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1. Introduction

These are notes of two talks with the aim of giving some basic properties of the endomorphism
ring of an Abelian variety A and its representations on certain linear objects associated to A. The
results can be found in § 5.1 of Shimura’s book [1], but presented in a completely different way.

For completeness, we state some definitions. An Abelian variety over a field k is a proper,
smooth, connected group variety over k. A basic result from the theory of Abelian varieties is that
every Abelian variety is commutative (and projective, but we will not use this.) A homomorphism

between Abelian varieties A and B is a morphism A → B of varieties over k that is compatible
with the group structure. The set Hom(A, B) of all homomorphisms from A to B is an Abelian
group, and the group EndA of all endomorphisms of A is a ring. An isogeny between Abelian
varieties is a surjective homomorphism with finite kernel. An Abelian variety A is simple if it has
exactly two Abelian subvarieties (namely 0 and A).

Fact 1.1. If A and B are Abelian varieties over a field, then Hom(A, B) is finite free as an Abelian
group.

Note that EndA can be non-commutative and can have zero divisors; for example, if A is a
product of an elliptic curve with itself, then A contains the ring Mat2(Z).

Below we will only be concerned with what EndA looks like after tensoring with Q. We start
by introducing the right setting for this.

2. The category Q⊗A(k)

Let A(k) denote the category of all Abelian varieties over k. This is an additive category: if A

and B are Abelian varieties, Hom(A, B) has the structure of an Abelian group, composition is
bilinear, and the category A(k) has finite direct products which also function as finite direct sums.

We let Q⊗A(k) denote the same category but with Hom(A, B) replaced by Q⊗Hom(A, B)
for all objects A and B of A(k) (and extending the Z-bilinear composition maps

Hom(B, C) ×Hom(A, B)
◦
−→ Hom(A, C)

to Q-bilinear maps). The canonical functor

A(k)→ Q⊗A(k)

is sometimes denoted by

A 7→ Q⊗A;

we will use the empty notation for it and instead keep writing Q ⊗ End for endomorphism rings
in Q⊗A(k). This is the “universal functor of A(k) into a Q-linear category.” It has the effect of
making all isogenies into isomorphisms.

Fact 2.1. The category Q⊗A(k) is a semi-simple Abelian category. In other words, morphisms
have kernels and cokernels satisfying certain properties, and every Abelian variety is isogenous to
a direct product (or direct sum, which is the same) of simple Abelian varieties.
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3. Linear objects associated to an Abelian variety

We start with the case of Abelian varieties over the complex numbers. In this case we may view
an Abelian variety A as a compact complex Lie group, and we have

T0A = tangent space at the identity element

T∗

0A = cotangent space at the identity element

H1(A,Z) = first homology group

H1(A,Z) = first cohomology group

The C-vector spaces T0A and T∗
0A have C-dimension equal to dimA, whereas H1(A,Z) and

H1(A,Z) are free Abelian groups of rank equal to 2 dimA. In fact, H1(A,Z) can be identified
with a lattice in T0A, namely the kernel of the exponential map, which is a canonical surjective
homomorphism

exp: T0A→ A

of complex Lie groups. Instead of

H1( ,Z):A(C)→ {finite free Abelian groups}

we can also take homology with rational coefficients to obtain a functor

H1( ,Q):A(C)→ {finite-dimensional Q-vector spaces}.

This functor extends uniquely to a Q-linear functor

H1( ,Q):Q⊗A(C)→ {finite-dimensional Q-vector spaces}.

For an Abelian variety A over an arbitrary base field k, the tangent space T0A and the
cotangent space T∗

0A are still defined; they are k-vector spaces of dimension equal to the dimension
of k. However, the classical (co)homology groups H1(A,Z) and H1(A,Z) are no longer defined. As
an analogue of the cohomology group, we can take l-adic étale cohomology (for l a prime number
not divisible by the characteristic of k); we will not go into this. A suitable analogue of the
homology group is the Tate module

TlA = lim←−
n

A[ln](k̄)

where k̄ is some fixed algebraic closure of k and the projective limit is taken with respect to the
maps

l: A[ln+1](k̄)→ A[ln](k̄).

If k has characteristic zero, then the functor T0 extends uniquely to a Q-linear functor

T0:Q⊗A(k)→ {finite-dimensional k-vector spaces}.

In particular, this extended functor T0 gives ring homomorphisms

Q⊗ EndA→ Endk T0A.

For an arbitrary base field k and for any prime number l not divisible by the characteristic of k,
we compose the functor

Tl:A(k)→ {finite free Zl-modules}

with the canonical functor

{finite free Zl-modules} → {finite-dimensional Ql-vector spaces}

M 7→ Ql ⊗Zl
M = Q⊗Z M.

The result factors via Q ⊗ A(k) by the universal property of the latter category; therefore we
obtain a functor

Vl:Q⊗A(k)→ {finite-dimensional Ql-vector spaces}.

More concretely, for any Abelian variety A over k, the ring homomorphism

Tl: EndA→ EndZl
TlA

given by functoriality of Tl can be extended to a Q-algebra homomorphism

Vl:Q⊗ EndA→ EndQl
VlA.

For a ∈ Q⊗EndA, let χ(a) denote the characteristic polynomial of the endomorphism Vla of VlA.
It is known that this is a polynomial with coefficients in Z that does not depend on the choice of l.
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4. Some algebra

Let K be a field. An algebra over K is a ring R with a homomorphism from K into the centre Z(R)
of R; for the purpose of this talk, we will require all algebras to be finite-dimensional over K. A K-
algebra is simple if it has exactly two two-sided ideals, and semi-simple if it is a product of simple
K-algebras. A K-algebra R is central if the ring homomorphism K → Z(R) is an isomorphism.

Example. If n is a positive integer, Matn(K) is a central simple K-algebra for any field K. The
division algebra of Hamilton quaternions is a central simple algebra over the real numbers. If R

is a simple algebra over K, then Z(R) is an extension field of K (it is a finite K-algebra that is a
domain, since a zero divisor would generate a non-trivial two-sided ideal of R), so R is a central
simple algebra over Z(R).

Fact 4.1. If R is a central simple K-algebra and L is an extension field of K, then L ⊗K R is a
central simple L-algebra.

Corollary 4.2. If R is a semi-simple K-algebra and L is a separable extension of K, then L⊗K R

is a semi-simple L-algebra.

Proof . It suffices to prove the claim for in the case where R is a simple K-algebra. Then R is
central over Z(R), and

L⊗K R ∼= (L ⊗K Z(R))⊗Z(R) R.

By assumption L ⊗K Z(R) is a product of extension fields of Z(R). The above fact now implies
that L⊗K R is a product of central simple algebras over these fields.

Fact 4.3. If R is a central simple K-algebra, and Ksep is a separable closure of K, there exists
an isomorphism

ι: Ksep ⊗K R
∼
−→ Matn(Ksep)

of Ksep-algebras for some positive integer n. In particular, we have

[R : K] = n2.

The function
Ksep ⊗K R→ {monic polynomials of degree n over Ksep}

sending r to the characteristic polynomial of ι(r) is independent of the choice of ι and induces a
function

χred
R/K : R→ {monic polynomials of degree n over K}.

If R is a simple algebra over K (not necessarily central), we define

[R : K]red = [R : Z(R)]1/2[Z(R) : R]

and for r ∈ R we define
χred

R/K(r) = NZ(R)[X]/K[X]

(

χred
R/Z(R)(r)

)

.

Finally, if R is any semi-simple algebra over K, with decomposition

R ∼= R1 × · · · ×Rs

into simple K-algebras, we write

[R : K]red =

s
∑

i=1

[Ri : K]red

and for r ∈ R, with components ri ∈ Ri, we write

χred
R/K(r) =

s
∏

i=1

χred
Ri/K(ri).

The integer [R : K]red is called the reduced degree of R. For every r ∈ R, the polynomial χred
R/K(r)

is called the reduced characteristic polynomial of r; it is a polynomial of degree [R : K]red. If R

is commutative, then [R : K]red and χred
R/K(r) are equal to [R : K] and the usual characteristic

polynomial χR/K , respectively.
We will be interested in commutative semi-simple subalgebras of a semi-simple K-algebra R.

The set of such subalgebras is partially ordered under inclusion, and contains maximal elements (K
is an element, and every chain of commutative semi-simple subalgebras of R is stationary because
R has finite dimension over K).
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Fact 4.4. Let R be a semi-simple K-algebra, and let E be a commutative semi-simple subalgebra
of R. Then

[E : K] ≤ [R : K]red,

with equality if and only if E is a maximal commutative semi-simple subalgebras of R.

Let us now look at representations of simple algebras. For our applications it will suffice to
take Q as the base field. Let R be a simple Q-algebra, let K be its centre, and write

[R : K] = n2.

Consider a field F of characteristic 0 and an F -linear representation of R, i.e. an finite-dimensional
F -vector space V together with a Q-algebra homomorphism

R→ EndF V.

Choose an algebraically closed field F̄ containing F . We write

VF̄ = F̄ ⊗F V

and consider it as a F̄ -linear representation of the F̄ -algebra

F̄ ⊗Q R ∼= F̄ ⊗Q K ⊗K R

∼=
(

∏

j:K→F̄

F̄
)

⊗K R

∼=
∏

j:K→F̄

(F̄ j⊗
K

R)

∼=
∏

j:K→F̄

Matn(F̄ ).

In the last step, we have chosen an isomorphism F̄ j⊗
K

R
∼
−→ Matn(F̄ ) for every j; this is possible

by Fact 4.3.
The only finite-dimensional F̄ -linear representations of Matn(F̄ ) are finite direct sums of the

standard representation F̄n, so that we can write

VF̄
∼=

⊕

j:K→F̄

(F̄n)mj .

From this formula we see that the characteristic polynomial of an element r ∈ R equals

χV (r) =
∏

j:K→F̄

j(χred
R/K(r))mj

The coefficients of this polynomial lie in the intersection of F and the normal closure of K in F̄

(the compositum of the images of all the j.)
We will now deduce some useful results from this discussion.

Lemma 4.5. Let R be a semi-simple Q-algebra, and let V be a finite-dimensional faithful repre-
sentation of R over a field F of characteristic 0. Then

dimF V ≥ [R : Q]red.

If equality holds, then we have
χV (r) = χred

R/Q(r)

for all r ∈ R.
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Proof . It suffices to prove the lemma in the case where R is simple. Let K denote the centre
of R. In the notation of the above discussion, the fact that V is faithful means that all the mj are
positive integers. This implies

dimF V = dimF̄ VF̄

= n
∑

j:K→F̄

mj

≥ n[K : Q]

= [R : Q]red,

with equality if and only if all mj are equal to 1. In this case, we have

χV (r) =
∏

j:K→F̄

j(χred
R/K(r))

= NK[X]/Q[X]

(

χred
R/K(r)

)

,

which by definition equals χred
R/Q(r).

Lemma 4.6. Let R be a semi-simple Q-algebra, let V be a finite-dimensional faithful represen-
tation of R over a field F of characteristic 0, and let E be a commutative semi-simple subalgebra
of R. Then

[E : Q] ≤ [R : Q]red ≤ dimF V.

If equality holds, then

χV (r) = χE/Q(r)

for all r ∈ E, and the commutant of E inside R is equal to E.

Proof . The first inequality is Fact 4.4, and the second inequality follows from Lemma 4.5. The
claim about the characteristic polynomial follows from Lemma 4.5 applied to V viewed as a rep-
resentation of E. To prove that the commutant of E equals E when [E : Q] = dimF V , we view
V as a representation of the semi-simple F -algebra F ⊗Q R. Then V is also a representation of
the commutative semi-simple F -algebra F ⊗Q E. We decompose the latter algebra as a product
of extension fields of F , say

F ⊗Q E ∼= K1 × · · · ×Kd,

and consider the corresponding decomposition

V = V1 ⊕ · · · ⊕ Vd

of V . The commutant E′ of E contains E (since E is commutative) and has a decomposition

F ⊗Q E′ ∼= K ′

1 × · · · ×K ′

d,

where K ′
i is a Ki-algebra acting Ki-linearly on Vi for each i. Now let us assume that the inequality

[E : Q] ≤ dimF V is an equality. Then Vi is one-dimensional over Ki for each i, and therefore
K ′

i = Ki for each i. This implies that E′ = E.
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5. Endomorphism rings

Let A be an Abelian variety. There is (up to isogeny) a decomposition

A ∼ Ah1

1 × · · · ×Ahs
s

into simple Abelian varieties, where the Ai are pairwise non-isogenous. Since there are no non-
trivial homomorphisms between non-isogenous simple Abelian varieties, the above decomposition
gives an isomorphism

Q⊗ EndA ∼= Math1
(Q⊗ EndA1)× · · · ×Maths

(Q⊗ EndAs).

Furthermore, each Q⊗EndAi is a division algebra over Q. Since for any division algebra R over Q

and any n ≥ 1 the ring Matn(R) is a simple Q-algebra, we see that Q ⊗ EndA is a semi-simple
Q-algebra. By Lemma 4.5 and the existence of faithful (l-adic) representations of dimension equal
to 2 dimA, we see that

[Q⊗ EndA : Q]red ≤ 2 dimA.

Theorem 5.1. Let A be an Abelian variety over a field. The following are equivalent:

(1) Q⊗ EndA contains a commutative semi-simple Q-algebra of degree 2 dimA;

(2) [Q⊗ EndA : Q]red = 2 dimA;

(3) Q⊗ EndAi contains a commutative semi-simple Q-algebra of degree 2 dimAi for each i;

(4) [Q⊗ EndAi : Q]red = 2 dimAi for each i.

Proof . The equivalences (1)⇔ (2) and (3)⇔ (4) follow from Fact 4.4. The equivalence (2)⇔ (4)
follows from the identities

dimA =

s
∑

i=1

hi dim Ai

and

[Q⊗ EndA : Q]red =

s
∑

i=1

hi[Q⊗ EndAi : Q]red

together with the fact that [Q⊗ EndAi : Q]red ≤ 2 dimAi for each i.

Note that “commutative semi-simple Q-algebra” is synonymous with “product of number
fields”. Furthermore, if the equivalent conditions of the theorem hold, then

χ(r) = χred
Q⊗End(A)/Q(r) for all r ∈ Q⊗ EndA,

and if E is a commutative semi-simple subalgebra of dimension 2 dimA in Q⊗ EndA, then

χ(r) = χE/Q(r) for all r ∈ E.

We now restrict ourselves to the case where A is an Abelian variety over a field k of charac-
teristic 0. Then A together with its endomorphisms can be defined over some finitely generated
extension of Q, which in turn can be embedded into C. We consider the set A(C) of complex
points of A as a complex Lie group. For each of the simple factors Ai of A (over k), we then have
a representation

Q⊗ EndAi → Q⊗ EndAi(C)→ EndQ H0(Ai(C),Q).

This makes H0(Ai(C),Q) into a vector space over the division algebra Q⊗ EndAi, and we have

2 dimAi = dimQ H0(Ai(C),Q)

= [Q⊗ EndAi : Q] dimQ⊗End Ai
H0(Ai(C),Q).

Comparing this with Theorem 5.1, we see that Q ⊗ EndA contains a commutative semi-simple
subalgebra of degree 2 dimA if and only if for each i the inequality

[Q⊗ EndAi : Q] ≥ [Q⊗ EndAi : Q]red

is an equality and if H0(Ai(C),Q) is one-dimensional over Q⊗EndAi. This is the case if and only
if Q⊗ EndAi is a field of degree 2 dimAi over Q. We have therefore proved the following.

6



Theorem 5.2. Let A be an Abelian variety over a field of characteristic 0. The following are
equivalent:

(1) Q⊗ EndA contains a commutative semi-simple Q-algebra of degree 2 dimA;

(2) the division algebra Q ⊗ EndAi is a field of degree 2 dimAi over Q for each of the simple
factors Ai of A.

One special case is worth describing separately. Suppose A is an Abelian variety over a field
of characteristic 0 such that Q ⊗ EndA contains a field F of degree 2 dimA over Q. Then A is
isogenous to Bh for some simple Abelian variety B and some positive integer h. The Q-algebra
Q⊗ EndB is a field K of degree 2 dimB over Q, and we have EndA = Math(Q⊗ EndB).
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