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1. Introduction

1.1. The Riemann ζ-function

The prototypical example of an L-function is Riemann’s ζ-function

ζ(s) =
∑
n≥1

n−s (<s > 1). (1.1)

By an easy argument using the fact that every n ≥ 1 has a unique prime factorisation, one
shows that ζ(s) can be written as an Euler product

ζ(s) =
∏

p prime

(1− p−s)−1 (<s > 1).

This shows that ζ(s) does not have any zeroes in the region <s > 1.
We define the completed ζ-function by

Z(s) = π−s/2Γ(s/2)ζ(s).

Here we have used the Γ-function

Γ(s) =

∫ ∞
0

exp(−t)ts dt
t

(<s > 0). (1.2)

Since π−s/2 is an nowhere-vanishing entire function and Γ(s) is a nowhere-vanishing meromorphic
function with poles at the non-positive integers and no other poles, Z(s) is a nowhere-vanishing
holomorphic function on the region <s > 1.

Remark . We recall that the set of places of Q is the set of non-trivial absolute values on Q up to
equivalence. By Ostrowski’s theorem, this set consists of the finite places, corresponding to the
p-adic absolute values | |p for prime numbers p, and one infinite place, corresponding to the usual
absolute value | |∞ on Q. The standard ζ-function can be viewed a product over the finite places
of Q, while the completed ζ-function Z(s) is a product over all places, the factor π−s/2Γ(s/2) being
the analogue at the infinite place of the factors (1− p−s)−1 at the finite places.

Theorem 1.1 (Riemann [7]). The function Z(s) can be continued to a meromorphic function on
the whole complex plane with a simple pole at s = 1 with residue 1, a simple pole at s = 0 with
residue −1, and no other poles. It satisfies the functional equation

Z(s) = Z(1− s).

Proof . The idea of the proof is as follows: we express Z(s) as the Mellin transform (a certain
integral transform, in fact a variant of the Fourier transform) of a modular form. Modular forms
are functions living on the complex upper half-plane enjoying certain transformation properties,
which will lead to the meromorphic continuation and the functional equation.

The modular form we need is Jacobi’s ϑ-function, which is defined for τ ∈ C with =τ > 0 by

ϑ(τ) =
∑
n∈Z

exp(πin2τ)

= 1 + 2
∑
n≥1

exp(πin2τ).
(1.3)

Using the Poisson summation formula, one can prove that ϑ(s) satisfies the functional equation

ϑ

(
−1

τ

)
=

√
τ

i
ϑ(τ). (1.4)
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We now consider the Mellin transform of ϑ, defined as

ϑ̃(s) =

∫ ∞
t=0

(ϑ(it)− 1)ts
dt

t
(<s > 1/2).

We compute ϑ̃(s) as follows, using (1.1), (1.3) and (1.2):

ϑ̃(s) = 2
∑
n≥1

∫ ∞
t=0

exp(−πn2t)ts dt
t

= 2
∑
n≥1

(πn2)−s
∫ ∞
u=0

exp(−u)us
du

u

= 2π−sΓ(s)ζ(2s).

From this we get the following equation, due to Riemann:

Z(s) =
1

2
ϑ̃(s/2).

On the other hand, we can rewrite ϑ̃(s) as follows. Splitting the integral occurring in the
definition of ϑ̃(s), we obtain, for <s > 1/2,

ϑ̃(s) =

∫ 1

t=0

(ϑ(it)− 1)ts
dt

t
+

∫ ∞
t=1

(ϑ(it)− 1)ts
dt

t
.

Using (1.4) and the change of variables t = 1/u, we rewrite the first integral as∫ 1

t=0

(ϑ(it)− 1)ts
dt

t
=

∫ ∞
u=1

(u1/2ϑ(iu)− 1)u−s
du

u

=

∫ ∞
u=1

ϑ(iu)u1/2−s
du

u
−
∫ ∞
u=1

u−s
du

u

=

∫ ∞
u=1

(ϑ(iu)− 1)u1/2−s
du

u
+

∫ ∞
u=1

u1/2−s
du

u
−
∫ ∞
u=1

u−s
du

u

=

∫ ∞
u=1

(ϑ(iu)− 1)u1/2−s
du

u
+

1

s− 1/2
− 1

s
.

From this we get

θ̃(s) =
1

s− 1/2
− 1

s
+

∫ ∞
t=1

(ϑ(it)− 1)(t1/2−s + ts)
dt

t
.

This can be rewritten as

Z(s) =
1

s− 1
− 1

s
+

1

2

∫ ∞
t=1

(ϑ(it)− 1)(t(1−s)/2 + ts/2)
dt

t
. (1.5)

The integral converges for all s ∈ C, so this formula gives the meromorphic continuation of Z(s).
Furthermore, the right-hand side of (1.5) is clearly invariant under s ↔ 1 − s, which proves the
functional equation.

Using the functional equation, one can show that ζ(s) = 0 if s is a negative even integer. An
s ∈ C with ζ(s) = 0 and s not a negative integer is called a non-trivial zero of ζ(s). The non-trivial
zeroes of ζ(s) are precisely the zeroes of Z(s). The functional equation implies that these all lie in
the critical strip {s ∈ C | 0 ≤ <s ≤ 1}.

Conjecture 1.2 (Riemann hypothesis [7]). All non-trivial zeroes of ζ(s) lie on the line <s = 1/2.

The Riemann hypothesis is equivalent to the error term in the prime number theorem

#{prime numbers ≤ x} =

∫ x

2

dt

log t
+ error term

being as sharp as possible, namely, O(
√
x log x) as x→∞.
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1.2. Special values

The Bernoulli numbers Bk for k ≥ 0 are rational numbers defined by

∞∑
k=0

Bk
tk

k!
=

t

exp(t)− 1
.

We have Bk = 0 for k ≥ 3 odd, and

B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30,

B6 = 1/42, B8 = −1/30, B10 = 5/66, B12 = −691/2730.

Theorem 1.3 (Euler). The values of the ζ-function at even positive integers are given by the
formula

ζ(2m) = (−1)m−1
(2π)2m

2(2m)!
B2m (m ≥ 1). (1.6)

The first few examples are

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
,

the first of which is Euler’s solution to the “Basel problem” of determining
∑

n≥1 n
−2.

The functional equation translates (1.6) into a formula for the ζ-function at odd negative
integers:

ζ(1− 2m) = −B2m

2m
(m ≥ 1).

1.3. More general L-functions

I will not give a general definition of L-functions. The reason is that an L-function is usually
thought of as being “attached to something”. Let us denote this “something” by X for the moment;
this X can for example be a number field, a Dirichlet character, an elliptic curve, a modular form,
an automorphic representation, or even a “motive”.

The one thing that they all have in common is a Dirichlet series expansion

L(X, s) =
∑
n≥1

ann
−s, (1.7)

where s is a complex variable and the an are complex numbers determined by X and growing
at most polynomially as n → ∞. This growth condition implies that for some c > 0, the above
series converges for <s > c and defines L(X, s) as a holomorphic function in the right half-plane
{s ∈ C | <s > c}.

Here are some nice properties that we would like L-functions to have (but which are often not
known to hold).

• Euler product . If amn = aman whenever m and n are coprime, and moreover the apr for p
prime and r ≥ 1 satisfy a suitable recurrence relation, then we can write

L(X, s) =
∏

p prime

1

Fp(p−s)
,

where Fp ∈ C[t] is a polynomial of the form 1− apt+ · · ·.
• Analytic continuation. We say that an L-series of the form (1.7) has an analytic continuation

if there exists a meromorphic function on the whole complex plane that coincides with the
given series in its domain of convergence.

• Functional equation. In many cases, one can define a dual object X∗, a completed L-function
Λ(X, s) which is a “simple” modification of the original L(X, s) (the product of L(X, s) with
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certain exponentials and Γ-functions), an integer k and a complex number ε(X) such that
(assuming analytic continuation)

Λ(X, s) = ε(X)Λ(X∗, k − s).

In the case where L(X, s) admits (or is expected to admit) such a functional equation, the
vertical line {s ∈ C | <s = k/2} is called the critical line.

• Riemann hypothesis. For “most” L-functions, one expects that all the zeroes of the meromor-
phic function L(X, s), except the well-understood trivial zeroes, lie on the critical line. There
is a lot of numerical data supporting the Riemann hypothesis, as well as other heuristic rea-
sons to believe it. Unfortunately, it hasn’t been proved even for the simplest L-function, the
Riemann ζ-function. (The analogue of the Riemann hypothesis was proved by Deligne in the
setting of ζ-functions of algebraic varieties over finite fields; so far, a proof for the ζ-function
of anything defined over a number field does not seem to be in sight.)

• Special values. There are many results and conjectures concerning values of L-functions at
the integers. The prototypical example is Euler’s formula (1.6).

There are essentially two ways of constructing L-functions:

(1) from number theory and arithmetic geometry ;

(2) from automorphic forms and automorphic representations.

We call L-functions arising in this way arithmetic or automorphic, respectively. In many cases,
arithmetic L-functions can be shown to be automorphic. This is useful because an L-function
defined by a Dirichlet series (1.7) is a priori only defined on some right half-plane, and only for
automorphic L-functions do we know how to construct the analytic continuation.

It is hoped that every ‘nice’ arithmetic L-function is also an automorphic L-function. However,
this is in general very hard to prove. A very general and still largely conjectural framework
describing how different L-functions should be related to each other and to other objects is the
Langlands program; see [4] for an introduction.

2. Examples of L-functions

2.1. Dirichlet L-functions

One could say that Dirichlet’s famous article [6] on prime numbers in arithmetic progressions
marked the beginning of analytic number theory. Dirichlet did not consider L-series as meromor-
phic functions, but merely as functions of a real variable.

In modern language, Dirichlet L-series are constructed as follows. One takes a positive inte-
ger m and a group homomorphism

χ: (Z/mZ)× → C×.

One extends this to a function χ:Z→ C by putting χ(a) = 0 if a is not coprime to m. One then
puts

L(χ, s) =

∞∑
n=1

χ(n)n−s

=
∏

p-m prime

(1− χ(p)p−s)−1.

Theorem 2.1 (Dirichlet [6]). Let m be a positive integer, and let a ∈ (Z/mZ)×. Then there are
infinitely many prime numbers p such that p mod m = a.

Dirichlet’s proof of this goes via L-functions. The central fact about L-functions that is needed
is that if χ as above is non-trivial, then L(χ, 1) is finite and non-zero.
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2.2. The Dedekind ζ-function of a number field

The Dedekind ζ-function is a generalisation of the Riemann ζ-function to an arbitrary number
field K (the Riemann ζ-function being the case K = Q). It is defined by

ζK(s) =
∏

p⊂ZK

(1− (Np)−s)−1

=
∑

a⊆ZK

(Na)−s.

Here ZK is the ring of integers of K, p runs over all non-zero prime ideals of ZK , and a runs over
all non-zero ideals of ZK .

Let ∆K ∈ Z be the discriminant of K, and let r1 and r2 denote the number of real and
complex places of K, respectively. Then the completed ζ-function

ZK(s) = |∆K |s/2
(
π−s/2Γ(s/2)

)r1(
(2π)1−sΓ(s)

)r2
ζK(s)

satisfies
ZK(s) = ZK(1− s).

Theorem 2.2 (class number formula). Let K be a number field. In addition to the above notation,
let hK denote the class number, RK the regulator, and wK the number of roots of unity in K.
Then ζK(s) has a simple pole in s = 1 with residue

Res
s=1

ζK(s) =
2r1(2π)r2hKRK

|∆K |1/2wK
.

Remark . By the functional equation, this is equivalent to

lim
s→0

ζK(s)

sr1+r2−1
= −hKRK

wK
.

2.3. L-functions attached to modular forms

We consider the complex upper half-plane

H = {x+ iy ∈ C | x ∈ R, y > 0}

and the group

SL2(Z) =

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}
.

We recall that SL2(Z) acts on H by
(
a
c

b
d

)
z = az+b

cz+d .
Let n and k be positive integers. We write Γ1(n) for the subgroup of SL2(Z) defined by

Γ1(n) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1 (mod n)

c ≡ 0 (mod n)

}
.

A modular form of weight k and level n is a holomorphic function f on the upper half-plane
satisfying the transformation rule

f(γz) = (cz + d)kf(z) for all γ =

(
a

c

b

d

)
∈ Γ1(n), z ∈ H

and a certain growth condition which we will not explain. The definition implies that every modular
form f can be written as

f(z) =
∑
m≥0

am(f)qm with q = exp(2πiz)
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for certain complex numbers am(f).
The L-function of a modular form f as above is defined by the Dirichlet series

L(f, s) =
∑
m≥1

am(f)m−s.

As before, one can define a completed L-function Λ(f, s) by multiplying L(f, s) by certain elemen-
tary factors. A very important property of L-functions of modular forms is that one can express
Λ(f, s) as the Mellin transform of f :

Λ(f, s) =

∫ ∞
0

(f(iy)− a0(f))ys
dy

y
.

For certain f (so-called primitive cusp forms, which in particular satisfy a0(f) = 0 and a1(f) = 1),
the L-function Λ(f, s) can be analytically continued to an entire function satisfying a certain
functional equation linking f with a “dual” form f̄ satisfying f̄(z) =

∑
m≥1 am(f)qm.

2.4. Artin L-functions

An Artin L-function is a type of L-function associated to representations of Galois groups as
follows. Consider a finite Galois extension E/F of number fields, with Galois group G = Gal(E/F ).
Consider a representation

ρ:G→ AutC(V ) ' GLn(V )

of G on an n-dimensional complex vector space V . For every finite place p of F , we choose a
place P of E lying over F , giving us a decomposition group DP, an inertia group IP and a
Frobenius element σP ∈ DP/IP. (We recall that IP = 1 if P is unramified, which is the case for
all but finitely many P.) We put

χp(t) = det(id− tρ(σP) | V IP) ∈ C[t].

This is a polynomial whose coefficients lie in some cyclotomic extension of Q, and which is inde-
pendent of the choice of prime P over p.

We then define
L(ρ, s) =

∏
p

χp(Np)−1,

where the product runs over all finite places of F .

Example. Let F = Q and let E = Q(
√
−23, α), where α is a root of the polynomial f =

x3 − x2 + 1. Then E is the splitting field of f ; it is also the Hilbert class field of Q(
√
−23). We

have G = Gal(E/Q) ' S3 ' D3. We consider the standard 2-dimensional representation ρ of G.

Let p be a prime. There are four cases:

(1) p = 23. Then E has three primes over p with residue field F23 and ramification index 2. The
decomposition groups of these primes are the three subgroups of order 2 in G, which are equal
to the corresponding inertia groups. The subspace fixed by inertia is 1-dimensional, and the
Frobenius action on it is trivial. This implies that P23 = 1− t.

(2)
(−23

p

)
= 1 (equivalently, p is a square in F×23) and f = x3 − x2 + 1 has a root modulo p.

Then E has six primes over p with residue field degree 1 (and ramification index 1). The
decomposition groups are trivial. The image of Frobenius is equal to

(
1
0

0
1

)
. This implies that

Pp(t) = 1− 2t+ t2.

(3)
(−23

p

)
= 1 (equivalently, p is a square in F×23) and f = x3 − x2 + 1 has no roots modulo p.

Then E has two primes over p with residue field degree 3 (and ramification index 1). The
decomposition groups are all equal to the unique subgroup of order 3 in G. The image of
Frobenius is conjugate to

(
0
1
−1
−1
)
. This implies that Pp(t) = 1 + t+ t2.

(4)
(−23

p

)
= −1 (equivalently, p is a non-square in F×23). Then E has three primes over p with

residue field degree 2. The decomposition groups are the three subgroups of order 2 in G. The
image of Frobenius is conjugate to

(
0
1

1
0

)
. This implies that Pp(t) = 1− t2.

We compute the Dirichlet series L(ρ, s) using the above information and obtain

L(ρ, s) = 1− 2−s − 3−s + 6−s + 8−s − 13−s − 16−s + · · ·

=
1

1 + 2−s + 2−2s
· 1

1 + 3−s + 3−2s
· 1

1− 5−2s
· 1

1− 7−2s
· · · .
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2.5. L-functions of elliptic curves

An elliptic curve over Q is a certain kind of algebraic curve that can be given by an equation of
the form

E: y2 = x3 + ax+ b, a, b ∈ Z, ∆ = −16(4a3 + 27b2) 6= 0.

For any prime number p - ∆, we study the solutions of this equation modulo p. More precisely, we
define

ap = p−#{(x, y) ∈ Z/pZ× Z/pZ | y2 = x3 + ax+ b}.

Next, we define L(E, s) by the Euler product

L(E, s) =
∏

p prime

(1− app−s + p · p−2s)−1 (<s > 3/2).

One can extend this to a completed L-function Λ(E, s) using specific factors for primes dividing
∆ and for the infinite place of Q.

Theorem 2.3 (modularity of elliptic curves over Q). Let E be an elliptic curve over Q of con-
ductor n. Then L(E, s) = L(f, s) for some primitive cusp form f of weight 2 and level n.

This theorem (formerly the Taniyama–Shimura conjecture) is a very deep result. It was proved
first for an important class of elliptic curves (the semi-stable ones, corresponding to square-free n)
in the work of Wiles, completed by Taylor and Wiles (1995), from which Fermat’s last theorem
follows. The modularity theorem was then proved in more generality by Diamond (1996), Conrad,
Diamond and Taylor (1999) and finally for arbitrary E by Breuil, Conrad, Diamond and Taylor
(2001).

The modularity theorem implies that L-functions of elliptic curves over Q admit an analytic
continuation to all of C. This is not at all obvious and there is no known direct way to prove it.

3. Conjectures

We have already encountered the Riemann hypothesis, which predicts that for any ‘nice’ L-function
L(X, s), all non-trivial zeroes of L(X, s) lie on the critical line. We will now mention some more
conjectures.

3.1. The Birch–Swinnerton-Dyer conjecture

Let E be an elliptic curve over a number field K. It is known that set E(K) of K-rational points
of E has the structure of a finitely generated Abelian group. It therefore has the form

E(K) ' E(K)tor ⊕ ZrkE(K).

Here E(K)tor is the subgroup of E(K) consisting of elements of finite order (the torsion subgroup)
and rkE(K) is a non-negative integer called the rank of E.

On the free Abelian group E(K)/E(K)tor, one has a certain real-valued positive definite bilin-
ear form, the Néron–Tate height pairing . From this one can construct a regulator RegE/K , which
is the determinant of the matrix of this bilinear form with respect to a basis of E(K)/E(K)tor.

The Tate–Shafarevich group of E is a certain Abelian torsion group ШE/K attached to E,
classifying locally soluble E-torsors. This group is conjectured to be finite for every E, but this
has not been proved in general. If ШE/K is finite, then its order is a square.

One can form an L-function L(E/K, s) in a similar way as we did above for elliptic curves
over Q. One can then defined a completed L-function Λ(E/K, s) by multiplying L(E/K, s) by a
finite number of elementary factors corresponding to the finite places of K at which E has bad
reduction and to the infinite places of K.

Conjecture 3.1 (Birch and Swinnerton-Dyer [2], Tate [8]). Let E be an elliptic curve over a
number field K. Then the following holds:

(1) The function Λ(E/K, s) can be continued to an entire function on the complex plane and
satisfies the functional equation

Λ(E/K, s) = ±Λ(E/K, 2− s).
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where the sign is +1 or −1 depending on whether rkE(K) is even or odd, respectively.

(2) The Tate–Shafarevich group ШE/K is finite.

(3) We have
ord
s=1

Λ(E/K, s) = rkE(K)

and the leading term of the power series expansion of Λ(E/K, s) at s = 1 is given by

lim
s→1

Λ(E/K, s)

(s− 1)rkE(K)
=

#ШE/K RegE/K

#E(K)2tor
.

Remark . A more standard formulation of the above conjecture also involves the product of the
Tamagawa numbers at the finite places, and the product of the periods at the infinite places.
Following Tate [8], we have absorbed these into the completed L-function Λ(E/K, s),

3.2. Application to the congruent number problem

A positive rational number n is called congruent if there exists a right-angled triangle with rational
side lengths and area n. The congruent number problem is the question which n are congruent.
This comes down to the question for which n the system of equations

a2 + b2 = c2 and ab = 2n

has a solution in non-zero rational numbers a, b, c.

Proposition 3.2. A positive rational number n is congruent if and only if the equation

y2 = x3 − n2x (3.1)

has a solution (x, y) ∈ Q×Q with y 6= 0.

It suffices to study the case where n is a square-free positive integer. The equation (3.1) defines
an elliptic curve En over Q. The congruent number problem was solved by Tunnell [9] assuming
the Birch–Swinnerton-Dyer conjecture for elliptic curves of the form En. We define sequences of
integers (an)n≥1, (bn)n≥1 and (cn)n≥1 by the following identities of power series in q:

g = q
∏
m≥1

(
(1− q8m)(1− q16m)),

g ·
∑
n∈Z

q2n
2

=
∑
n≥1

anq
n,

g ·
∑
n∈Z

q4n
2

=
∑
n≥1

bnq
n,

cn =

{
an if n is odd,
bn/2 if n is even.

Theorem 3.3 (Tunnell [9]). Let n be a square-free positive integer. If n is congruent, then cn = 0.
The converse is true if the Birch–Swinnerton-Dyer conjecture holds for the elliptic curve En.

Tunnell’s proof of the first implication relies on partial results on the Birch–Swinnerton-Dyer
conjecture due to Coates and Wiles.

3.3. The conjectures of Deligne and Beilinson, and of Bloch and Kato

For many arithmetic objects X (such as algebraic varieties over Q, and more generally motives,
although the theory of motives is still largely conjectural), one can define an L-function L(X, s)
and a real number Ω(X) called the period of X.

Conjecture 3.4 (Deligne [5], Beilinson [1]). For suitable X, one has

L(X, 0) = Ω(X) · r(X) for some r(X) ∈ Q×.

For X as above, one can also define a real number T (X) called the Tamagawa number of X.
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Conjecture 3.5 (Bloch, Kato [3]). For suitable X, the Tamagawa number T (X) is rational, and
one has

L(X, 0) = Ω(X) · T (X).

References

[1] A. A. Beilinson, Higher regulators and values of L-functions. Journal of Soviet Mathematics
30 (1985), 2036–2070.

[2] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II. Journal für die
reine und angewandte Mathematik 218 (1965), 79–108.

[3] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives. In: P. Cartier, L.
Illusie, N. M. Katz, G. Laumon, Yu. I. Manin and K. A. Ribet (editors), The Grothendieck
Festschrift, Volume I. Progress in Mathematics 86, Birkhäuser, Boston, Massachusetts, 1990.
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