Curves on $\mathbf{P}^{1} \times \mathbf{P}^{1}$

Peter Bruin

16 November 2005

1. Introduction

One of the exercises in last semester's Algebraic Geometry course went as follows:
Exercise. Let k be a field and $Z=\mathbf{P}_{k}^{1} \times_{k} \mathbf{P}_{k}^{1}$. Show that the Picard group Pic Z is the free Abelian group generated by the classes of a horizontal and a vertical line.

Here $\operatorname{Pic} Z$ is to be interpreted as the divisor class group $\mathrm{Cl} Z$, to which it is naturally isomorphic for Noetherian integral separated locally factorial schemes [Hartshorne, Corollary 6.16]. We view the first \mathbf{P}^{1} as the result of glueing $\operatorname{Spec}(k[x])$ and $\operatorname{Spec}(k[1 / x])$ via $\operatorname{Spec}(k[x, 1 / x])$, and similarly for the second \mathbf{P}^{1} with y instead of x. Then $Z=\mathbf{P}_{k}^{1} \times{ }_{k} \mathbf{P}_{k}^{1}$ is the result of glueing the spectra of $k[x, y]$, $k[x, 1 / y], k[1 / x, y]$ and $k[1 / x, 1 / y]$ in the obvious way.

To prove the claim (see [Hartshorne, Example II.6.6.1] for a different approach), let L_{x} and L_{y} be the vertical and horizontal lines $x=\infty$ and $y=\infty$. More precisely, L_{x} is determined by the coherent sheaf of ideals $\mathcal{I}_{L_{x}}$ with

$$
\left.\mathcal{I}_{L_{x}}\right|_{\operatorname{Spec} A}= \begin{cases}\tilde{A} & \text { for } A=k[x, y] \text { and } A=k[x, 1 / y] \\ 1 / x \cdot \tilde{A} & \text { for } A=k[1 / x, y] \text { and } A=k[1 / x, 1 / y]\end{cases}
$$

and similarly for L_{y}. If Y is a curve on Z different from L_{x} and L_{y} (curves are assumed to be integral), the intersection of Y with $\operatorname{Spec}(k[x, y])$ is a plane curve defined by an irreducible polynomial $f \in k[x, y]$. Let a be the degree of f as a polynomial in x and b is its degree as a polynomial in y; then the divisor of f as a rational function on Z equals

$$
(f)=Y-a \cdot L_{x}-b \cdot L_{y},
$$

so we see that the divisor class of Y is equal to

$$
[Y]=a\left[L_{x}\right]+b\left[L_{y}\right]
$$

This shows that $\mathrm{Cl} Z$ is generated by $\left[L_{x}\right]$ and $\left[L_{y}\right]$; because there are no rational functions $f \in k(x, y)$ with the property that $(f)=a \cdot L_{x}+b \cdot L_{y}$ as a divisor on Z unless $a=b=0$, the classes $\left[L_{x}\right]$ and $\left[L_{y}\right]$ are linearly independent. If Y is a divisor on Z and a, b are the unique integers with $[Y]=a\left[L_{x}\right]+b\left[L_{y}\right]$, we say that Y is of type (a, b).

The isomorphism $\mathrm{Cl} Z \rightarrow \operatorname{Pic} Z$ sends the class of a divisor Y of type (a, b) to the invertible sheaf $\mathcal{O}_{Z}(Y) \cong \mathcal{O}_{Z}\left(a \cdot L_{x}+b \cdot L_{y}\right)$. Note that $\mathcal{O}_{Z}\left(a \cdot L_{x}\right)$ is isomorphic to the pullback $p_{1}^{*}\left(\mathcal{O}_{\mathbf{P}_{k}^{1}}(a \cdot \infty)\right)$, where the invertible sheaf $\mathcal{O}_{\mathbf{P}_{k}^{1}}(a \cdot \infty)$ on \mathbf{P}_{k}^{1} is defined by

$$
\begin{aligned}
\left.\mathcal{O}_{\mathbf{P}_{k}^{1}}(a \cdot \infty)\right|_{\operatorname{Spec} k[x]} & =(k[x])^{\sim} \\
\left.\mathcal{O}_{\mathbf{P}_{k}^{1}}(a \cdot \infty)\right|_{\operatorname{Spec} k[1 / x]} & =x^{a} \cdot(k[1 / x])^{\sim} .
\end{aligned}
$$

On the other hand, there is the invertible sheaf $\mathcal{O}_{\mathbf{P}_{k}^{1}}(a)$ with

$$
\begin{aligned}
\left.\mathcal{O}_{\mathbf{P}_{k}^{1}}(a)\right|_{\operatorname{Spec} k[x / y]} & =y^{a} \cdot(k[x / y])^{\sim} \\
\left.\mathcal{O}_{\mathbf{P}_{k}^{1}}(a)\right|_{\operatorname{Spec} k[y / x]} & =x^{a} \cdot(k[y / x])^{\sim},
\end{aligned}
$$

which is clearly isomorphic to $\mathcal{O}_{\mathbf{P}_{k}^{1}}(a \cdot \infty)$, so

$$
\mathcal{O}_{Z}\left(a \cdot L_{x}\right) \cong p_{1}^{*}\left(\mathcal{O}_{\mathbf{P}_{k}^{1}}(a)\right)
$$

Something similar is true for the second projection. Using

$$
\mathcal{O}_{Z}\left(a \cdot L_{x}+b \cdot L y\right) \cong \mathcal{O}_{Z}\left(a \cdot L_{x}\right) \otimes_{\mathcal{O}_{Z}}\left(b \cdot L_{y}\right)
$$

we conclude that $\mathcal{O}_{Z}(Y)$ is isomorphic to the invertible sheaf $\mathcal{O}(a, b)$ on Z defined by

$$
\mathcal{O}(a, b)=p_{1}^{*}\left(\mathcal{O}_{\mathbf{P}_{k}^{1}}(a)\right) \otimes_{\mathcal{O}_{z}} p_{2}^{*}\left(\mathcal{O}_{\mathbf{P}_{k}^{1}}(b)\right)
$$

The aim of this talk is to study the cohomology of the sheaves $\mathcal{O}(a, b)$ and to derive some consequences for the kind of curves that exist on Z. We will do the following:

1. Prove the Künneth formula: if X and Y are Noetherian separated schemes over a field k, there is a natural isomorphism

$$
H\left(X \times_{k} Y, p_{1}^{*} \mathcal{F} \otimes_{\mathcal{O}_{X \times{ }_{k}} Y} p_{2}^{*} \mathcal{G}\right) \cong H(X, \mathcal{F}) \otimes_{k} H(Y, \mathcal{G})
$$

for all quasi-coherent sheaves \mathcal{F} on X and \mathcal{G} on Y.
2. Deduce a connectedness result for closed subschemes and a genus formula for curves on Z.
3. Prove Bertini's theorem: if X is a non-singular subvariety of \mathbf{P}_{k}^{n} with k an algebraically closed field, there exists a hyperplane $H \subset \mathbf{P}_{k}^{n}$ not containing X such that $H \cap X$ is a regular scheme.
4. Deduce that if k is algebraically closed field, there exist non-singular curves of type (a, b) on Z for all $a, b>0$.

2. Tensor products of complexes

Let A be a ring, (C, d) a complex of right A-modules and $\left(C^{\prime}, d^{\prime}\right)$ a complex of left A-modules, i.e. C and C^{\prime} are graded A-modules

$$
C=\bigoplus_{n \in \mathbf{Z}} C^{n} \quad \text { and } \quad C^{\prime}=\bigoplus_{n \in \mathbf{Z}} C^{\prime n}
$$

and d, d^{\prime} are A-module endomorphisms such that $d d=0$ and $d\left(C^{n}\right) \subseteq C^{n+1}$ (similarly for d^{\prime}). Let $C \otimes_{A} C^{\prime}$ be the usual tensor product, graded in such a way that

$$
\left(C \otimes_{A} C^{\prime}\right)^{n}=\bigoplus_{p+q=n} C^{p} \otimes_{A} C^{\prime q} .
$$

There is a group endomorphism D of $C \otimes_{A} C^{\prime}$ defined by

$$
D(x \otimes y)=d x \otimes y+(-1)^{p} x \otimes d^{\prime} y \quad \text { for } x \in C^{p}
$$

it fulfills $D\left(\left(C \otimes_{A} C^{\prime}\right)^{n}\right) \subset\left(C \otimes_{A} C^{\prime}\right)^{n+1}$ and $D D=0$, so $\left(\left(C \otimes_{A} C^{\prime}\right), D\right)$ is a complex of Abelian groups.

For any complex (C, d) of Abelian groups, we write $Z(C)$ for the subgroup of cocycles, $B(C)$ for the subgroup of coboundaries and $H(C)$ for the cohomology of C :

$$
Z(C)=\operatorname{ker} d, \quad B(C)=\operatorname{im} d, \quad H(C)=Z(C) / B(C)
$$

If x and y are cocycles in C and C^{\prime}, respectively, then $x \otimes y$ is a cocycle in $C \otimes_{A} C^{\prime}$, because

$$
D(x \otimes y)=d x \otimes y+(-1)^{p} x \otimes d^{\prime} y=0 \quad \text { for } x \in C^{p} .
$$

This means that there is a natural A-bilinear map

$$
\begin{aligned}
Z(C) \times Z\left(C^{\prime}\right) & \rightarrow Z\left(C \otimes_{A} C^{\prime}\right) \\
(x, y) & \mapsto x \otimes y
\end{aligned}
$$

If either $x \in B(C)$ or $y \in B\left(C^{\prime}\right)$, then the image of (x, y) under this map is in $B\left(C \otimes_{A} C^{\prime}\right)$, because for example

$$
d x \otimes y=D(x \otimes y) \quad \text { for all } x \in C, y \in Z\left(C^{\prime}\right)
$$

This means that we can divide out by the coboundaries in each of the groups and get a natural A-bilinear map

$$
H(C) \times H\left(C^{\prime}\right) \rightarrow H\left(C \otimes_{A} C^{\prime}\right)
$$

and therefore (by the universal property of the tensor product) a natural group homomorphism

$$
\gamma_{C, C^{\prime}}: H(C) \otimes_{A} H\left(C^{\prime}\right) \rightarrow H\left(C \otimes_{A} C^{\prime}\right)
$$

In the next section we will need the following result:

Lemma. Let A be a ring, (C, d) a complex of right A-modules and $\left(C^{\prime}, d^{\prime}\right)$ a complex of left A modules. Assume $d=0$. Then $H(C) \cong C$ and $\gamma_{C, C^{\prime}}$ induces a natural group homomorphism

$$
\begin{align*}
C \otimes_{A} H\left(C^{\prime}\right) & \longrightarrow H\left(C \otimes_{A} C^{\prime}\right) \\
x \otimes \bar{y} & \longmapsto \overline{x \otimes y} . \tag{1}
\end{align*}
$$

If C is flat over A, then this map is an isomorphism.
Proof. We only need to prove the last claim. Because C is flat, $\operatorname{ker}(D)=\operatorname{ker}\left(1 \otimes d^{\prime}\right)=C \otimes_{A} \operatorname{ker}\left(d^{\prime}\right)$, so the natural map $C \otimes_{A} Z\left(C^{\prime}\right) \rightarrow Z\left(C \otimes_{A} C^{\prime}\right)$ is an isomorphism. Furthermore, the image of $C \otimes_{A} B\left(C^{\prime}\right)$ in $C \otimes_{A} Z\left(C^{\prime}\right)$ corresponds to the subgroup $B\left(C \otimes_{A} C^{\prime}\right)$ under this isomorphism, since both are generated by elements of the form $x \otimes d^{\prime} y$ with $x \in C$ and $y \in C^{\prime}$. This implies the map defined above is an isomorphism.

3. The Künneth formula

From now on we restrict our attention to the case where A is a field k. Then all complexes have the structure of k-vector spaces, and all modules are flat. For a treatment without this restriction, see [Bourbaki]. We will prove the following theorem (note that the previous lemma is a special case of this):

Theorem (Künneth formula). Let (C, d) and $\left(C^{\prime}, d^{\prime}\right)$ be complexes over k. Then the natural k-linear map

$$
\gamma_{C, C^{\prime}}: H(C) \otimes_{k} H\left(C^{\prime}\right) \rightarrow H\left(C \otimes_{k} C^{\prime}\right)
$$

is an isomorphism.
Proof. Write $Z=Z(C), B=B(C), H=H(C)$ and $H^{\prime}=H\left(C^{\prime}\right)$. Consider the short exact sequence of complexes defining $Z(C)$ and $B(C)$:

Here $B(1)$ denotes the complex B shifted one place to the left, i.e. $B(1)^{n}=B^{n+1}$. Taking the tensor product with C^{\prime} gives a short exact sequence of complexes

$$
0 \longrightarrow Z \otimes_{k} C^{\prime} \xrightarrow{j \otimes 1} C \otimes_{k} C^{\prime} \xrightarrow{d \otimes 1}\left(B \otimes_{k} C^{\prime}\right)(1) \longrightarrow 0
$$

We take the cohomology sequence of this short exact sequence. The coboundary map will go from $H\left(B \otimes_{k} C^{\prime}\right)$ to $H\left(Z \otimes_{k} C^{\prime}\right)$. To find out what it does, we write down the following diagram with exact rows:

Because $d=0$ on B and because B is flat over k, the kernel of $D:\left(B \otimes_{k} C^{\prime}\right)^{n} \rightarrow\left(B \otimes_{k} C^{\prime}\right)^{n+1}$ equals

$$
\operatorname{ker}(D)=\operatorname{ker}\left(1 \otimes d^{\prime}\right) \cong B \otimes_{k} \operatorname{ker}\left(d^{\prime}\right)
$$

so ker D is generated by elements of the form $d x \otimes y$ with $x \otimes y \in\left(C \otimes_{k} C^{\prime}\right)^{n-1}$ such that $y \in Z\left(C^{\prime}\right)$. The image of $x \otimes y \in\left(C \otimes_{k} C^{\prime}\right)^{n-1}$ in $\left(C \otimes_{k} C^{\prime}\right)^{n}$ is now $D(x \otimes y)=d x \otimes y$, which is in $\left(Z \otimes_{k} C^{\prime}\right)^{n}$. We see therefore that the coboundary map sends the class of $d x \otimes y$ to that of $(i \otimes 1)(d x \otimes y)$, where $i: B \rightarrow Z$ is the inclusion. In other words, the coboundary map equals $H(i \otimes 1)$. The long exact sequence is now

$$
H^{n}\left(B \otimes_{k} C^{\prime}\right) \xrightarrow{H(i \otimes 1)} H^{n}\left(Z \otimes_{k} C^{\prime}\right) \xrightarrow{H(j \otimes 1)} H^{n}\left(C \otimes_{k} C^{\prime}\right) \xrightarrow{H(d \otimes 1)} H^{n+1}\left(B \otimes_{k} C^{\prime}\right) \xrightarrow{H(i \otimes 1)} H^{n+1}\left(Z \otimes_{k} C^{\prime}\right)
$$

We can also take the tensor product with H^{\prime} of the short exact sequence defining H to obtain an exact sequence

$$
0 \longrightarrow B \otimes_{k} H^{\prime} \xrightarrow{i \otimes 1} Z \otimes_{k} H^{\prime} \xrightarrow{p \otimes 1} H \otimes_{k} H^{\prime} \longrightarrow 0 .
$$

We connect this sequence with the long exact sequence above via the natural maps

$$
\begin{aligned}
& \gamma_{B, C^{\prime}}: B \otimes_{k} H^{\prime} \rightarrow H\left(C \otimes_{k} C^{\prime}\right) \\
& \gamma_{Z, C^{\prime}}: Z \otimes_{k} H^{\prime} \rightarrow H\left(C \otimes_{k} C^{\prime}\right) \\
& \gamma_{C, C^{\prime}}: H \otimes_{k} H^{\prime} \rightarrow H\left(C \otimes_{k} C^{\prime}\right),
\end{aligned}
$$

the first two of which are the isomorphisms occurring in the lemma from Section 2. This gives a commutative diagram with exact rows

The lower right part shows that $H(i \otimes 1)$ is injective, so $H(d \otimes 1)=0$ by exactness. From the rest of the diagram we now see that $\gamma_{C, C^{\prime}}$ is an isomorphism.

4. The cohomology of sheaves of the form $\mathcal{F} \otimes_{k} \mathcal{G}$

Let X and Y be two compact separated schemes over a field k. Consider the scheme $Z=X \times_{k} Y$ together with its projection morphisms $p_{1}: Z \rightarrow X$ and $p_{2}: Z \rightarrow Y$. Let \mathcal{F} and \mathcal{G} be quasi-coherent sheaves on X and Y, respectively. Recall that the pullbacks $p_{1}^{*} \mathcal{F}$ and $p_{2}^{*} \mathcal{G}$ of \mathcal{F} and \mathcal{G} to Z are defined by

$$
\begin{aligned}
p_{1}^{*} \mathcal{F} & =\mathcal{O}_{Z} \otimes_{p_{1}^{-1} \mathcal{O}_{X}} p_{1}^{-1} \mathcal{F} \\
p_{2}^{*} \mathcal{G} & =\mathcal{O}_{Z} \otimes_{p_{2}^{-1} \mathcal{O}_{Y}} p_{2}^{-1} \mathcal{G}
\end{aligned}
$$

It is a general fact that the pullback of a quasi-coherent sheaf is quasi-coherent. We use this for $p_{1}^{*} \mathcal{F}$ and $p_{2}^{*} \mathcal{G}$. Suppose $U=\operatorname{Spec} A$ and $V=\operatorname{Spec} B$ are affine opens of X and Y, respectively, M is an A-module such that $\left.\mathcal{F}\right|_{U} \cong M^{\sim}$ and N is a B-module such that $\left.\mathcal{F}\right|_{V} \cong N^{\sim}$. Then the restrictions of $p_{1}^{*} \mathcal{F}$ and $p_{2}^{*} \mathcal{G}$ to the affine open subscheme $W=U \times_{k} V=\operatorname{Spec}\left(A \otimes_{k} B\right)$ of Z are

$$
\begin{aligned}
\left.p_{1}^{*} \mathcal{F}\right|_{W} & \cong\left(p_{1}^{*} \mathcal{F}(W)\right)^{\sim} & \left.p_{2}^{*} \mathcal{G}\right|_{W} & \cong\left(p_{2}^{*} \mathcal{G}(W)\right)^{\sim} \\
& \cong\left(\left(A \otimes_{k} B\right) \otimes_{A} \mathcal{F}(U)\right)^{\sim} & & \cong\left(\left(A \otimes_{k} B\right) \otimes_{B} \mathcal{G}(V)\right)^{\sim} \\
& \cong\left(B \otimes_{k} M\right)^{\sim}, & & \cong\left(A \otimes_{k} N\right)^{\sim} .
\end{aligned}
$$

From this we get the following expression for the sheaf $p_{1}^{*} \mathcal{F} \otimes_{\mathcal{O}_{z}} p_{2}^{*} \mathcal{G}$:

$$
\begin{aligned}
\left.p_{1}^{*} \mathcal{F} \otimes_{\mathcal{O}_{Z}} p_{2}^{*} \mathcal{G}\right|_{W} & \cong\left(\left(B \otimes_{k} M\right) \otimes_{A \otimes_{k} B}\left(A \otimes_{k} N\right)\right)^{\sim} \\
& \cong\left(M \otimes_{k} N\right)^{\sim} .
\end{aligned}
$$

In particular, we see that

$$
p_{1}^{*} \mathcal{F} \otimes_{\mathcal{O}_{z}} p_{2}^{*} \mathcal{G}\left(U \times_{k} V\right) \cong \mathcal{F}(U) \otimes_{k} \mathcal{G}(V)
$$

for all open affine subschemes U of X and V of Y. It seems therefore useful to introduce the abbreviated notation

$$
\mathcal{F} \otimes_{k} \mathcal{G}=p_{1}^{*} \mathcal{F} \otimes_{\mathcal{O}_{z}} p_{2}^{*} \mathcal{G}
$$

for quasi-coherent sheaves \mathcal{F} on X and \mathcal{G} on Y. (To prevent confusion, this notation should only be used if the sheaves are quasi-coherent.)

We are now going to compare the cohomology of the sheaf $\mathcal{F} \otimes_{k} \mathcal{G}$ on Z to the cohomology of \mathcal{F} on X and \mathcal{G} on Y. This we will do using a variant of Čech cohomology with respect to finite affine coverings of X, Y and Z.

Definition. The unordered \check{C} ech complex of a sheaf \mathcal{F} of Abelian groups on a topological space X with respect to an open covering $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ is the complex defined by

$$
C^{n}(\mathcal{U}, \mathcal{F})=\prod_{i_{0}, \ldots, i_{n} \in I} \mathcal{F}\left(U_{i_{0}, \ldots, i_{n}}\right)
$$

where, as usual,

$$
U_{i_{0}, \ldots, i_{n}}=U_{i_{0}} \cap \ldots \cap U_{i_{n}}
$$

The maps $d: C^{n} \rightarrow C^{n+1}$ are defined using the same formula as for the usual (alternating) Čech complex:

$$
d\left(\left\{s_{i_{0}, \ldots, i_{n}}\right\}_{i_{0}, \ldots, i_{n} \in I}\right)=\left\{\left.\sum_{j=0}^{n+1}(-1)^{j} s_{i_{0}, \ldots, \hat{\imath}_{j}, \ldots, i_{n+1}}\right|_{U_{i_{0}}, \ldots, i_{n+1}}\right\}_{i_{0}, \ldots, i_{n+1} \in I}
$$

Notice that, in contrast to the alternating Čech cohomology, all the $C^{n}(\mathcal{U}, \mathcal{F})$ are non-zero (unless $X=\emptyset$), but that the product occuring in the definition of $C^{n}(\mathcal{U}, \mathcal{F})$ is finite if I is finite.

Let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ and $\mathcal{V}=\left\{V_{j}\right\}_{j \in J}$ be finite coverings by open affine subschemes of X and Y, respectively. Because X and Y are separated over k, the intersection of any positive number of such affines is again affine [Hartshorne, Exercise II.4.3]. We look at the unordered Čech complex of the sheaf $\mathcal{F} \otimes_{k} \mathcal{G}$ on Z with respect to the affine open covering $\mathcal{U} \times \mathcal{V}$. By the property (1) of $\mathcal{F} \otimes_{k} \mathcal{G}$ and because I and J are finite,

$$
\begin{aligned}
C^{n}\left(\mathcal{U} \times_{k} \mathcal{V}, \mathcal{F} \otimes_{k} \mathcal{G}\right) & =\prod_{\left(i_{0}, j_{0}\right), \ldots,\left(i_{n}, j_{n}\right) \in I \times J} \mathcal{F} \otimes_{k} \mathcal{G}\left(U_{i_{0}} \times_{k} V_{j_{0}} \cap \ldots \cap U_{i_{n}} \times_{k} V_{j_{n}}\right) \\
& \cong \bigoplus_{i_{0}, \ldots, i_{n} \in I} \bigoplus_{j_{0}, \ldots, j_{n} \in J} \mathcal{F}\left(U_{i_{0}, \ldots, i_{n}}\right) \otimes_{k} \mathcal{G}\left(V_{j_{0}, \ldots, j_{n}}\right)
\end{aligned}
$$

Since the tensor product is distributive over direct sums, we see that

$$
\begin{aligned}
C^{n}\left(\mathcal{U} \times_{k} \mathcal{V}, \mathcal{F} \otimes_{k} \mathcal{G}\right) & \cong\left(\bigoplus_{i_{0}, \ldots, i_{n} \in I} \mathcal{F}\left(U_{i_{0}, \ldots, i_{n}}\right)\right) \otimes_{k}\left(\bigoplus_{j_{0}, \ldots, j_{n} \in J} \mathcal{G}\left(V_{j_{0}, \ldots, j_{n}}\right)\right) \\
& \cong C^{n}(\mathcal{U}, \mathcal{F}) \otimes_{k} C^{n}(\mathcal{V}, \mathcal{G}) .
\end{aligned}
$$

We take the direct sum over all n and conclude that

$$
\begin{equation*}
C\left(\mathcal{U} \times_{k} \mathcal{V}, \mathcal{F} \otimes_{k} \mathcal{G}\right) \cong \bigoplus_{n=0}^{\infty} C^{n}(\mathcal{U}, \mathcal{F}) \otimes_{k} C^{n}(\mathcal{V}, \mathcal{G}) \tag{2}
\end{equation*}
$$

Fact. There exists a natural homotopy equivalence of complexes

$$
\bigoplus_{n=0}^{\infty} C^{n}(\mathcal{U}, \mathcal{F}) \otimes_{k} C^{n}(\mathcal{V}, \mathcal{G}) \sim C(\mathcal{U}, \mathcal{F}) \otimes_{k} C(\mathcal{V}, \mathcal{G})
$$

After applying this fact, which follows from the Eilenberg-Zilber theorem [Godement, Théorème 3.9.1], to the right-hand side of (2) and taking cohomology, we obtain a natural isomorphism

$$
H\left(C\left(\mathcal{U} \times_{k} \mathcal{V}, \mathcal{F} \otimes_{k} \mathcal{G}\right)\right) \cong H\left(C(\mathcal{U}, \mathcal{F}) \otimes_{k} C(\mathcal{V}, \mathcal{G})\right)
$$

Now the Künneth formula implies that

$$
\check{H}\left(\mathcal{U} \times_{k} \mathcal{V}, \mathcal{F} \otimes_{k} \mathcal{G}\right) \cong \check{H}(\mathcal{U}, \mathcal{F}) \otimes_{k} \check{H}(\mathcal{V}, \mathcal{G})
$$

If X and Y are Noetherian, then from the fact that the Čech cohomology is isomorphic to the derived functor cohomology for open affine coverings (the proof of [Hartshorne, Theorem III.4.5] also works for the unordered Čech cohomology) we get the following theorem:
Theorem. Let X and Y be Noetherian separated schemes over a field k. For all quasi-coherent sheaves \mathcal{F} on X and \mathcal{G} on Y, there is a natural isomorphism of k-vector spaces

$$
H(X, \mathcal{F}) \otimes_{k} H(Y, \mathcal{G}) \cong H\left(X \times_{k} Y, \mathcal{F} \otimes_{k} \mathcal{G}\right)
$$

5. Application to the sheaves $\mathcal{O}(a, b)$ and curves on $\mathbf{P}_{k}^{1} \times{ }_{k} \mathbf{P}_{k}^{1}$

We have seen in Dirard's talk (see also [Hartshorne, Section III.5]) that for any ring A the cohomology of the sheaves $\mathcal{O}_{X}(n)$ on $X=\mathbf{P}_{A}^{r}$ is given by

$$
\begin{aligned}
H^{0}\left(X, \mathcal{O}_{X}(n)\right) & \cong S_{n} \\
H^{i}\left(X, \mathcal{O}_{X}(n)\right) & =0 \quad \text { for } 0<i<r \\
H^{r}\left(X, \mathcal{O}_{X}(n)\right) & \cong \operatorname{Hom}_{A}\left(S_{-n-r-1}, A\right)
\end{aligned}
$$

for all $n \in \mathbf{Z}$, where S_{n} is the component of degree n in $S=A\left[x_{0}, \ldots, x_{r}\right]$. In particular, for A equal to the field k and for $r=1$,

$$
\begin{aligned}
H^{0}\left(\mathbf{P}_{k}^{1}, \mathcal{O}_{\mathbf{P}_{k}^{1}}(n)\right) & \cong k\left[x_{0}, x_{1}\right]_{n} \\
H^{1}\left(\mathbf{P}_{k}^{1}, \mathcal{O}_{\mathbf{P}_{k}^{1}}(n)\right) & \cong k\left[x_{0}, x_{1}\right]_{-n-2}^{\vee}
\end{aligned}
$$

The dimensions are therefore equal to

$$
\begin{aligned}
\operatorname{dim}_{k} H^{0}\left(\mathbf{P}_{k}^{1}, \mathcal{O}_{\mathbf{P}_{k}^{1}}(n)\right) & =\max \{n+1,0\} \\
\operatorname{dim}_{k} H^{1}\left(\mathbf{P}_{k}^{1}, \mathcal{O}_{\mathbf{P}_{k}^{1}}(n)\right) & =\max \{-n-1,0\} .
\end{aligned}
$$

It is now a matter of simple calculations and applying the Künneth formula to find the following table for the cohomology of the sheaves $\mathcal{O}(a, b)$ on $Z=\mathbf{P}_{k}^{1} \times{ }_{k} \mathbf{P}_{k}^{1}$:

		$\operatorname{dim}_{k} H^{0}(Z, \mathcal{O}(a, b))$	$\operatorname{dim}_{k} H^{1}(Z, \mathcal{O}(a, b))$
$a \geq-1, \quad b \geq-1$	$(a+1)(b+1)$	0	$\operatorname{dim}_{k} H^{2}(Z, \mathcal{O}(a, b))$
$a \geq-1, \quad b \leq-1$	0	0	
$a \leq-1, \quad b \geq-1$	0	$(a+1)(-b-1)$	0
$a \leq-1, \quad b \leq-1$	0	$(-a-1)(b+1)$	0

We can now look at a few applications of this. Let Y be a locally principal closed subscheme of Z, and let $i: Y \rightarrow Z$ be the inclusion map, which is a closed immersion. Viewing Y as a divisor on Z, we have an exact sequence of coherent sheaves:

$$
0 \longrightarrow \mathcal{O}_{Z}(-Y) \longrightarrow \mathcal{O}_{Z} \longrightarrow i_{*} \mathcal{O}_{Y} \longrightarrow 0
$$

The corresponding long exact cohomology sequence is

Because i is a closed immersion, we know that

$$
H\left(Z, i_{*} \mathcal{O}_{Y}\right) \cong H\left(Y, \mathcal{O}_{Y}\right)
$$

Furthermore, the case $a=b=0$ gives us that $H^{0}\left(Z, \mathcal{O}_{Z}\right) \cong k, H^{1}\left(Z, \mathcal{O}_{Z}\right)=0$ and $H^{2}\left(Z, \mathcal{O}_{Z}\right)=0$, so the long exact sequence breaks down into two exact sequences

$$
0 \longrightarrow H^{0}\left(Z, \mathcal{O}_{Z}(-Y)\right) \longrightarrow k \longrightarrow H^{0}\left(Y, \mathcal{O}_{Y}\right) \longrightarrow H^{1}\left(Z, \mathcal{O}_{Z}(-Y)\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow H^{1}\left(Y, \mathcal{O}_{Y}\right) \longrightarrow H^{2}\left(Z, \mathcal{O}_{Z}(-Y)\right) \longrightarrow 0
$$

If Y is of type (a, b) with $a, b>0$, then $\mathcal{O}_{Z}(-Y) \cong \mathcal{O}(-a,-b)$; for these sheaves we have by the bottom row of the table above

$$
\begin{gathered}
H^{0}\left(Z, \mathcal{O}_{Z}(-Y)\right)=0, \quad H^{1}\left(Z, \mathcal{O}_{Z}(-Y)\right)=0 \\
\operatorname{dim}_{k} H^{2}\left(Z, \mathcal{O}_{Z}(-Y)\right)=(-a+1)(-b+1)=(a-1)(b-1)
\end{gathered}
$$

Therefore,

$$
H^{0}\left(Y, \mathcal{O}_{Y}\right) \cong k \quad \text { and } \quad \operatorname{dim}_{k} H^{1}\left(Y, \mathcal{O}_{Y}\right)=(a-1)(b-1) \quad \text { if } a, b>0
$$

The interpretation of this is that Y is connected, and if Y is a non-singular curve it has genus $(a-1)(b-1)$.

6. Bertini's theorem

In this section we study intersections of projective varieties with hyperplanes. A hyperplane $H \subset \mathbf{P}^{n}$ is by definition the zero set of a single homogeneous polynomial $f \in k\left[x_{0}, \ldots, x_{n}\right]$ of degree 1 . Let V be the subspace of homogeneous elements of degree 1 in $k\left[x_{0}, \ldots, x_{n}\right]$. Form the projective space

$$
\begin{aligned}
\mathfrak{H} & =(V \backslash\{0\}) / k^{\times} \\
& =\left(k\left[x_{0}, \ldots, x_{n}\right]_{1} \backslash\{0\}\right) / k^{\times}
\end{aligned}
$$

and view it as a projective variety over k; it is isomorphic to \mathbf{P}_{k}^{n}. Because two non-zero sections of $\mathcal{O}_{\mathbf{P}^{n}}$ determine the same hyperplane if and only if one is a multiple of the other by an element of k^{\times}, there is a canonical bijection between \mathfrak{H} and the set of hyperplanes in \mathbf{P}_{k}^{n}.
Theorem (Bertini). Let X be a non-singular closed subvariety of \mathbf{P}_{k}^{n}, where k is an algebraically closed field. Then there exists a hyperplane $H \subset \mathbf{P}_{k}^{n}$, not containing X, such that the scheme $H \cap X$ is regular. Moreover, the set of all hyperplanes with this property is an open dense subset of \mathfrak{H}.

Proof. Consider a closed point x of X. There is an $i \in\{0,2, \ldots, n\}$ such that x is not in the hyperplane defined by x_{i}; after renaming the coordinates we may assume $i=0$. Then f / x_{0} is a regular function in a neighbourhood of x for all $f \in V$, so there is a k-linear map

$$
\begin{aligned}
\phi_{x}: V & \rightarrow \mathcal{O}_{X, x} \\
f & \mapsto f / x_{0},
\end{aligned}
$$

where $\mathcal{O}_{X, x}$ is the local ring of X at x. If X is contained in the hyperplane H defined by f, then $\phi_{x}(f)=0$; conversely, $\phi_{x}(f)=0$ means that f vanishes on some open neighbourhood of x in X, hence on all of X since X is irreducible. We conclude that $\phi_{x}(f)=0 \Longleftrightarrow X \subseteq H$. Furthermore, $\phi_{x}(f) \in \mathfrak{m}_{x} \Longleftrightarrow x \in H$.

Assume $X \nsubseteq H$ but $x \in X \cap H$, so that $\phi_{x}(f) \in \mathfrak{m}_{x} \backslash\{0\}$. Then $\mathfrak{f}=\phi_{x}(f) \mathcal{O}_{X, x}$ is a non-zero ideal of $\mathcal{O}_{X, x}$ contained in \mathfrak{m}_{x}. Now the local ring of $H \cap X$ at x is $\mathcal{O}_{X, x} / \mathfrak{f}$, and its maximal ideal is $\mathfrak{n}=\mathfrak{m}_{x} / \mathfrak{f}$. The fact that $\mathcal{O}_{X, x}$ is an integral domain and \mathfrak{f} is a non-zero principal ideal implies that

$$
\operatorname{dim}\left(\mathcal{O}_{X, x} / \mathfrak{f}\right)=\operatorname{dim}\left(\mathcal{O}_{X, x}\right)-1
$$

Furthermore, $\mathfrak{n}^{2}=\left(\mathfrak{m}_{x}^{2}+\mathfrak{f}\right) / \mathfrak{f}$ and $\mathfrak{n} / \mathfrak{n}^{2} \cong \mathfrak{m}_{x} /\left(\mathfrak{m}_{x}^{2}+\mathfrak{f}\right)$. In particular,

$$
\operatorname{dim}_{k} \mathfrak{n} / \mathfrak{n}^{2} \leq \operatorname{dim}_{k} \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}
$$

with equality if and only if $\mathfrak{f} \subseteq \mathfrak{m}^{2}$. Recall that $\operatorname{dim}_{k} \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2} \geq \operatorname{dim} \mathcal{O}_{X, x}$ with equality if and only if $\mathcal{O}_{X, x}$ is a regular local ring. Applying this also to $\mathcal{O}_{X, x} / \mathfrak{f}$ we see that $\mathcal{O}_{X, x} / \mathfrak{f}$ is regular if $\mathfrak{f} \nsubseteq \mathfrak{m}^{2}$ (in which case $\operatorname{dim}_{k} \mathfrak{n} / \mathfrak{n}^{2}=\operatorname{dim} \mathcal{O}_{X, x} / \mathfrak{f}$), and not regular if $\mathfrak{f} \subseteq \mathfrak{m}$. Hence $\mathcal{O}_{X, x} / \mathfrak{f}$ is a regular local ring if and only if $\phi_{x}(f) \in \mathfrak{m}_{x} \backslash \mathfrak{m}_{x}^{2}$.

Let $B_{x} \subset \mathfrak{H}$ be the set of hyperplanes that are defined by an element $f \in V$ for which $\phi_{x}(f) \in \mathfrak{m}_{x}^{2}$. In other words, if we put

$$
\begin{aligned}
\bar{\phi}_{x}: V & \rightarrow \mathcal{O}_{X, x} / \mathfrak{m}_{x}^{2} \\
f & \mapsto f / x_{0} \bmod \mathfrak{m}_{x}^{2}
\end{aligned}
$$

then

$$
B_{x}=\left(\operatorname{ker} \bar{\phi}_{x} \backslash\{0\}\right) / k^{\times} \subseteq \mathfrak{H}
$$

This is a subvariety of \mathfrak{H}, the interpretation of which is as follows: a hyperplane H is in B_{x} if and only if either $H \supseteq X$ or $x \in H \cap X$ and x is a singular point of $H \cap X$. Let us take a closer look at B_{x}. We put $y_{i}=x_{i} / x_{0}$ for $1 \leq i \leq n$, so that Spec $k\left[y_{1}, \ldots, y_{n}\right]$ is an affine open neighbourhood of x. Let $g_{1}, \ldots, g_{m} \in k\left[y_{1}, \ldots, y_{n}\right]$ be local equations for X, and let $\left(a_{1}, \ldots, a_{n}\right)$ be the coordinates of the point x. Then $\mathcal{O}_{X, x}$ is isomorphic to $A_{\mathfrak{p}}$, where

$$
\begin{aligned}
A & =\left(k\left[y_{1}, \ldots, y_{n}\right] /\left(g_{1}, \ldots, g_{m}\right)\right), \\
\mathfrak{p} & =\left(y_{1}-a_{1}, \ldots, y_{n}-a_{n}\right),
\end{aligned}
$$

and \mathfrak{m}_{x} corresponds to $\mathfrak{p} A_{\mathfrak{p}}$ under this isomorphism. Furthermore, the k-vector space $\mathcal{O}_{X, x} / \mathfrak{m}_{x}^{2}$ has dimension

$$
\operatorname{dim}_{k}\left(\mathcal{O}_{X, x} / \mathfrak{m}_{x}^{2}\right)=\operatorname{dim}_{k}\left(\mathcal{O}_{X, x} / \mathfrak{m}_{x}\right)+\operatorname{dim}_{k}\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)=1+\operatorname{dim} X
$$

and is spanned over k by the elements $1, y_{1}-a_{1}, \ldots, y_{n}-a_{n}$ (easy check). This shows that $\bar{\phi}_{x}$ is surjective, and

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \bar{\phi}_{x} & =\operatorname{dim}_{k} V-\operatorname{dim}_{k}\left(\mathcal{O}_{X, x} / \mathfrak{m}_{x}^{2}\right) \\
& =(n+1)-(1+\operatorname{dim} X) \\
& =n-\operatorname{dim} X
\end{aligned}
$$

from which we conclude that $\operatorname{dim} B_{x}=n-\operatorname{dim} X-1$.
The polynomials g_{1}, \ldots, g_{m} which locally define X are modulo \mathfrak{m}_{x}^{2} congruent to the polynomials

$$
\bar{g}_{i}=\sum_{j=1}^{n}\left(y_{j}-a_{j}\right) \frac{\partial g_{i}}{\partial y_{j}}\left(a_{1}, \ldots, a_{n}\right) \quad(1 \leq i \leq m)
$$

Because $\phi_{x}(f)$ is of the form $b_{0}+\sum_{j=1}^{n} b_{j} y_{j}$, we see that

$$
\phi_{x}(f) \in \mathfrak{m}_{x}^{2} \Longleftrightarrow f / x_{0} \in \sum_{i=1}^{m} k \bar{g}_{i}
$$

or, equivalently,

$$
\operatorname{ker} \bar{\phi}_{x}=\sum_{i=1}^{m} k x_{0} \bar{g}_{i} \quad \text { and } \quad B_{x}=\left(\sum_{i=1}^{m} k x_{0} \bar{g}_{i} \backslash\{0\}\right) / k^{\times} .
$$

Consider the fibred product $X \times_{k} \mathfrak{H}$. Because of the above characterisation of ker $\bar{\phi}_{x}$, there is a closed subscheme B of $X \times_{k} \mathfrak{H}$ such that the closed points of B are precisely the points of $X \times_{k} \mathfrak{H}$ corresponding to the pairs (x, H) with x a closed point of X and $H \in B_{x}$.

We have seen that the fibre of B above each point of X has dimension $n-\operatorname{dim} X-1$, so B itself has dimension $(n-\operatorname{dim} X-1)+\operatorname{dim} X=n-1$. Because X is proper over k and proper morphisms are preserved under base extension, the projection $p_{2}: X \times_{k} \mathfrak{H} \rightarrow \mathfrak{H}$ is proper too. This implies that $p_{2}(B)$ is a closed subset of \mathfrak{H} of dimension at most $n-1$, and from this we conclude that $\mathfrak{H}-p_{2}(B)$ is an open dense subset of \mathfrak{H}. For each $H \in \mathfrak{H} \backslash p_{2}(B)$, the scheme $H \cap X$ is regular at every point by the construction of B.

7. Application to the existence of non-singular curves of type (a, b)

Let k be an algebraically closed field, and let a, b be positive integers. We want to show that there are non-singular curves of type (a, b) on $\mathbf{P}_{k}^{1} \times{ }_{k} \mathbf{P}_{k}^{1}$. First we embed $\mathbf{P}_{k}^{1} \times{ }_{k} \mathbf{P}_{k}^{1}$ into \mathbf{P}_{k}^{n}, where $n=a b+a+b$, using the a-uple, b-uple and Segre embeddings:

$$
\mathbf{P}_{k}^{1} \times_{k} \mathbf{P}_{k}^{1} \longrightarrow \mathbf{P}_{k}^{a} \times_{k} \mathbf{P}_{k}^{a} \longrightarrow \mathbf{P}_{k}^{n}
$$

Recall that the a-uple embedding is defined by

$$
\left(x_{0}: x_{1}\right) \mapsto\left(x_{0}^{a}: x_{0}^{a-1} x_{1}: \ldots: x_{1}^{a}\right)
$$

and similarly for the b-uple embedding; the Segre embedding is defined by

$$
\left(\left(s_{0}: \ldots: s_{a}\right),\left(t_{0}: \ldots: t_{b}\right)\right) \mapsto\left(\ldots: s_{i} t_{j}: \ldots\right)
$$

in lexicographic order. Let j denote the composed embedding $\mathbf{P}_{k}^{1} \times{ }_{k} \mathbf{P}_{k}^{1} \rightarrow \mathbf{P}_{k}^{n}$. The image of j is a non-singular surface X in \mathbf{P}_{k}^{n} that is isomorphic to $\mathbf{P}_{k}^{1} \times_{k} \mathbf{P}_{k}^{1}$. We apply Bertini's theorem to find a hyperplane H in \mathbf{P}_{k}^{N} such that $H \cap X$ is a one-dimensional regular closed subscheme of X. This hyperplane is given by a homogeneous linear polynomial in the coordinates $\left\{z_{i, j}: 0 \leq i \leq a, 0 \leq j \leq b\right\}$ of \mathbf{P}_{k}^{n}. Now

$$
z_{i, j}=j\left(x_{0}^{a-i} x_{1}^{i} y_{0}^{b-j} y_{1}^{j}\right),
$$

so $Y=j^{-1}(H \cap X)$, viewed as a divisor on $\mathbf{P}_{k}^{1} \times{ }_{k} \mathbf{P}_{k}^{1}$, is of type (a, b). We have seen earlier that this implies that Y is connected. The local rings of Y are regular local rings, so in particular they are integral domains [Hartshorne, Remark II.6.11.1A]. This means that there cannot be two irreducible components of Y intersecting each other; therefore Y is irreducible, and hence a non-singular curve.

References

[Bourbaki] N. Bourbaki, Algèbre, chapitre 10: Algèbre homologique. Masson, Paris, 1980.
[Godement] R. Godement, Topologie algébrique et théorie des faisceaux. Actualités Sci. Ind. 1252. Hermann, Paris, 1958.
[Hartshorne] R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics 52. SpringerVerlag, New York-Heidelberg, 1977.

