ R[[x]].

The formal group F defined by F is the rule that associates to an R-algebra which is complete with
respect to an ideal I the group F(I) with underlying set I and whose group operation is given by the
power series I.

Implicit function theorem. Let F ∈ R[[x, y]] be a power series of the form

F = ax + by + · · · with b ∈ R×.

Then there exists a unique power series g ∈ R[[x]] such that F (x, g(x)) = 0.

Proof . We have to show that there exists a unique sequence of polynomials gn ∈ R[x], with gn of
degree at most n, such that

gn+1 ≡ gn (mod (x)n+1)

and
F (x, gn(x)) ≡ 0 (mod (x)n+1).

For n = 1 it is clear that we must take g1 = −x. To define gn for n ≥ 2, we note that gn has to be of
the form gn−1 + λxn with λ ∈ R. Since

F (x, gn−1(x) + λxn) ≡ F (x, gn−1(x)) + bλxn

≡ cnxn + bλxn (mod (x)n+1)

for some cn ∈ R. From this we see that the only possibility is λ = −b−1cn. We conclude that

g = −x− c2x
2 − c3x

3 − · · ·

is the unique solution of F (x, g(x)) = 0.

Corollary. (Inversion of series) Let R be a ring, and let

f = ax + · · · ∈ R[[x]]

be a power series. If a ∈ R×, there is a unique power series g ∈ R[[x]] such that f(g(x)) = x, and it
also satisfies g(f(x)) = x.

Proof . We apply the inverse function theorem to F (x, y) = x− f(y) to obtain a unique power series
g(x) with F (x, g(x)) = x − f(g(x)) = 0. We do the same for g instead of f to get a unique power
series h with g(h(x)) = x; now

g(f(x)) = g(f(g(h(x)))) = g(h(x)) = x.
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Proposition. Let F ∈ R[[x, y]] be a power series satisfying the axioms (1) and (2) above. Then F
also satisfies (3) and (5).

Proof . We will show that F (x, 0) = x; the proof that F (0, y) = y is completely similar. Write
F (x, 0) = x+a2x

2 +a3x
3 + · · ·; we will prove by complete induction on n that a2 = a3 = · · · = an = 0.

For n = 1, there is nothing to prove. Assuming the statement for some n ≥ 1, we have

F (x, F (0, 0)) = F (x, 0) = x + an+1x
n+1 + · · · ,

while

F (F (x, 0), 0) = F (x + anxn+1 + · · · , 0) = (x + anxn+1) + an+1x
n+1 + · · · ;

since the two must be equal because of associativity, we conclude that an+1 = 0.
The existence of a unique inverse follows directly from the implicit function theorem applied to

F (x, y).

It can be shown that if R contains no torsion nilpotents (elements x 6= 0 such that xm = 0 and
nx = 0 for some m, n > 0), then (4) also follows from the first two axioms. The properties (1) and
(3) are equivalent to saying that

F = x + y + xy · (power series in x and y).

Some important examples of formal group laws are:
(i) The additive formal group law over Z: Ga = x + y.
(ii) The multiplicative formal group law over Z: Gm = (1 + x)(1 + y)− 1 = x + y + xy.
(iii) The formal group law Σ associated to addition of points on an elliptic curve.

Definition. A homomorphism of formal groups from F to G over R is a power series f ∈ R[[x]],
without constant term, such that

f(F (x, y)) = G(f(x), f(y)).

Important examples of homomorphisms are the endomorphisms [m] of a formal group F, defined
recursively for all m ∈ Z in the following way:

[0](x) = 0,

[m + 1](x) = F ([m](x), x) (m ≥ 0),

[m− 1](x) = F ([m](x), i(x)) (m ≤ 0).

In particular, we see that [1](x) = x and [−1](x) = i(x).

Proposition. For all m ∈ Z, we have

[m](x) = mx + · · · .

Proof . We use induction on m. The case m = 0 is trivial; for m > 0 we have

[m](x) = F ([m− 1](x), x) = (m− 1)x + x + · · · = mx + · · · ,

and the case m < 0 is similar.
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3. Groups associated to a formal group law

Let S be an R-algebra which is complete with respect to an ideal I. Then, because F has no constant
term, the power series F (x, y) converges to an element of I for all x, y ∈ I. It follows immediately
from the properties (2)–(5) that the set I equipped with the operation (x, y) 7→ F (x, y) is an Abelian
group; we denote it by F(I).

If S is complete with respect to I, then it is also complete with respect to In for all n ≥ 1, and
the ideals I ⊇ I2 ⊇ I3 ⊇ · · · gives rise to a chain of subgroups

F(I) ⊇ F(I2) ⊇ F(I3) ⊇ · · · .

We make F(I) into a topological group by declaring these subgroups to be a basis for the open
neighbourhoods of 0.

Let S and T be two R-algebras which are complete with respect to ideals I and J , and let
f : S → T be an R-algebra homomorphism with f(I) ⊆ J . Then it is straightforward to check that f
is continuous, and that the map

F(f): F(I)→ F(J)

which is equal to f on the underlying sets is a continuous group homomorphism. This makes F

into a functor from a suitable “category of ideals of complete R-algebras” to the category of Abelian
topological groups.

Proposition. Let F be a formal group over law R, and let S be an R-algebra which is complete with
respect to an ideal I. Then for each n ≥ 1, the map

F(In)/F(In+1)→ In/In+1

defined as the identity on the underlying sets is a group isomorphism. Furthermore, if S is a local
ring with maximal ideal I, then the order of any torsion element of F(I) is a power of p, where p is
the residue characteristic of S. (If p = 0, this means that F(I) is torsion-free.)

Proof . We know that the map in the first assertion is bijective, so it suffices to show that it is a
homomorphism. This is clear because

F (x, y) ≡ x + y (mod I)2n

for all x, y ∈ In.
For the second assertion, we have to show that there are no torsion elements of order m for any

m not divisible by p, i.e. for any m not in the maximal ideal of S. We view [m] as a power series with
coefficients in S; because

[m] = mx + · · ·

and m ∈ S×, the lemma on inversion of series shows that there exists a power series g ∈ S[[x]] without
constant term such that g([m](x)) = x. Therefore the map [m] is injective on F(I), which was to be
proved.
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