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Introduction

Throughout these notes, R denotes a discrete valuation ring, K its field of fractions and k its
residue field.

Let XK be a smooth scheme of finite type over K. Recall that a Néron model for XK over R
is a smooth R-scheme X with generic fibre XK , having the following universal property: for
any smooth R-scheme Y and any morphism f : YK → XK , there is a unique morphism Y → X
extending f . In other words, the canonical map

HomR(Y, X) → HomK(YK , XK)

is bijective.
We are going to sketch the construction of Néron models of Abelian varieties. We start by

defining two technical concepts which are essential for this construction: rational and birational
maps over a base scheme, and Henselian local rings.

Rational and birational maps

The concept of a rational map of schemes is analogous to that of a rational function in (for example)
complex analysis. In certain situations one encounters functions which are defined on a dense open
subset of a variety, but cannot be extended to the whole variety. We will now define a relative
version of density and of rational maps between schemes over a base scheme S (which in our
situation is the spectrum of a discrete valuation ring)

Definition. Let X → S be a morphism of schemes, with X reduced. An open subset U ⊆ X is
called S-dense if for every point s ∈ S, the intersection of U with the fibre Xs is Zariski dense
in Xs.

Remark . It is easy to check that every S-dense open subset of X is Zariski dense in X . The reason
we have assumed X to be reduced is that a more useful definition of density in the general case is
that of schematic density; see [BLR, § 2.5], or [EGA IV4, définition 11.10.2].

Definition. Let S be a Noetherian scheme, and let X , Y be schemes of finite type over S, with X
reduced and Y separated over S. An S-rational map f : X · · ·≻ Y from X to Y is an equivalence
class of pairs (U, fU ), with U an S-dense open subset of X and fU : U → Y an S-morphism, and
where two pairs (U, fU ) and (V, fV ) are equivalent if fU |U∩V = fV |U∩V . The S-rational map f
is said to be defined (by the morphism fU) on an open subset U ⊆ X if (U, fU ) occurs in the
equivalence class. The largest open subset U ⊆ X on which f is defined is called the domain of
definition of f .

Remark . The assumption that X is reduced and Y → S separated is necessary to ensure that this
is an equivalence relation.

Definition. Let S be a Noetherian scheme, and let X , Y be reduced S-schemes, separated and of
finite type over S. A S-birational map from X to Y is an S-rational map which can be represented
by (U, f) with U an S-dense open subset of X and f an isomorphism from U to an S-dense open
subset of Y .

Remark . There are more general notions of rational maps; see [BLR, § 2.5] for a definition of
S-rational maps for smooth schemes over any base scheme S, or see [EGA IV4, § 20.2] for the
definition of pseudo-morphisms , or strict rational maps , between arbitrary schemes.
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Henselian local rings

In this section we define a special class of local rings, namely those with the so-called Henselian
property. They are characterised by the following fact [BLR, § 2.3, Proposition 4]: Let R be a
Henselian local ring with residue field k. Then every étale morphism from a scheme X to Spec R
is a local isomorphism at each k-rational point of X lying above the closed point of Spec R. In
particular, if R is strictly Henselian, then every étale morphism to Spec R is a local isomorphism at
all points above the closed point of Spec R. In fact, it is sufficient to require the following algebraic
property, which is at first sight weaker (it implies the Henselian properties for open subsets, étale
over Spec R, of R-schemes of the form Spec(R[x]/(f)) with f ∈ R[x] a monic polynomial).

Definition. A local ring R with maximal ideal m and residue field k is called a Henselian local
ring if the following condition (known as Hensel’s lemma) holds:

For every monic polynomial f ∈ R[x] and every simple zero of f modulo m (i.e. every
α ∈ k such that f̄(α) = 0 and f̄ ′(α) 6= 0, where f̄ ∈ k[x] is the reduction of f modulo m),
there is a unique α̃ ∈ R such that (α̃ mod m) = α and f(α̃) = 0.

A local ring R is called strictly Henselian if it is Henselian with separably closed residue field.

Given any local ring R, it is possible to construct a ‘smallest’ Henselian local ring containing
R, called the Henselisation of R, as well as a ‘smallest’ strictly Henselian local ring containing R,
the strict Henselisation of R. The precise definition is as follows:

Definition. Let R be a local ring. A Henselisation of R is a Henselian local ring Rh together with
a local homomorphism i: R → Rh such that for every Henselian local ring A together with a local
homomorphism f : R → A, there is a unique local homomorphism fh: Rh → A such that f = fh ◦ i.

Definition. Let R be a local ring with residue field k. Fix a separable closure ks of k. A
strict Henselisation of R (with respect to ks) is a Henselian local ring Rsh, together with a local
homomorphism j: R → Rsh and an isomorphism from ks to the residue field of Rsh, such that
for any strictly Henselian local ring A together with a local homomorphism f : R → A and a k-
embedding of ks into the residue field of A, there is a unique local homomorphism f sh: Rsh → A
such that f = f sh ◦ j and such that f sh induces the given embedding of residue fields. In other
words, the diagram

R
j

−→ Rsh



y



y

k −֒→ ks

is universal in the “category of local morphisms from R to a strictly Henselian local ring A together
with an embedding of ks into the residue field of A”.

The (strict) Henselisation of a local ring R can be constructed as as a direct limit of local
rings of the form OX,x, where X → Spec R is an étale morphism of schemes and x is a point of X
lying above the closed point of Spec R. This looks like the way in which the local ring of a scheme
is constructed; in fact, if S is a scheme and s a point of S, then the strict Henselisation of OS,s

can be viewed as a local ring for the étale topology on S.
It is not hard to show that for any local ring R the morphisms R → Rh → Rsh are injective,

and that the maximal ideal of R generates the maximal ideals of Rh and Rsh; these facts follow
from the construction via direct limits mentioned above. Furthermore, it can be shown that if R
is reduced (resp. normal, resp. regular, resp. Noetherian), then its (strict) Henselisation has the
same property. In particular, we have the following fact which will be of importance for us:

Proposition. Let R be a discrete valuation ring. Then Rh and Rsh are discrete valuation rings,
and a uniformising element of R is also a uniformising element of Rh and of Rsh.

Proof . This follows from the fact that the normal Noetherian local rings with principal maximal
ideal are precisely the fields and discrete valuation rings, and from the properties of the (strict)
Henselisation mentioned above.
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Overview of the construction

We will sketch a construction of the Néron model over R of an Abelian variety AK over K. This
goes in several steps:

(0) Construct a proper model A0 for AK over R. This step is easy: embed AK in a projective
space over K and take the Zariski closure in the corresponding projective space over R.

(1) Apply the smoothening process ; blowing up A0 according to certain rules gives a proper model
A1 of AK over R which possesses the following properties:

(a) For every Ksh-valued point of AK , the properness of A1 gives a unique Rsh-valued point
of A1 extending it; the image of this point is contained in the smooth locus of A1.

(b) Let Z be a smooth R-scheme, and let uK : ZK · · ·≻ AK be a K-rational map. Then there
exists an R-rational map u from Z into the smooth locus of A1 which extends uK .

(2) Construct a so-called weak Néron model A2 out of A1. This is again easy: we leave out the
non-smooth locus of the special fibre of A1. The model A2 is smooth, separated and of finite
type, but not necessarily proper. It is also not unique in general. It follows immediately from
the properties a) and b) of A1 that A2 has the following two properties:

(a′) The natural map A2(R
sh) → AK(Ksh) is bijective.

(b′) Let Z be a smooth R-scheme, and let uK : ZK · · ·≻ AK be a K-rational map. Then there
exists an R-rational map u: Z · · ·≻ A2 extending uK .

(3) The special fibre of A2 is the disjoint union of its irreducible components, which are smooth,
separated and of finite type over k; in particular they are integral. We leave out the components
which are not ω-minimal (see below for the definition). Then the model A3 with which we are
left is no longer a weak Néron model, but instead has the following two properties:

(c) Let Z be a smooth R-scheme and ζ a generic point of its special fibre. Let R′ be the
discrete valuation ring OZ,ζ and K ′ its field of fractions. Then each translation of AK′

by one of its K ′-valued points extends to an R′-birational morphism of A3 ⊗R R′ which
is an open immersion on its domain of definition.

(d) The group law on AK extends to an R-birational group law on A3, i.e. an R-rational map

m: A3 ×R A3 · · ·≻ A3

such that the universal translations

Φ, Ψ: A3 ×R A3 · · ·≻ A3 ×R A3

defined by Φ(x, y) = (x, m(x, y)) and Ψ(x, y) = (m(x, y), y) are R-birational. Further-
more, m is associative (in an obvious sense).

(4) There is a unique embedding A3 →֒ A into a group scheme A over R (smooth, separated and
of finite type) which is compatible with this birational group law. This A will then be the
Néron model of AK over R. The construction of A is rather involved: its existence is proved
first after the base change R → Rsh, and then descent is used to construct A over R.
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The defect of smoothness

We recall a ‘differential’ criterion for smoothness:

Proposition. Let f : X → Y be morphism of schemes which is flat and locally of finite presen-
tation, and let x be a point of X . Then f is smooth at x if and only if the OX -module ΩX/Y is
locally free in a neighbourhood of x, of rank equal to the relative dimension of f at x.

Proof . See [EGA IV4, corollaire 17.5.2 and proposition 17.15.15].

In the next lemma we use the following notation: let X be an R-scheme which is locally of
finite type, and let x be a point of X . Then we write κ(x) for the residue field of the local ring
OX,x, and we put ΩX/R(x) = ΩX/R,x ⊗OX,x

κ(x).

Lemma. Let X be an R-scheme which is locally of finite type, and let x ∈ Xk, ξ ∈ XK be points
of X lying in the special and generic fibre of X , respectively, and such that x ∈ {ξ}. Suppose that
XK is smooth of relative dimension d at ξ, and that the κ(x)-vector space ΩX/R(x) has dimension
d. Then X is smooth of relative dimension d at x.

Proof . First we prove that the special fibre Xk over k is smooth of relative dimension d at x. By
a theorem of Chevalley [EGA IV3, théorème 13.1.3], the dimension of the fibres of a morphism of
finite type f : X → Y is an upper semi-continuous function on X , which is to say that for all n ≥ 0
the set

Fn(X) = {x ∈ X | dimx(Xf(x)) ≥ n}

is closed in X . Since in our case (with Y = Spec R) the point x is in the closure of {ξ}, this means
that the dimension of Xk at x is at least d. On the other hand, ΩXk/k,x ⊗ κ(x) = ΩX/R(x) is
a κ(x)-vector space of dimension d by assumption; this implies that the dimension of Xk at x is
equal to d, and that the fibre Xk is smooth over k at x.

It remains to show that X is flat at x. Since the problem is local on X , we may assume
that there is a closed immersion i: X → Z with Z an affine R-scheme which is smooth at x (e.g.
Z = An

R for some n ≥ 0). We use induction on the relative dimension n of Z at x to prove that in
this situation X is flat at x. If n = d, then Xk and XK are identical to Zk and ZK in some open
neighbourhood of x, so X = Z in an open neighbourhood of x and we are done. Now suppose the
claim is true with n− 1 in place of n. Write I for the ideal of Γ(Z,OZ) defining X , i.e. the kernel
of Γ(Z,OZ) → Γ(X,OX); then because of the exact sequence

I/I2 d
−→ Γ(X, i∗ΩZ/R) −→ Γ(X, ΩX/R) −→ 0

and the fact that dimκ(x)(i
∗ΩZ/R)(x) > dimκ(x) ΩX/R(x), there exists an element g ∈ I such that

the image of dg in (i∗ΩZ/R)(x) = ΩZ/R(x) is non-zero. Let j: Y → Z be the closed immersion
defined by g; then Y is a closed subscheme of Z which contains X and is of relative dimension n−1
at x. We are done if we can show that Y is smooth over R at x, since then by the induction
hypothesis we can apply the lemma to the immersion X → Y . The choice of g implies that
dimκ(x) ΩY/R(x) = n − 1, and the same argument as above shows that the fibre Yk is smooth
over k at x. To prove that Y is flat at x, we consider the exact sequence

0 −→ gOZ,x −→ OZ,x −→ OY,x −→ 0.

Changing the base to k and using the fact that OZ,z is flat over R gives the exact sequence

0 −→ TorR
1 (OY,x, k) −→ gOZ,x ⊗R k −→ OZk,x −→ OYk,x −→ 0.

Since Zk is smooth over k at x, the local ring OZk,x is a domain; furthermore, ḡ 6= 0 because of
the choice of g such that the image of dḡ in (j∗ΩZ/R)(x) = ΩZ/R(x) is non-zero. This implies that
the composed morphism

OZk,x = OZ,x ⊗R k
g⊗1
−→ gOZ,x ⊗R k −→ OZk,x,

which equals multiplication by ḡ, is injective. On the other hand, the map g ⊗ 1 is surjective;
therefore g ⊗ 1 is an isomorphism and the map gOZ,x ⊗R k → OZk,x is injective. This amounts to

saying that TorR
1 (OY,x, k) = 0. The local criterion of flatness [AK, Theorem 3.2] now implies that

OY,x is flat over R, as we had to show.
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Now let X be a scheme of finite type over R, and assume that its generic fibre XK is smooth
over K. As before, let Rsh be a strict Henselisation of R (with respect to a separable closure ks

of k) and Ksh its field of fractions. For any point a ∈ X(Rsh), we write a∗ΩX/R for the pull-back

to Rsh of the sheaf of relative differentials of X over R; this is a finitely generated Rsh-module. Let
(a∗ΩX/R)tor denote the torsion submodule of a∗ΩX/R; then a∗ΩX/R/(a∗ΩX/R)tor is torsion-free,
hence free (by the structure theorem for finitely generated modules over a principal ideal domain).

Lemma. The module a∗ΩX/R over Rsh is free (equivalently, (a∗ΩX/R)tor = 0) if and only if the
image of a lies in the smooth locus of X → Spec R.

Proof . One implication follows easily from the above characterisation of smoothness: if X → S is
smooth on an open subset containing the image of a, then ΩX/R is locally free on an open subset
containing this image, hence a∗ΩX/R is free.

Conversely, suppose a∗ΩX/R is free; then its rank must be the relative dimension of X over K

at xK . Denote by x and ξ the (topological) images of the special and generic points of Spec Rsh

under a, respectively. By continuity, x is in the closure of {ξ}. The claim now follows from the
previous lemma.

The torsion submodule of a∗ΩX/R turns out to be a useful measure for the non-smoothness
of X at a.

Definition. For any point a ∈ X(Rsh), we define the defect of smoothness of X at a, denoted by
δ(a), as the length of the Rsh-module (a∗ΩX/R)tor (which is a finitely generated torsion module,
hence of finite length).

The smoothening process

Let X be an R-scheme of finite type such that the generic fibre XK is smooth over K. Let ks,
Rsh, Ksh be as in the preceding sections. For every point a ∈ X(Rsh) we write ak: Spec ks → Xk

for the specialisation of a and aK : Spec Ksh → XK for the Ksh-valued point defined by a. We say
that a

Definition. Let E be a subset of X(Rsh), and let Y be a geometrically reduced closed subscheme
of Xk. Write U for the largest open subscheme of Y such that U is smooth over k and ΩX/R|U is
locally free; this is a dense open subscheme of Y . Finally, let EY be the subset of E consisting of
those points which specialise into points of Y . Then the subscheme Y of Xk is called E-permissible
if it is geometrically reduced and if the images of the specialisations of the points in EY form a
Zariski dense subset of Y which is contained in U .

If X ′ → X is obtained by blowing up X in a closed subscheme of its special fibre, then
X ′ → X is proper, and X(Ksh) ∼= X ′(Ksh) (since XK = XK′). Applying the valuative criterion of
properness to X ′ → X shows that every point a ∈ X(Rsh) lifts uniquely to a point a′ ∈ X ′(Rsh).
For any subset E ⊆ X(Rsh), we denote by E′ the image of E under the bijection X(Rsh)

∼
−→

X ′(Rsh).
The fundamental tool in the smoothening process is the following lemma, which says that the

defect of smoothness is reduced by blowing up X in suitable closed subschemes.

Lemma. Let E be a subset of X(Rsh), and let let Y be an E-permissible closed subscheme of Xk.
Let X ′ → X be the blowing-up of X in Y . Let a be a point in E, and let a′ ∈ E′ be the point
corresponding to a under the bijection X(Rsh)

∼
−→ X ′(Ksh).

(a) If a specialises into a point of Xk \ Y , then δ(a′) = δ(a).
(b) If a specialises into a point of Y , then δ(a′) ≤ max{0, δ(a) − 1}.

Proof . See [BLR, § 3.4, Lemma 1]. (Actually, the proof there is based on the schematic dominance
of the family of morphisms EY . The union of the images of the specialisations ak: Spec ks → X ,
for a ∈ EY , is Zariski dense in Y . Since Y is reduced, the family of morphisms {ak | a ∈ EY } is
schematically dominant [EGA IV3, définition 11.10.2 and proposition 11.10.4].)

Theorem. Let X be an R-scheme of finite type with smooth generic fibre XK . Then there exists a
proper morphism X ′ → X of R-schemes, which can be obtained by a finite sequence of blowing-ups
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with centres contained in the non-smooth loci of the corresponding schemes, such that the image
of each point in X ′(Rsh) lies in the smooth locus of X ′.

Proof . (This is a bit sketchy; see [BLR, § 3.4, Theorem 2] for a more formal proof.) Let E be
the subset of X(Rsh) consisting of the points which specialise into the non-smooth locus of X .
Consider the filtration E = E1 ⊃ E2 ⊃ . . . (strict inclusions) constructed as follows:

Y1 = Zariski closure of the set {imak | a ∈ E1};

U1 = largest open subscheme of Y1 such that U1 is smooth over k and ΩX/R|U1
is locally free;

E2 = points in E1 which specialise into Y1 \ U1;

Y2 = Zariski closure of the set {imak | a ∈ E2};

U2 = largest open subscheme of Y2 such that U2 is smooth over k and ΩX/R|U2
is locally free;

· · ·

By construction, each Yi is (E \Ei+1)-permissible, though the fact that Yi is geometrically reduced
is not entirely trivial to prove; see [BLR, § 3.3, Lemma 4]. Since Y1 ⊃ Y2 ⊃ . . . is a strictly
decreasing chain of closed subsets of the Noetherian scheme Xk, we get Et+1 = ∅ for some least
natural number t. If t = 0, we are done. Otherwise, let δ(Et) = max{δ(a) | a ∈ Et}; this
number is finite [BLR, § 3.3, Proposition 3]. Now Yt is by construction an E-permissible subscheme
of X . The preceding lemma implies that the blowing-up X ′ → X of X in Yt has the property
that δ(a′) < δ(Et) for all a′ in the subset E′

t ⊆ X ′(Rsh) corresponding to Et. We may throw
away all the points of E′

t with image in the smooth locus of X ′. Next we construct a filtration
E′

t = E′
t,1 ⊃ E′

t,2 ⊃ . . . ⊃ E′
t,u ⊃ E′

t,u+1 = ∅ in the same way as for E; then either u = 0 (i.e.
E′

t = ∅), in which case we continue by blowing up in Y ′
t−1, or we blow up in Y ′

t,u. We go on
recursively like this; after finitely many steps, we get a morphism X ′′ → X , obtained by blowing-
ups in the non-smooth loci of the special fibres, such that all points in the lift of E to X ′′(Rsh)
land in the smooth locus of X ′′. Since X ′′ → X is an isomorphism above the smooth locus of X ,
it follows that all points of X ′′(Rsh) land in the smooth locus of X ′′, and we are finished.

Weak Néron models

In this section we denote by Rsh be a strict Henselisation of R with respect to a separable closure
ks of k, and we write Ksh for its field of fractions.

Definition. Let XK be a smooth projective K-scheme. A weak Néron model of XK is a model
X ′ of XK over R which is smooth, separated and of finite type, such that the natural map

X ′(Rsh) → X ′(Ksh) ∼= XK(Ksh)

(which is injective because of the separatedness of X ′) is bijective. In words: every Ksh-point
of XK extends to a Rsh-point of X ′.

The reason for the name weak Néron model for the scheme X ′ is that it satisfies a variant of
the Néron property for rational maps, the so-called weak Néron property.

Proposition. Let XK be a smooth projective K-scheme, let X0 be a proper model of XK (e.g.
the Zariski closure of XK embedded in some projective space), and let X1 be the model obtained
from X0 by the smoothening process. Let X2 be the weak Néron model of XK over R obtained by
removing the non-smooth locus of X1. For every smooth R-scheme Z and every K-rational map
uK : ZK · · ·≻ XK , there exists an R-rational map u: Z · · ·≻ X2 extending uK .

Proof . We may assume that the special fibre Zk is irreducible. The local ring OZ,ζ of Z at the
generic point ζ of Zk is a discrete valuation ring whose field of fractions L is the function field of
the connected component of Z containing ζ. The K-rational map uK : ZK · · ·≻ XK induces an
R-morphism Spec L → X2. By the valuative criterion of properness, this extends uniquely to an
R-morphism SpecOZ,ζ → X1. Since X2 is locally of finite type over R, there exists a R-dense open
neighbourhood U of ζ such that uK is defined by a morphism u: U → X1. Since U is smooth over R,
the set of ks-rational points of Uk is Zariski dense in Uk, and all these points are specialisations
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of Rsh-valued points of Z [BLR, § 2.2, Corollary 13 and Proposition 14]. By property (a) of the
model X1, the images of all ks-rational points of U under the morphism u lie in the smooth locus
X2 of X1. By continuity and the fact that X2 is open in X1, the special fibre of u−1X2 is a dense
open subset of Uk. This implies that there is an R-dense open subset U ′ ⊆ U such that uK is
defined by an R-morphism u: U ′ → X2.

Remark . One can prove the same result by using only the definition of weak Néron models, without
knowing how they can be constructed; see [BLR, § 3.5, Proposition 3].

The ω-minimal model

Notation. Let G be a group scheme over a scheme S. For any S-scheme T , we write GT for the
fibred G ×S T , viewed as a T -scheme, and pT for the canonical map GT → G. Furthermore, for
any differential form ω ∈ Γ(G, Ωi

G/S) we write ωT for the pull-back p∗T ω ∈ Γ(GT , Ωi
GT /T ).

Definition. Let T be an S-scheme and g ∈ G(T ) = HomS(T, G) a T -valued point of G. For any
T -scheme f : T ′ → T , there is a map

tg(T
′): GT (T ′) → GT (T ′)

g′ 7→ m(g ◦ f, g′),

where m is the group law on T ′-valued points. This map is functorial in T ′, and hence induces a
morphism

tg: GT → GT

of T -schemes. This morphism is called left translation by the point g.

Definition. An left-invariant differential form of degree i ≥ 0 is a global section ω of the sheaf
Ωi

G/K such that for every S-scheme T and every T -valued point g ∈ G(T ) the pull-back t∗gωT of
ωT under the left translation map tg: GT → GT satisfies t∗gωT = ωT .

Proposition. Let G be a group scheme over a scheme S. Then for all i ≥ 0, the map

{left-invariant differentials of degree i on G} −→ Γ(S, e∗Ωi
G/S)

ω 7−→ e∗ω,

where e: S → G is the neutral section, is bijective.

Let AK be an Abelian variety of dimension d over the field K. The left-invariant differential
forms on AK are simply called invariant differential forms . Since Ωd

AK/K is a line bundle on AK ,

the K-vector space e∗Ωd
AK/K is of dimension 1. The previous proposition implies that there exists

a non-zero invariant differential form ω of degree d on AK ; it is unique up to multiplication by an
element of K×. We fix one such form from now on.

Let A′ be a weak Néron model of AK over R. Let C1, . . . , Cr be the irreducible components
of the special fibre A′

k of A′. Each local ring OA′,ζi
, where ζi is the generic point of Ci, is a discrete

valuation ring. Therefore, the invariant d-form ω, viewed as a rational section of ΩA′/R, has a
well-defined order of vanishing ni along each Ci (if ni < 0, then ω has a pole of order −ni along
Ci). We put n0 = min{n1, . . . , nr}, so that π−n0ω vanishes exactly on the components Ci for
which ni > n0. Let A′′ be the R-model of AK obtained by removing all these Ci; then we have
the following result.

Proposition. The group law on AK extends to a birational group law on A′′, i.e. an R-birational
map

m: A′′ ×R A′′ · · ·≻ A′′

such that the universal translations

Φ: A3 ×R A3 · · ·≻ A3 ×R A3

(x, y) 7−→ (x, m(x, y))
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and
Ψ: A3 ×R A3 · · ·≻ A3 ×R A3

(x, y) 7−→ (m(x, y), y)

are R-birational, and such that m is associative in the sense that m ◦ (m × 1) and m ◦ (1 × m)
coincide wherever they are defined.

Proof . See [BLR, § 4.3, Proposition 5].

From birational group laws to group schemes

Theorem. Let X be an R-scheme which is smooth, separated, of finite type and surjective.
Suppose that XK is a group scheme such that the group law on XK extends to an R-birational
group law

m: X ×S X · · ·≻ X

on X . Then there exists a group scheme X̄ over R and an open immersion X → X̄ onto an R-dense
open subscheme of X̄ which is an isomorphism on the generic fibres and such that the group law
on X̄ restricts to m on X .

Proof . See [BLR, § 5.1, Theorem 5].

Theorem. Let AK be an Abelian variety over K, and let A′ be the ω-minimal model of A over R.
Then the group scheme A′ from the previous theorem is a Néron model for X over R.

Proof . See [BLR, § 4.4, Corollary 4].
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mathématiques de l’IHÉS 28 (1966), 32 (1967).

8


