EXAM

GALOIS REPRESENTATIONS AND AUTOMORPHIC FORMS

12 January 2017 10:00–13:00

- You only have to answer *two* questions of your choice. You may hand in answers to more questions, but your mark will be based on up to two questions on which you did best.
- The use of books, notes and electronic devices is not allowed.
- You may use results from the lecture notes (but not from the exercises) without proof. Clearly state which results you use.
- If you are unable to answer a subquestion, you may still use the result in the remainder of the question.
- Question 1. (a) Let $\widehat{\mathbb{Z}}$ be the profinite completion of \mathbb{Z} , and let \mathbb{A} be the adèle ring of \mathbb{Q} . Consider the quotients $(\mathbb{R} \times \widehat{\mathbb{Z}})/\mathbb{Z}$ and $\mathbb{A}/\mathbb{Q} = (\mathbb{R} \times \mathbb{A}^{\infty})/\mathbb{Q}$, where \mathbb{Z} and \mathbb{Q} are diagonally embedded in $\mathbb{R} \times \widehat{\mathbb{Z}}$ and $\mathbb{R} \times \mathbb{A}^{\infty}$, respectively. Show that the map

$$(\mathbb{R} \times \widehat{\mathbb{Z}})/\mathbb{Z} \longrightarrow (\mathbb{R} \times \mathbb{A}^{\infty})/\mathbb{Q}$$
$$(x, y) \bmod \mathbb{Z} \longmapsto (x, y) \bmod \mathbb{Q}$$

is an isomorphism of groups.

(b) Let $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\} \subset \mathbb{C}$ be the field of Gauss numbers, and let $\mathbb{A}_{\mathbb{Q}(i)}^{\times} = \mathbb{C}^{\times} \times \mathbb{A}_{\mathbb{Q}(i)}^{\infty, \times}$ be the idèle group of $\mathbb{Q}(i)$. The ring of integers $\mathbb{Z}[i]$ of $\mathbb{Q}(i)$ is known to be a principal ideal domain with unit group $\langle i \rangle = \{\pm 1, \pm i\}$. Use this to prove that the map

$$\langle i \rangle \backslash \left(\mathbb{C}^{\times} \times \widehat{\mathbb{Z}[i]}^{\times} \right) \longrightarrow \mathbb{Q}(i)^{\times} \backslash \mathbb{A}_{\mathbb{Q}(i)}^{\times}$$

 $\langle i \rangle \cdot (x, y) \longmapsto \mathbb{Q}(i)^{\times} \cdot (x, y)$

is an isomorphism of groups, where $\langle i \rangle$ and $\mathbb{Q}(i)^{\times}$ are embedded diagonally in $\mathbb{C}^{\times} \times \widehat{\mathbb{Z}[i]}^{\times}$ and $\mathbb{A}_{\mathbb{Q}(i)}^{\times}$, respectively.

Question 2. Let F be a number field, and let E be an elliptic curve over F.

- (a) The group law on E can be given by rational functions with coefficients in F, and the n-torsion subgroup $E[n](\overline{F})$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^2$. Use these facts to show that the action of the absolute Galois group $\operatorname{Gal}(\overline{F}/F)$ on $E[n](\overline{F})$ induces a group homomorphism $\operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$ that is well-defined up to conjugacy by elements of $\operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$.
- (b) Let ℓ be a prime number. Define the ℓ -adic Tate module $T_{\ell}(E)$, including the action of $\operatorname{Gal}(\overline{F}/F)$ on $T_{\ell}(E)$.
- (c) Let ℓ be a prime number, and let v be a finite place of F with $v \nmid \ell$ and such that E has good reduction at v. Express the number of points on E over the residue field $\kappa(v)$ in terms of the Galois representation $T_{\ell}(E)$.

Question 3. Let F be a number field, and let E be an elliptic curve over F. For every finite place v of F at which E has good reduction, let $\kappa(v)$ be the residue field, and let $a_v(E) = 1 - \#E(\kappa(v)) + \#\kappa(v)$.

Consider the set S of finite places v of F with $v \nmid 3$ and such that E has good reduction at v and the integer $a_v(E)$ is divisible by 3. In this question we investigate the density δ_S of the set S in the set of all places of F.

- (a) Let Z be the normal subgroup of $GL_2(\mathbb{F}_3)$ consisting of the matrices $\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$ with $x \in \mathbb{F}_3^{\times}$. Let $PGL_2(\mathbb{F}_3)$ be the quotient $GL_2(\mathbb{F}_3)/Z$. Show that $PGL_2(\mathbb{F}_3)$ is isomorphic to the fourth symmetric group S_4 .
 - *Hint:* consider the action of the group $\operatorname{PGL}_2(\mathbb{F}_3)$ on the set $\mathbb{P}^1(\mathbb{F}_3)$ of lines in the 2-dimensional space $(\mathbb{F}_3)^2$ passing through the origin.
- (b) Assume that F and E are such that the Galois representation

$$\rho_{E,3} \colon \operatorname{Gal}(\overline{F}/F) \to \operatorname{Aut}_{\mathbb{F}_3}(E[3](\overline{F})) \simeq \operatorname{GL}_2(\mathbb{F}_3)$$

on the 3-torsion of E is surjective. Show that the density δ_S equals 3/8.

(c) It is known that the group S_4 has 11 subgroups up to conjugacy. Show that as F and E vary (and $\rho_{E,3}$ is not necessarily surjective), there are at most 11 possible values for the density δ_S .

Question 4. Let F be a p-adic local field, and let \mathcal{O}_F be its ring of integers. We write $G = \mathrm{GL}_2(F)$ and $K = \mathrm{GL}_2(\mathcal{O}_F)$.

- (a) State what it means for an irreducible admissible smooth representation (π, V) of G to be unramified.
- (b) Give the definition of the (unramified or spherical) Hecke algebra $\mathcal{H}(G,K)$, including the algebra structure.
- (c) Give the definition of the Satake transform

$$\mathcal{S} \colon \mathcal{H}(G,K) \xrightarrow{\sim} \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{S_2}.$$

(Here S_2 acts on $\mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]$ by permuting the variables.)

(d) Explain that using S one can attach to any unramified irreducible smooth representation π of $GL_2(F)$ a semi-simple conjugacy class ϕ_{π} in $GL_2(\mathbb{C})$ (the *Satake parameter* of π).

Hint: For (b) and (c), you will need the subgroups $B, N, T \subset G$, where B consists of the upper triangular matrices, N consists of the upper triangular matrices with ones on the diagonal, and T consists of the diagonal matrices. If H is one of the groups G, B, N, T, write μ_H for the left Haar measure on H such that the compact open subgroup $H \cap K$ of H has measure 1. It is known that μ_G, μ_T and μ_N are also right Haar measures, but μ_B is not; you will need the modular function $\delta_B \colon B \to \mathbb{R}_{>0}$.

Question 5. ¹ In this question we investigate some consequences of the local Langlands theorem and the global Langlands conjecture. Let F be a number field, let ℓ be a prime number, and fix an isomorphism $\iota \colon \overline{\mathbb{Q}}_{\ell} \xrightarrow{\sim} \mathbb{C}$. The symmetric square representation

$$\operatorname{Sym}^2 \colon \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell}) \to \operatorname{GL}_3(\overline{\mathbb{Q}}_{\ell})$$

is a 3-dimensional irreducible representation obtained from the action of $\mathrm{GL}_2(\overline{\mathbb{Q}}_\ell)$ on the space of homogenous polynomials $f \in \overline{\mathbb{Q}}_\ell[X_1, X_2]$ of degree 2 defined by

$$g \cdot f := f(aX_1 + cX_2, bX_1 + dX_2)$$
 for all $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\overline{\mathbb{Q}}_\ell), f \in \overline{\mathbb{Q}}_\ell[X_1, X_2].$

We have seen in the practice exam that for all $g \in GL_2(\overline{\mathbb{Q}}_{\ell})$, writing t = Tr(g) and $d = \det(g)$, we have

charpol(Sym²(g)) =
$$X^3 - (t^2 - d)X^2 + d(t^2 - d)X - d^3 \in \overline{\mathbb{Q}}_{\ell}[X]$$
.

In the solutions below, you may use this as a fact that you do not need to justify.

(a) We first consider the local case. Let v be a finite place of F, let F_v be the completion of F at v, and let q_v be the cardinality of the residue field of F_v . Let π_v be an unramified smooth admissible irreducible representation of $\mathrm{GL}_2(F_v)$, let ϕ_{π_v} be the Satake parameter of π_v (a conjugacy class in $\mathrm{GL}_2(\mathbb{C})$), and write $d_v = \det(\phi_{\pi_v})$ and $t_v = \mathrm{Tr}(\phi_{\pi_v})$. Show that to π_v we may attach a smooth admissible irreducible representation Π_v of $\mathrm{GL}_3(F_v)$, in such a way that the L-function of Π_v equals

$$\frac{1}{1 - (t_v^2 - d_v)q_v^{-s} + d_v(t_v^2 - d_v)q_v^{-2s} - d_v^3 q_v^{-3s}}.$$

A Galois representation $\rho \colon \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_n(\overline{\mathbb{Q}}_\ell)$ that is isomorphic to a subquotient of the ℓ -adic étale cohomology of an algebraic variety X over F is called geometric. In number theory and algebraic geometry, it is the geometric Galois representations that we are interested in, and a great deal of research is done on these representations. In particular, there is a famous conjecture of Fontaine and Mazur that characterizes the irreducible Galois representations ρ_{π} arising from some algebraic cuspidal automorphic representation π as those which are geometric.

In the questions below you may use that the class of geometric Galois representations is stable under all possible linear algebra constructions, meaning that if V and W are geometric ℓ -adic Galois representations, then representations such as $V \oplus W$, $V \otimes W$, $V^{\otimes 5} \otimes W^{\vee}$, $\wedge^3 V \otimes W^{\otimes 2}$, and so on, are all geometric as well. In particular, if ρ : Gal(\overline{F}/F) $\to \overline{\mathbb{Q}}_{\ell}^2$ is a 2-dimensional geometric Galois representation, then the symmetric square of ρ , i.e. the representation

$$\operatorname{Sym}^2(\rho) := \operatorname{Sym}^2 \circ \rho \colon \operatorname{Gal}(\overline{F}/F) \to \overline{\mathbb{Q}}_{\ell}^3,$$

is geometric as well.

In the rest of this question, let π be an algebraic cuspidal automorphic representation of $GL_2(\mathbb{A}_F)$. We call π non-special if there exists no strict algebraic²

¹Students who choose this question will receive a bonus point on their exam score.

²"Algebraic" means that H is equal to the vanishing locus of a collection of polynomials.

subgroup $H \subset \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell})$ such that $\rho_{\pi}(\operatorname{Gal}(\overline{F}/F)) \subset H$. For these non-special π , the composition $r \circ \rho_{\pi}$ is irreducible for any irreducible algebraic representation $r \colon \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell}) \to \operatorname{GL}_N(\overline{\mathbb{Q}}_{\ell})$. Specializing to $r = \operatorname{Sym}^2$, the representation $\operatorname{Sym}^2(\rho_{\pi})$ is irreducible as well. We will assume from now on that π is non-special.

- (b) Assuming the global Langlands conjecture and the Fontaine-Mazur conjecture, prove that there exists an automorphic representation Π of $GL_3(\mathbb{A}_F)$ such that at all F-places v where π_v is unramified, Π_v is unramified as well, and the Satake parameter ϕ_{Π_v} of Π_v equals $\operatorname{Sym}^2(\phi_{\pi_v})$, where ϕ_{π_v} is the Satake parameter of π_v .
- (c) Prove that the automorphic representation Π is uniquely characterized (up to isomorphism) by this property.
- (d) Let E be an elliptic curve over F without complex multiplication, so that the Galois representation on its Tate module $V_{\ell}(E) := \overline{\mathbb{Q}}_{\ell} \otimes_{\mathbb{Z}_{\ell}} T_{\ell}(E)$ is nonspecial in the sense that the image of $\operatorname{Gal}(\overline{F}/F)$ is not contained in any strict algebraic subgroup of $\operatorname{GL}_{\overline{\mathbb{Q}}_{\ell}}(V_{\ell}(E)) \cong \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell})$. Let S be the set of finite places of F where E has good reduction. For all $v \in S$, let $\kappa(v)$ be the residue field of F at v, let $q_v = \#\kappa(v)$, and let $a_v(E) = 1 \#E(\kappa(v)) + q_v$. Prove that the Euler product

$$\prod_{v \in S} \frac{1}{1 - (a_v(E)^2 - q_v)q_v^{-s} + q_v(a_v(E)^2 - q_v)q_v^{-2s} - q_v^3 q_v^{-3s}}$$

converges for $\Re s$ sufficiently large and has an analytic continuation to the whole complex plane that satisfies a functional equation (which you do not need to specify).

Good luck!

Thank you for following our course, it has been a pleasure.