Formal groups

Peter Bruin
2 March 2006

0. Introduction

The topic of formal groups becomes important when we want to deal with reduction of elliptic curves. Let R be a discrete valuation ring with field of fractions K and residue class field k, and suppose we are given a Weierstraß equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in R .
$$

If the discriminant of E is not in the maximal ideal \mathfrak{m} of R, it makes sense to look at the solutions of the reduced curve \tilde{E} over k obtained by reducing the a_{i} modulo \mathfrak{m}. It turns out that there are natural group homomorphisms

$$
E(K) \cong E(R) \rightarrow \tilde{E}(k)
$$

and that the situation is relatively simple if we assume that R is a complete discrete valuation ring. We recall the definition of completeness of a ring with respect to an ideal.

Definition. Let A be a ring and I an ideal of A. Consider A as a topological ring by defining the sets $I \supseteq I^{2} \supseteq I^{3} \supseteq \cdots$ to be a basis of open neighbourhoods of 0 . Then A is called complete with respect to I if A is Hausdorff (equivalently, $\bigcap_{n=1}^{\infty} I^{n}=0$) and complete with respect to this topology. It amounts to the same to say that A is complete with respect to I if the natural homomorphism of topological rings

$$
A \rightarrow \varliminf_{\varliminf} A / I^{n}
$$

where each A / I^{n} has the discrete topology, is an isomorphism.
If we assume that R is complete with respect to its maximal ideal, it turns out that we can construct a short exact sequence

$$
0 \longrightarrow \hat{E}(\mathfrak{m}) \longrightarrow E(K) \longrightarrow \tilde{E}(k) \longrightarrow 0
$$

where $\hat{E}(\mathfrak{m})$ is a group that will be defined in the next section.

1. Parametrisation of an elliptic curve

Let (E, O) be an elliptic curve over a field k. We embed E in \mathbf{P}_{k}^{2} as a Weierstraß curve

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}
$$

with $O=(0: 1: 0)$. We choose affine coordinates (z, w) on the open part $D(Y)$ of \mathbf{P}_{k}^{2}, placing O at the origin of our coordinate system:

$$
z=-X / Y, \quad w=-Z / Y
$$

after dividing by Y^{3}, the equation of the curve becomes

$$
-w+a_{1} z w+a_{3} w^{2}=-z^{3}-a_{2} z^{2} w-a_{4} z w^{2}-a_{6} w^{3} .
$$

We put

$$
f=z^{3}+a_{1} z w+a_{2} z^{2} w+a_{3} w^{2}+a_{4} z w^{2}+a_{6} w^{3} \in k[z, w]
$$

and write the Weierstraß equation as

$$
w=f(z, w)
$$

We want to 'solve' this equation for w as a power series in z. To do this, we generalise things a bit by considering the above equation as a polynomial equation in the variable w over the ring

$$
A=\mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right][[z]],
$$

which is the completion of the polynomial ring $\mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, z\right]$ with respect to the ideal (z). We put

$$
F=-z^{3}+\left(1-a_{1} z-a_{2} z^{2}\right) w-\left(a_{3}+a_{4} z\right) w^{2}-a_{6} w^{3} \in A[w]
$$

and apply the following version of Hensel's lemma to find a zero of F.
Hensel's lemma. Let A be a ring which is complete with respect to an ideal I, and let $F \in A[w]$ be a polynomial. If for some $m \geq 1$ we have

$$
F(0) \in I^{m} \quad \text { and } \quad F^{\prime}(0) \equiv 1 \quad(\bmod I)
$$

then there is an element $\alpha \in I^{m}$ with $F(\alpha)=0$, and the recursion

$$
w_{0}=0, \quad w_{n+1}=w_{n}-F\left(w_{n}\right) \text { for } n \geq 0
$$

converges to α. If moreover A is a domain, α is the unique zero of F in I.
Proof. We first note that the assumption $F(0) \in I^{m}$ implies that $F(x) \in I^{m}$ for all $x \in I^{m}$, and by induction on n it follows immediately that $w_{n} \in I^{m}$ for all $n \geq 0$. Next we prove by induction on n that

$$
w_{n+1} \equiv w_{n} \quad\left(\bmod I^{m+n}\right) \quad \text { for } n \geq 0 .
$$

For $n=0$, this is just the assumption $F(0) \in I^{m}$. Now suppose that the congruence holds for $n-1$, and write

$$
F(x)-F(y)=(x-y)\left(F^{\prime}(0)+x G(x, y)+y H(x, y)\right)
$$

where $G, H \in A[x, y]$ are certain polynomials. Then

$$
\begin{aligned}
w_{n+1}-w_{n} & =\left(w_{n}-F\left(w_{n}\right)\right)-\left(w_{n-1}-F\left(w_{n-1}\right)\right) \\
& =\left(w_{n}-w_{n-1}\right)-\left(F\left(w_{n}\right)-F\left(w_{n-1}\right)\right) \\
& =\left(w_{n}-w_{n-1}\right)-\left(w_{n}-w_{n-1}\right)\left(F^{\prime}(0)+w_{n} G\left(w_{n}, w_{n-1}\right)+w_{n-1} H\left(w_{n}, w_{n-1}\right)\right) \\
& =\left(w_{n}-w_{n-1}\right)\left(1-F^{\prime}(0)-w_{n} G\left(w_{n}, w_{n-1}\right)-w_{n-1} H\left(w_{n}, w_{n-1}\right)\right) .
\end{aligned}
$$

This is in I^{m+n} because $w_{n}-w_{n-1} \in I^{m+n-1}$ by the induction hypothesis and because the second factor is in I. The completeness of A with respect to I implies that the sequence $\left\{w_{n}\right\}_{n \geq 0}$ converges to a unique element $\alpha \in A$, which is in I^{m} because all the w_{n} are. The sequence $\left\{F\left(w_{n}\right)\right\}_{n \geq 0}$ converges to $F(\alpha)$, and taking the limit of the relation $w_{n+1}=w_{n}-F\left(w_{n}\right)$ as $n \rightarrow \infty$ shows that $F(\alpha)=0$.

If A is a domain and $\alpha, \beta \in I$ are zeros of F, then the equality

$$
0=F(\alpha)-F(\beta)=(\alpha-\beta)\left(F^{\prime}(0)+\alpha G(\alpha, \beta)+\beta H(\alpha, \beta)\right)
$$

shows that either $\alpha=\beta$ or $F^{\prime}(0)=-\alpha G(\alpha, \beta)-\beta H(\alpha, \beta) \in I$. The second possibility contradicts our assumption $F^{\prime}(0)-1 \in I$, so $\alpha=\beta$, and we conclude that α is the unique zero of F in I.

Carrying out the first few steps of the recursion gives us the following power series expansion of w in terms of z :

$$
w=z^{3}\left(1+a_{1} z+\left(a_{1}^{2}+a_{2}\right) z^{2}+\left(a_{1}^{3}+2 a_{1} a_{2}+a_{3}\right) z^{3}+\cdots\right) .
$$

Now let K be the field of fractions of an integral local k-algebra A which is complete with respect to its maximal ideal \mathfrak{m}. Then the power series $w(z)$ (or any power series with coefficients in A, for that matter) converges for all $z \in \mathfrak{m}$. This gives us an injective map

$$
\begin{aligned}
\mathfrak{m} & \rightarrow E(K) \\
z & \mapsto(z:-1: w(z))
\end{aligned}
$$

or (in terms of the coordinates z and w)

$$
\begin{aligned}
\mathfrak{m} & \rightarrow E(K) \\
z & \mapsto(z, w(z)) .
\end{aligned}
$$

The above version of Hensel's lemma shows that the image of this map is equal to the set of points (z, w) in $E(K)$ with $z, w \in \mathfrak{m}$.

For $z \in \mathfrak{m}$, it is also possible to express the usual coordinates (x, y) of the point $(z, w(z))$ in terms of formal Laurent series in z. Since $x=X / Z=z / w(z)$ and $y=Y / Z=-1 / w(z)$, we get

$$
\begin{aligned}
& x=z^{-2}\left(1-a_{1} z-a_{2} z^{2}-a_{3} z^{3}+\cdots\right) \\
& y=-z^{-3}\left(1-a_{1} z-a_{2} z^{2}-a_{3} z^{3}+\cdots\right)
\end{aligned}
$$

Our next goal is to express the group operation of E in terms of the parameter z. The group operation will then give us a map

$$
\Sigma: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}
$$

Computing Σ is a matter of writing down the formulas for the "chord and tangent" algorithm in the coordinates (z, w). Recall that if E is embedded into \mathbf{P}_{k}^{2} via a Weierstraß equation, then the points of E lying on any line in \mathbf{P}^{2} add to zero. If z_{1}, z_{2} are in \mathfrak{m}, then the slope of the line through the points $\left(z_{1}, w\left(z_{1}\right)\right)$ and $\left(z_{2}, w\left(z_{2}\right)\right)$ is

$$
\begin{aligned}
\lambda & =\frac{w\left(z_{1}\right)-w\left(z_{2}\right)}{z_{1}-z_{2}} \\
& =\left(z_{1}^{2}+z_{1} z_{2}+z_{2}^{2}\right)+a_{1}\left(z_{1}^{3}+z_{1}^{2} z_{2}+z_{1} z_{2}^{2}+z_{2}^{3}\right)+\left(a_{1}^{2}+a_{2}\right)\left(z_{1}^{4}+z_{1}^{3} z_{2}+z_{1}^{2} z_{2}^{2}+z_{1} z_{2}^{3}+z_{2}^{4}\right)+\cdots
\end{aligned}
$$

the last expression is valid also when $z_{1}=z_{2}$. The equation of this line is

$$
w=\lambda z+v \quad \text { with } v=w_{1}-\lambda z_{1}=w_{2}-\lambda z_{2}
$$

substituting this into the equation for the elliptic curve, we obtain a cubic equation in z whose three roots are z_{1}, z_{2} and the z-coordinate of a third point, say z_{3}. The coefficient of the quadratic term of this equation gives us $-\left(z_{1}+z_{2}+z_{3}\right)$, and we obtain

$$
z_{3}=-z_{1}-z_{2}-\frac{a_{1} \lambda+a_{2} v+a_{3} \lambda^{2}+2 a_{4} \lambda v+3 a_{6} \lambda^{2} v}{1+a_{2} \lambda+a_{4} \lambda^{2}+a_{6} \lambda^{3}} .
$$

We first consider the special case where $z_{1}=z, z_{2}=0$. Making use of $\lambda=w(z) / z$ and $v=0$, we find the following formula for $i(z)$, the z-coordinate of the inverse of the point $(z, w(z))$:

$$
\begin{aligned}
i(z) & =-z-\frac{a_{1} w(z) / z+a_{3}(w(z) / z)^{2}}{1+a_{2} w(z) / z+a_{4}(w(z) / z)^{2}+a_{6}(w(z) / z)^{3}} \\
& =-z-a_{1} z^{2}-a_{1}^{2} z^{3}-\left(a_{1}^{3}+a_{3}\right) z^{4}-a_{1}\left(a_{1}^{3}+3 a_{3}\right) z^{5}+\cdots .
\end{aligned}
$$

The z-coordinate of the sum of the two points $\left(z_{1}, w\left(z_{1}\right)\right)$ and $\left(z_{2}, w\left(z_{2}\right)\right)$ is now

$$
\begin{aligned}
\Sigma\left(z_{1}, z_{2}\right) & =i\left(z_{3}\right) \\
& =z_{1}+z_{2}-a_{1} z_{1} z_{2}-a_{2}\left(z_{1}^{2} z_{2}+z_{1} z_{2}^{2}\right)-\left(2 a_{3} z_{1}^{3} z_{2}-\left(a_{1} a_{2}-3 a_{3}\right) z_{1}^{2} z_{2}^{2}+2 a_{3} z_{1} z_{2}^{3}\right)+\cdots
\end{aligned}
$$

The binary operation Σ makes \mathfrak{m} into an Abelian group with neutral element 0 and inverse operation i. We denote this group by $\hat{E}(\mathfrak{m})$. As the power series Σ defining the group structure does not depend on \mathfrak{m}, it makes sense to study it on its own, for example as a power series over $\mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]$. It is an instance of a formal group law.

2. Formal groups

We fix a ring R.
Definition. A formal group law over R is a power series

$$
F \in R[[x, y]]
$$

satisfying the following axioms:
(1) $F \equiv x+y \quad\left(\bmod (x, y)^{2}\right)$.
(2) Associativity: $F(x, F(y, z))=F(F(x, y), z)$.
(3) Neutral element: $F(x, 0)=x$ and $F(0, y)=y$.
(4) Commutativity: $F(x, y)=F(y, x)$.
(5) Existence of inverse: $F(x, i(x))=0$ for some unique power series

$$
i=-x+\cdots \in R[[x]] .
$$

The formal group \mathfrak{F} defined by F is the rule that associates to an R-algebra which is complete with respect to an ideal I the group $\mathfrak{F}(I)$ with underlying set I and whose group operation is given by the power series I.

Implicit function theorem. Let $F \in R[[x, y]]$ be a power series of the form

$$
F=a x+b y+\cdots \quad \text { with } b \in R^{\times} .
$$

Then there exists a unique power series $g \in R[[x]]$ such that $F(x, g(x))=0$.
Proof. We have to show that there exists a unique sequence of polynomials $g_{n} \in R[x]$, with g_{n} of degree at most n, such that

$$
g_{n+1} \equiv g_{n} \quad\left(\bmod (x)^{n+1}\right)
$$

and

$$
F\left(x, g_{n}(x)\right) \equiv 0 \quad\left(\bmod (x)^{n+1}\right) .
$$

For $n=1$ it is clear that we must take $g_{1}=-x$. To define g_{n} for $n \geq 2$, we note that g_{n} has to be of the form $g_{n-1}+\lambda x^{n}$ with $\lambda \in R$. Since

$$
\begin{aligned}
F\left(x, g_{n-1}(x)+\lambda x^{n}\right) & \equiv F\left(x, g_{n-1}(x)\right)+b \lambda x^{n} \\
& \equiv c_{n} x^{n}+b \lambda x^{n}\left(\bmod (x)^{n+1}\right)
\end{aligned}
$$

for some $c_{n} \in R$. From this we see that the only possibility is $\lambda=-b^{-1} c_{n}$. We conclude that

$$
g=-x-c_{2} x^{2}-c_{3} x^{3}-\cdots
$$

is the unique solution of $F(x, g(x))=0$.
Corollary. (Inversion of series) Let R be a ring, and let

$$
f=a x+\cdots \in R[[x]]
$$

be a power series. If $a \in R^{\times}$, there is a unique power series $g \in R[[x]]$ such that $f(g(x))=x$, and it also satisfies $g(f(x))=x$.

Proof. We apply the inverse function theorem to $F(x, y)=x-f(y)$ to obtain a unique power series $g(x)$ with $F(x, g(x))=x-f(g(x))=0$. We do the same for g instead of f to get a unique power series h with $g(h(x))=x$; now

$$
g(f(x))=g(f(g(h(x))))=g(h(x))=x
$$

Proposition. Let $F \in R[[x, y]]$ be a power series satisfying the axioms (1) and (2) above. Then F also satisfies (3) and (5).

Proof. We will show that $F(x, 0)=x$; the proof that $F(0, y)=y$ is completely similar. Write $F(x, 0)=x+a_{2} x^{2}+a_{3} x^{3}+\cdots$; we will prove by complete induction on n that $a_{2}=a_{3}=\cdots=a_{n}=0$. For $n=1$, there is nothing to prove. Assuming the statement for some $n \geq 1$, we have

$$
F(x, F(0,0))=F(x, 0)=x+a_{n+1} x^{n+1}+\cdots,
$$

while

$$
F(F(x, 0), 0)=F\left(x+a_{n} x^{n+1}+\cdots, 0\right)=\left(x+a_{n} x^{n+1}\right)+a_{n+1} x^{n+1}+\cdots ;
$$

since the two must be equal because of associativity, we conclude that $a_{n+1}=0$.
The existence of a unique inverse follows directly from the implicit function theorem applied to $F(x, y)$.

It can be shown that if R contains no torsion nilpotents (elements $x \neq 0$ such that $x^{m}=0$ and $n x=0$ for some $m, n>0$), then (4) also follows from the first two axioms. The properties (1) and (3) are equivalent to saying that

$$
F=x+y+x y \cdot(\text { power series in } x \text { and } y)
$$

Some important examples of formal group laws are:
(i) The additive formal group law over $\mathbf{Z}: G_{\mathrm{a}}=x+y$.
(ii) The multiplicative formal group law over \mathbf{Z} : $G_{\mathrm{m}}=(1+x)(1+y)-1=x+y+x y$.
(iii) The formal group law Σ associated to addition of points on an elliptic curve.

Definition. A homomorphism of formal groups from \mathfrak{F} to \mathfrak{G} over R is a power series $f \in R[[x]]$, without constant term, such that

$$
f(F(x, y))=G(f(x), f(y))
$$

Important examples of homomorphisms are the endomorphisms $[m]$ of a formal group \mathfrak{F}, defined recursively for all $m \in \mathbf{Z}$ in the following way:

$$
\begin{aligned}
{[0](x) } & =0 \\
{[m+1](x) } & =F([m](x), x) \quad(m \geq 0) \\
{[m-1](x) } & =F([m](x), i(x)) \quad(m \leq 0)
\end{aligned}
$$

In particular, we see that $[1](x)=x$ and $[-1](x)=i(x)$.
Proposition. For all $m \in \mathbf{Z}$, we have

$$
[m](x)=m x+\cdots .
$$

Proof. We use induction on m. The case $m=0$ is trivial; for $m>0$ we have

$$
[m](x)=F([m-1](x), x)=(m-1) x+x+\cdots=m x+\cdots
$$

and the case $m<0$ is similar.

3. Groups associated to a formal group law

Let S be an R-algebra which is complete with respect to an ideal I. Then, because F has no constant term, the power series $F(x, y)$ converges to an element of I for all $x, y \in I$. It follows immediately from the properties $(2)-(5)$ that the set I equipped with the operation $(x, y) \mapsto F(x, y)$ is an Abelian group; we denote it by $\mathfrak{F}(I)$.

If S is complete with respect to I, then it is also complete with respect to I^{n} for all $n \geq 1$, and the ideals $I \supseteq I^{2} \supseteq I^{3} \supseteq \cdots$ gives rise to a chain of subgroups

$$
\mathfrak{F}(I) \supseteq \mathfrak{F}\left(I^{2}\right) \supseteq \mathfrak{F}\left(I^{3}\right) \supseteq \cdots .
$$

We make $\mathfrak{F}(I)$ into a topological group by declaring these subgroups to be a basis for the open neighbourhoods of 0 .

Let S and T be two R-algebras which are complete with respect to ideals I and J, and let $f: S \rightarrow T$ be an R-algebra homomorphism with $f(I) \subseteq J$. Then it is straightforward to check that f is continuous, and that the map

$$
\mathfrak{F}(f): \mathfrak{F}(I) \rightarrow \mathfrak{F}(J)
$$

which is equal to f on the underlying sets is a continuous group homomorphism. This makes \mathfrak{F} into a functor from a suitable "category of ideals of complete R-algebras" to the category of Abelian topological groups.

Proposition. Let F be a formal group over law R, and let S be an R-algebra which is complete with respect to an ideal I. Then for each $n \geq 1$, the map

$$
\mathfrak{F}\left(I^{n}\right) / \mathfrak{F}\left(I^{n+1}\right) \rightarrow I^{n} / I^{n+1}
$$

defined as the identity on the underlying sets is a group isomorphism. Furthermore, if S is a local ring with maximal ideal I, then the order of any torsion element of $\mathfrak{F}(I)$ is a power of p, where p is the residue characteristic of S. (If $p=0$, this means that $\mathfrak{F}(I)$ is torsion-free.)
Proof. We know that the map in the first assertion is bijective, so it suffices to show that it is a homomorphism. This is clear because

$$
F(x, y) \equiv x+y \quad(\bmod I)^{2 n}
$$

for all $x, y \in I^{n}$.
For the second assertion, we have to show that there are no torsion elements of order m for any m not divisible by p, i.e. for any m not in the maximal ideal of S. We view $[m$] as a power series with coefficients in S; because

$$
[m]=m x+\cdots
$$

and $m \in S^{\times}$, the lemma on inversion of series shows that there exists a power series $g \in S[[x]]$ without constant term such that $g([m](x))=x$. Therefore the map $[m]$ is injective on $\mathfrak{F}(I)$, which was to be proved.

