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Abstract

Following the work of K. Khuri-Makdisi (see [3] and [4]), I will describe a way of representing a
smooth projective curve over a field, and of divisors on it, that allows fast computation of group
operations in the Picard group. This is especially interesting in the case of modular curves, where
such a representation can be computed from spaces of modular forms. If the base field is finite,
there are additional operations such as choosing uniformly random elements of the Picard group
and computing Frobenius maps, Frey–Rück pairings and (for modular curves) Hecke operators.
I will explain, based in part on work of J.-M. Couveignes [1], how these operations can be done
efficiently in the setting of Khuri-Makdisi’s representation of the curve.

1. Representing curves, divisors and elements of the Picard group

Notation. Throughout, X denotes a complete, smooth and geometrically connected curve of
genus g over a field k, and L denotes a line bundle on X of degree

d ≥ 2g + 1.

The assumption on d implies that L is very ample, i.e. it defines a closed immersion

X → PΓ(X,L)

of varieties over k. (Here PV denotes the projective space over k of hyperplanes in the k-vector
space V .) Points on X can therefore be described by hyperplanes; a point P ∈ X(k) corresponds
to the hyperplane Γ(X,L(−P )) in Γ(X,L).

The same assumption implies that the natural multiplication maps

Γ(X,Li)⊗k Γ(X,Lj)→ Γ(X,Li+j).

are surjective, or in other words that the embedding given by L is projectively normal . (This is a
classical theorem of Castelnuovo, Mattuck and Mumford.) Equivalently, the projective coordinate
ring SX of X can be expressed as

SX =
⊕
i≥0

Γ(X,Li).

We assume that we know the spaces Γ(X,Li) and the multiplication maps between them for
i = 0, 1, . . . , h, where h is some sufficiently large positive integer. Giving these data is equivalent
to giving the k-algebra

S
(h)
X = SX/(homogeneous elements of degree > h).

The most straightforward way to give the k-algebra structure is to write down matrices with
respect to certain k-bases of the Γ(X,Li). However, a more efficient representation is to choose
trivialisations of L at sufficiently many points of X (i.e. so many that a section of Lh is determined
by its values at these points), so that the multiplication maps can be computed pointwise.

Example. Let X be a modular curve, say for concreteness X0(n) or X1(n) with n ≥ 5. Then a
suitable line bundle L is the line bundle ω2 of modular forms of weight 2 on X. The spaces Γ(X,Li)
can be computed using modular symbols. We can express the modular forms as q-expansions, and
the multiplication is simply multiplication of power series. Another possibility is to compute
the values of the modular forms at sufficiently many rational points (with respect to some fixed
trivialisation).

1



Effective divisors on X can be represented in the following way. Let D be an effective divisor
on X, and let a be a positive integer such that

ad− degD ≥ 2g + 1.

Then D is uniquely determined by the subspace

Γ(X,La(−D)) ⊂ Γ(X,La)

of codimension d.
Using the representation of divisors just described, Khuri-Makdisi has given the (asymptoti-

cally) fastest algorithms known to date (measured in operations in the field k) for computing with
divisors on general curves. An important source of efficiency is that inside the algorithms, the
space Γ(X,La) is replaced at strategical moments by a small subset consisting of sections whose
common divisor equals D.

Khuri-Makdisi’s algorithms allow us to add, subtract and intersect divisors of sufficiently small
degree, and to test whether a given subspace of Γ(X,Li) is of the form Γ(X,Li(−D)) for some
effective divisor D, in time O((degL)3+ε). Using fast linear algebra, this can be improved to
O((degL)2.376). The algorithms are based on the following two results.

Lemma 1.1. Let M and N be line bundles on X whose degrees are at least 2g + 1. Then the
canonical k-linear map

Γ(X,M)⊗k Γ(X,N ) −→ Γ(X,M⊗OX
N )

is surjective.

Lemma 1.2. Let M and N be line bundles on X such that N is generated by global sections,
and let D be any effective divisor on X. Then the inclusion

Γ(X,M(−D)) ⊂
{
s ∈ Γ(X,M)

∣∣ sΓ(X,N ) ⊂ Γ(X,M⊗OX
N (−D))

}
is an equality.

We now describe how to represent elements of the group

Pic0X = {line bundles of degree 0}/∼=.

The isomorphism class of a line bundle M of degree 0 is represented by an effective divisor D of
degree d such that

M∼= L(−D).

This divisor is in turn represented as the subspace

Γ(X,L2(−D)) ⊂ Γ(X,L2).

Remark . Let Grd Γ(X,L2) denote the Grassmann variety classifying subspaces of codimension d
in Γ(X,L2). Then we are in fact considering the morphisms

Pic0
X/k ←− SymdX −→ Grd Γ(X,L2)

of varieties over k, where the left arrow (surjective) sends a divisor D of degree d to the isomorphism
class of L(−D) and the right arrow (injective) sends D to the subspace Γ(X,L2(−D)) of Γ(X,L2).

Remark . By taking d ≥ 2g + 1 and representing D as a subspace of Γ(X,L2), we have restricted
ourselves to a description of Khuri-Makdisi’s medium model of Pic0X. In the large model, D is
represented as the subspace Γ(X,L3(−D)) of Γ(X,L3). The advantage of this is that the group
operations are conceptually the easiest to implement. In the small model , D is also represented as
a subspace of Γ(X,L3), but L can be taken of degree less than 2g+ 1. The advantage of the small
model is that the operations require asymptotically the least number of field operations.
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2. Basic operations in the Picard group

There are three basic operations.

• zero test : given a subspace of codimension d in Γ(X,L2), decide whether it represents 0 ∈
Pic0X.

• zero element : output a subspace of codimension degL in Γ(X,L2) representing 0 ∈ Pic0X.

• addflip: given two subspaces of Γ(X,L2) representing elements x, y ∈ Pic0X, compute a
subspace of Γ(X,L2) representing −x− y.

From the “addflip” operation, one immediately gets negation (−x = −x − 0), addition (x + y =
−(−x − y)) and subtraction (x − y = −(−x) − y). Testing equality of two elements x and y can
be done by computing x− y and testing whether the result equals zero.

Remark . There is also a “membership test”, but we will not need it. As for the question how
to get non-zero elements in the first place, this depends on the application. If k is finite, we can
generate random elements to play with.

Algorithm 2.1 (Zero test). Let x ∈ Pic0X. Given the k-algebra S
(2)
X and a subspace of the form

Γ(X,L2(−D)) of Γ(X,L2) representing x, this algorithm decides whether x = 0.

1. Compute the space

Γ(X,L(−D)) =
{
s ∈ Γ(X,L)

∣∣ sΓ(X,L) ⊂ Γ(X,L2(−D))
}
.

(The equality holds by Lemma 1.2.)

2. Output ‘false’ if Γ(X,L(−D)) = 0, and ‘true’ if Γ(X,L(−D)) is of dimension 1.

Algorithm 2.2 (Zero element). Given the k-algebra S
(2)
X , this algorithm outputs a subspace

Γ(X,L2(−D)) of Γ(X,L2)) representing 0 ∈ PicX.

1. Choose any non-zero element s ∈ Γ(X,L), and let D denote its divisor.

2. Output the space Γ(X,L2(−D)) = sΓ(X,L).

Algorithm 2.3 (Addflip). Let x, y ∈ Pic0X. Given the k-algebra S
(5)
X and subspaces of the

form Γ(X,L2(−D)) and Γ(X,L2(−E)) of Γ(X,L2) representing x and y, this algorithm outputs
a subspace Γ(X,L2(−F )) representing −x− y.

1. Compute the space Γ(X,L4(−D − E)) as the product of Γ(X,L2(−D)) and Γ(X,L2(−E)).
(This is possible by Lemma 1.1.)

2. Compute the space

Γ(X,L3(−D − E)) =
{
s ∈ Γ(X,L3)

∣∣ sΓ(X,L) ⊂ Γ(X,L4(−D − E)).
}

3. Choose any non-zero s ∈ Γ(X,L3(−D − E)), and write F = div s.

4. Compute the space

Γ(X,L5(−D − E − F )) = sΓ(X,L2).

5. Output the space

Γ(X,L2(−F )) =
{
s ∈ Γ(X,L2)

∣∣
sΓ(X,L3(−D − E)) ⊂ Γ(X,L5(−D − E − F ))

}
.
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3. Functoriality for finite morphisms

Consider a finite morphism
f :X → Y

between curves. Such a morphism gives rise to group homomorphisms

f∗: Div Y → DivX and f∗: DivX → Div Y.

These maps are defined on prime divisors as follows. If Q is a prime divisor on X, we have

f∗Q =
∑

P : f(P )=Q

e(P )P,

where P runs over the prime divisors on X lying over Q and e(P ) is the ramification index at P .
If P is a prime divisor on X, we have

f∗P = [k(P ) : k(f(P ))]f(P ),

where k(P ) and k(f(P )) are the residue fields. The maps f∗ and f∗ induce two morphisms

Pic f : Pic0 Y → Pic0X and Alb f : Pic0X → Pic0 Y,

called the Picard and Albanese maps.
Suppose X and Y are given as above by projective embeddings via line bundles LX and LY ,

and the morphism f is induced by a graded k-algebra homomorphism

f#:SY → SX

between the projective coordinate rings of X and Y . In this case we have a canonical isomorphism

f∗LY ∼= LX

and induced injective maps
Γ(X,LiX)→ Γ(Y,LiY ).

Suppose the k-algebras S(4)
X and S

(4)
Y are given together with the homomorphism f#. Then

we can compute
Pic f : Pic0 Y → Pic0X.

If we know the above spaces for i ≤ 6 and we know in addition a rational point of X, and we can
factor polynomials over k, then we can also compute

Alb f : Pic0X → Pic0 Y.

Let us briefly explain the algorithm for computing the Picard map; the algorithm for computing
Alb f is more complicated. Let y be an element of Pic0 Y , represented by the space Γ(Y,L2

Y (−E)
for some effective divisor E with degE = degLY . We first compute the image of Γ(Y,L2

Y (−E))
under the inclusion

Γ(Y,L2
Y ) −→ Γ(X,L2

X).

This is a basepoint-free subspace W of Γ(X,L2
X(−f∗E)). We then reconstruct the full space

Γ(X,L2
X(−f∗E)) by first computing Γ(X,L4

X(−f∗E)) as the product of W and Γ(X,L2) (we
don’t prove why this works) and then computing Γ(X,L2

X(−f∗E)) by

Γ(X,L2
X(−f∗E)) =

{
s ∈ Γ(X,L2

X)
∣∣

sΓ(X,L2
X) ⊆ Γ(X,L4

X(−f∗E))
}
.
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4. Curves over finite fields

From now on we now restrict ourselves to the case where k is a finite field with q elements. We
write

J = Pic0
X/k

for the Jacobian variety of X over k; we have an isomorphism

Pic0X
∼−→ J(k)

(This follows for example from the fact that the Brauer group of k is trivial.)
The zeta function of X is the power series

ZX =
∞∑
n=1

(# EffnX)tn

=
∞∏
d=1

1
(1− td)# PDivd X

=
LX

(1− t)(1− qt)
.

Here EffnX denotes the set of effective divisors of degree n, and PDivdX denotes the set of prime
divisors of degree d.

There are several operations that are particular to the case of finite fields:
• the Frobenius map on divisors on X and the Frobenius endomorphism of J ;
• choosing uniformly random divisors on X and elements of J(k);
• computing Frey–Rück pairings on J(k);
• computing Kummer morphisms on J(k).

Using all of the above, it is also possible to choose uniformly random l-torsion points of J(k),
where l is a prime number different from the characteristic of k. This technique was described by
Couveignes [1] in the situation where the curve is represented using a non-constant morphism to
the plane, together with data describing the various branches over the singularities of the image.

5. Choosing random divisors

We will now describe how to choose uniformly random divisors on X. The first step is to choose
random prime divisors of a given degree n. This is done by intersecting X with a hypersurface of
sufficiently large degree and decomposing the resulting divisor into prime divisors. With probability
proportional to the number of distinct prime divisors of degree n occurring in this decomposition,
we choose one of them.

Let Sa denote the set of hypersurface sections of degree a on X. If D is an element of Sa (or
more generally an effective divisor), we write IrrnD for the set of prime divisors of degree n in the
support of D. Then we have a diagram⊔

D∈Sa

IrrnD −→ PDivnX

y
Sa,

where the horizontal arrow sends (D,P ) to P and the vertical arrow sends (D,P ) to D. If the
inequality

ad− n ≥ 2g − 1

is satisfied, then all fibres of the horizontal map has the same cardinality, since the fibre above P
is in bijection with the set of lines in Γ(X,La(−P )), and this space has dimension 1− g + ad− n
for all P by Riemann–Roch.
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Algorithm 5.1 (Choosing random prime divisors). Let n and a be positive integers such that

ad− n ≥ 2g + 1

Given the k-algebra S
(2a+2)
X , this algorithm outputs a uniformly random prime divisor of degree n

on X as a subspace of Γ(X,La).
1. Choose a uniformly random non-zero element s ∈ Γ(X,La), and let D denote the divisor of s.

(This D is a uniformly random hypersurface section of degree a of X.)

2. Compute the set IrrnD of (reduced) irreducible components of D of degree n over k. (We do
not explain how this works; we need to be able to factor polynomials over k.)

3. With probability # Irrn D
bad/nc , output a uniformly random element P ∈ IrrnD and stop.

4. Go to step 1.

We can now describe how to choose uniformly random effective divisors of a given degree n.
For this we need the zeta function of X, which was introduced above. We sketch a method that
can be found in C. Diem’s Habilitationsschrift [2]. If D is an effective divisor of degree n, its
decomposition type is the vector of integers (a1, . . . , an), where ai is the number of prime divisors
of degree i occurring in D (counted with multiplicities). Given the zeta function of X, we know
the distribution of (a1, . . . , an). We can generate a random decomposition type according to this
distribution, and then generate a uniformly random element from the set of effective divisors with
this decomposition type.

This algorithm can be used to choose uniformly random elements of J(k) = Pic0X. Since all
fibres of the map

DivdX → Pic0X

D 7→ [L(−D)]

are isomorphic, we can choose a uniformly random element of Pic0X by choosing a random divi-
sor D of degree d and interpreting it as the isomorphism class of L(−D).

6. The Kummer map and the Frey–Rück pairing
Let n be a positive integer, and suppose all the n-torsion points of J are defined over k. Taking
Galois cohomology of the short exact sequence

0 −→ J [n] −→ J
n−→ J −→ 0

and using that
H1(k, J [n]) ∼= J [n](k),

we obtain the Kummer isomorphism

J(k)/nJ(k) ∼−→ J [n](k)
x 7−→ Fq(y)− y where x = ny.

A similar cohomological construction, but now in the case where k contains a primitive root
of unity (i.e. n | q − 1), gives a non-degenerate pairing

J [n](k)× J(k)/nJ(k) −→ µn(k)
(x, y) 7−→ [x, y]n

called the Frey–Rück pairing . One possible definition is the following. Let x ∈ J [n](k) be repre-
sented by a line bundleM of degree 0 such thatMn is trivial, and let y ∈ J(k) be represented by
a divisor E = E+ − E− of degree 0. We choose trivialisations

s:Mn ∼−→ OX

and
t±: k ∼−→ NE±/kM.
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Then the composed isomorphism

k
(t+)n

−→∼ (NE+/kM)n ∼= NE+/k(Mn)
NE+/ks−→∼ k

NE−/ks
−1

−→∼ NE−/k(Mn) ∼= (NE−/kM)n
(t−)−n

−→∼ k

equals multiplication by [x, y]n.
Under the assumption that we know the zeta function of X, the Kummer isomorphism and the

Frey–Rück pairing can be computed, and they can be used to generate uniformly random points
of J [l], where l is any prime number different from the characteristic of k.
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