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1.3 Modular forms and elliptic curves . . . . . . . . . . . . . . . . . 12

1.3.1 Elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 More examples of L-functions . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Artin L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 L-functions attached to elliptic curves . . . . . . . . . . . . . . . 17

1.4.3 L-functions attached to modular forms . . . . . . . . . . . . . . . 18

1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

In this first chapter, our main goal will be to motivate why one would like to study the

objects that this course is about, namely Galois representations and automorphic forms.

We give two examples that will later turn out to be known special cases of the Langlands

correspondence, namely Gauss’s quadratic reciprocity theorem and the modularity theo-

rem of Wiles et al. We note that the general Langlands correspondence is still largely

conjectural and drives much current research in number theory.

Along the way, we will encounter various number-theoretic objects, such as number

fields, elliptic curves, modular forms and Galois representations, and we will associate

L-functions to them. These will turn out to form the link by which one can relate objects

(such as elliptic curves and modular forms) that a priori seem to be very different.
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CHAPTER 1. INTRODUCTION 4

1.1 Quadratic reciprocity

Recall that if p is a prime number, then the Legendre symbol modulo p is defined, for all

a ∈ Z, by (
a

p

)
=


1 if a is a square in (Z/pZ)×,

−1 if a is a non-square in (Z/pZ)×,

0 if a is congruent to 0 modulo p.

Theorem 1.1 (Quadratic reciprocity law). Let p and q be two distinct odd prime numbers.

Then (
p

q

)
·
(
q

p

)
= (−1)

p−1
2

q−1
2 .

To put this in the context of this course, we consider two different objects. The first

object (a Dirichlet character) lives in the “automorphic world”, the second (a character of

the Galois group of a number field) lives in the “arithmetic world”.

On the one hand, consider the quadratic Dirichlet character

χq : (Z/qZ)× → {±1}

defined by the Legendre symbol

χq(a mod q) =

(
a

q

)
.

From the fact that the subgroup of squares has index 2 in F×q , it follows that χq is a

surjective group homomorphism.

On the other hand, we consider the field

Kq = Q(
√
q∗)

where q∗ = (−1)(q−1)/2q. The Galois group Gal(Kq/Q) has order 2 and consists of the

identity and the automorphism σ defined by σ(
√
q∗) = −

√
q∗.

To any prime p 6= q we associate a Frobenius element

Frobp ∈ Gal(Kq/Q).

The general definition does not matter at this stage; it suffices to know that

Frobp =

{
id if p splits in Kq,

σ if p is inert in Kq.

Furthermore, there exists a (unique) isomorphism

εq : Gal(Kq/Q)
∼−→ {±1}.

By definition, a prime p ∈ Z splits in Kq if and only if q∗ is a square modulo p; in other

words, we have

εq(Frobp) =

(
q∗

p

)
.
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Note that (
q∗

p

)
=

(
−1

p

)(q−1)/2(q
p

)
and (

−1

p

)
= (−1)(p−1)/2,

so the quadratic reciprocity law is equivalent to(
q∗

p

)
=

(
p

q

)
,

which is in turn equivalent to

εq(Frobp) = χq(p mod q).

Note that it is not at all obvious that the splitting behavior of a prime p in Kq only

depends on a congruence condition on p.

Sketch of proof of the quadratic reciprocity law. The proof uses the cyclotomic field Q(ζq).

It is known that this is an Abelian extension of degree φ(q) = q − 1 of Q, and that there

exists an isomorphism
(Z/qZ)×

∼−→ Gal(Q(ζq)/Q)

a 7−→ σa,

where σa is the unique automorphism of the field Q(ζq) with the property that σa(ζq) = ζaq .

There is a notion of Frobenius elements Frobp ∈ Q(ζq) for every prime number p different

from q, and we have

σp mod q = Frobp.

In Exercise (1.6), you will prove that there exists an embedding of number fields

Kq ↪→ Q(ζq).

Such an embedding (there are two of them) induces a surjective homomorphism between

the Galois groups. We consider the diagram

Gal(Q(ζq)/Q) // // Gal(Kq/Q)

εq∼
��

(Z/qZ)×

∼
OO

χq
// // {±1}.

Since the group (Z/qZ)× is cyclic, there exists exactly one surjective group homomorphism

(Z/qZ)× → {±1}, so we see that the diagram is commutative. Furthermore, the map on

Galois groups respects the Frobenius elements on both sides. Computing the image of p

in {±1} via the two possible ways in the diagram, we therefore conclude that

εq(Frobp) = χq(p mod q),

which is the identity that we had to prove.
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1.2 First examples of L-functions

1.2.1 The Riemann ζ-function

The prototypical example of an L-function is the Riemann ζ-function. It can be defined

in (at least) two ways: as a Dirichlet series

ζ(s) =
∑
n≥1

n−s

or as an Euler product

ζ(s) =
∏

p prime

1

1− p−s
.

Both the sum and the product converge absolutely and uniformly on subsets of C of the

form {s ∈ C | <s ≥ σ} with σ > 1. Both expressions define the same function because of

the geometric series identity

1

1− x
=
∞∑
n=0

xn for |x| < 1

and because every positive integer has a unique prime factorisation.

We define the completed ζ-function by

Z(s) = π−s/2Γ(s/2)ζ(s).

Here we have used the Γ-function, defined by

Γ(s) =

∫ ∞
0

exp(−t)tsdt
t

for <s > 0.

By repeatedly using the functional equation

Γ(s+ 1) = sΓ(s),

one shows that the Γ-function can be continued to a meromorphic function on C with

simple poles at the non-positive integers and no other poles.

Theorem 1.2 (Riemann, 1859). The function Z(s) can be continued to a meromorphic

function on the whole complex plane with a simple pole at s = 1 with residue 1, a simple

pole at s = 0 with residue −1, and no other poles. It satisfies the functional equation

Z(s) = Z(1− s).

Proof. (We omit some details related to convergence of sums and integrals.) The proof is

based on two fundamental tools: the Poisson summation formula and the Mellin trans-

form. The Poisson summation formula says that if f : R → C is smooth and quickly

decreasing, and we define the Fourier transform of f by

f̂(y) =

∫ ∞
−∞

f(x) exp(−2πixy)dx,
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then we have ∑
m∈Z

f(x+m) =
∑
n∈Z

f̂(n) exp(2πinx).

(This can be proved by expanding the left-hand side in a Fourier series and showing that

this yields the right-hand side.) In particular, putting x = 0, we get∑
m∈Z

f(m) =
∑
n∈Z

f̂(n).

For fixed t > 0, we now apply this to the function

ft(x) = exp(−πt2x2).

By Exercise 1.7, the Fourier transform of ft is given by

f̂t(y) = t−1 exp(−πy2/t2).

The Poisson summation formula gives∑
m∈Z

exp(−πm2t2) = t−1
∑
n∈Z

exp(−πn2/t2).

Hence, defining the function

φ : (0,∞) −→ R

t 7−→
∑
m∈Z

exp(−πm2t2),

we obtain the relation

φ(t) = t−1φ(1/t). (1.1)

The definition of φ(t) implies

φ(t)→ 1 as t→∞,

and combining this with the relation (1.1) between φ(t) and φ(1/t) gives

φ(t) ∼ t−1 as t→ 0.

To apply the Mellin transform, we need a function that decreases at least polynomially as

t→∞. We therefore define the auxiliary function

φ0(t) = φ(t)− 1

= 2

∞∑
m=1

exp(−πm2t2).

Then we have

φ0(t) ∼ t−1 as t→ 0

and

φ0(t) ∼ 2 exp(−πt2) as t→∞.

Furthermore, the equation (1.1) implies

φ0(t) = t−1φ0(1/t) + t−1 − 1. (1.2)
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Next, we consider the Mellin transform of φ0, defined by

(Mφ0)(s) =

∫ ∞
0

φ0(t)ts
dt

t
.

Due to the asymptotic behaviour of φ0(t), the integral converges for <s > 1. We will now

rewrite (Mφ0)(s) in two different ways to prove the analytic continuation and functional

equation of Z(s).

On the one hand, substituting the definition of φ0(t), we obtain

(Mφ0)(s) = 2

∫ ∞
0

( ∞∑
n=1

exp(−πn2t2)

)
ts
dt

t

= 2

∞∑
n=1

∫ ∞
0

exp(−πn2t2)ts
dt

t
.

Making the change of variables u = πn2t2 in the n-th term, we obtain

(Mφ0)(s) =

∞∑
n=1

∫ ∞
0

exp(−u)

(
u

πn2

)s/2du
u

= π−s/2
∞∑
n=1

n−s
∫ ∞

0
exp(−u)us/2

du

u

=
Γ(s/2)

πs/2
ζ(s)

= Z(s).

On the other hand, we can split up the integral defining (Mφ0)(s) as

(Mφ0)(s) =

∫ 1

0
φ0(t)ts

dt

t
+

∫ ∞
1

φ0(t)ts
dt

t
.

Substituting t = 1/u in the first integral and using (1.2), we get∫ 1

0
φ0(t)ts

dt

t
=

∫ ∞
1

φ0(1/u)u−s
du

u

=

∫ ∞
1

(
uφ0(u) + u− 1

)
u−s

du

u
.

Using the identity
∫∞

1 u−a duu = 1/a for <a > 0, we conclude

(Mφ0)(s) =
1

s− 1
− 1

s
+

∫ ∞
1

φ0(t)ts
dt

t
+

∫ ∞
1

φ0(t)t1−s
dt

t
.

From the two expressions for (Mφ0)(s) obtained above, both of which are valid for

<s > 1, we conclude that Z(s) can be expressed for <s > 1 as

Z(s) = (Mφ0)(s)

=
1

s− 1
− 1

s
+

∫ ∞
1

φ0(t)ts
dt

t
+

∫ ∞
1

φ0(t)t1−s
dt

t
.

Both integrals converge for all s ∈ C. The right-hand side therefore gives the meromorphic

continuation of Z(s) with the poles described in the theorem. Furthermore, it is clear that

the right-hand side is invariant under the substitution s 7→ 1− s.
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Remark 1.3. Each of the above two ways of writing ζ(s) (as a Dirichlet series or as an

Euler product) expresses a different aspect of ζ(s). The Dirichlet series is needed to obtain

the analytic continuation, while the Euler product highlights the relationship to the prime

numbers.

1.2.2 Dedekind ζ-functions

The Riemann ζ-function expresses information related to arithmetic in the rational field Q.

Next, we go from Q to general number fields (finite extensions of Q). We will introduce

Dedekind ζ-functions, which are natural generalisations of the Riemann ζ-function to

arbitrary number fields.

Let K be a number field, and let OK be its ring of integers. For every non-zero ideal

a of OK , the norm of a is defined as

N(a) = #(OK/a).

Definition 1.4. Let K be a number field. The Dedekind ζ-function of K is the function

ζK : {s ∈ C | <s > 1} → C

defined by

ζK(s) =
∑

a⊆OK

N(a)−s,

where a runs over the set of all non-zero ideals of OK .

By unique prime ideal factorisation in OK , we can write

ζK(s) =
∏
p

1

1−N(p)−s
,

where p runs over the set of all non-zero prime ideals of OK .

The same reasons why one should be interested the Riemann ζ-function also apply to

the Dedekind ζ-function: its non-trivial zeroes encode the distribution of prime ideals in

OK , while its special values encode interesting arithmetic data associated with K.

Let ∆K ∈ Z be the discriminant of K, and let r1 and r2 denote the number of real and

complex places of K, respectively. Then one can show that the completed ζ-function

ZK(s) = |∆K |s/2
(
π−s/2Γ(s/2)

)r1((2π)1−sΓ(s)
)r2ζK(s)

has a meromorphic continuation to C and satisfies

ZK(s) = ZK(1− s).

Theorem 1.5 (Class number formula). Let K be a number field. In addition to the above

notation, let hK denote the class number, RK the regulator, and wK the number of roots

of unity in K. Then ζK(s) has a simple pole in s = 1 with residue

Ress=1ζK(s) =
2r1(2π)r2hKRK

|∆K |1/2wK
.

Furthermore, one has

lim
s→0

ζK(s)

sr1+r2−1
= −hKRK

wK
.
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1.2.3 Dirichlet L-functions

Next, we will describe a construction of L-functions that is of a somewhat different nature,

since it does not directly involve number fields or Galois theory. Instead, it is more

representative of the L-functions that we will later attach to automorphic forms.

Definition 1.6. Let n be a positive integer. A Dirichlet character modulo n is a group

homomorphism

χ : (Z/nZ)× → C×.

Let n be a positive integer, and let χ be a Dirichlet character modulo n. We extend χ

to a function

χ̃ : Z→ C

by putting

χ̃(m) =

{
χ(m mod n) if gcd(m,n) = 1,

0 if gcd(m,n) > 1.

By abuse of notation, we will usually write χ for χ̃. Furthermore, we let χ̄ denote the

complex conjugate of χ, defined by

χ̄ : Z→ C
m 7→ χ(m).

One checks immediately that χ̄ is a Dirichlet character satisfying

χ(m)χ̄(m) =

{
1 if gcd(m,n) = 1,

0 if gcd(m,n) > 1.

For fixed n, the set of Dirichlet characters modulo n is a group under pointwise multi-

plication, with the identity element being the trivial character modulo n and the inverse

of χ being χ̄. This group can be identified with Hom((Z/nZ)×,C×). It is non-canonically

isomorphic to (Z/nZ)×, and its order is φ(n), where φ is Euler’s φ-function.

Let n, n′ be positive integers with n | n′, and let χ be a Dirichlet character modulo m.

Then χ can be lifted to a Dirichlet character χ(n′) modulo n′ by putting

χ(n′)(m) =

{
χ(m) if gcd(m,n′) = 1,

0 if gcd(m,n′) > 1.

The conductor of a Dirichlet character χ modulo n is the smallest divisor nχ of n such that

there exists a Dirichlet character χ0 modulo nχ satisfying χ = χ
(n)
0 . A Dirichlet character

χ modulo n is called primitive if nχ = n.

Remark 1.7. If you already know about the topological ring Ẑ = lim←−n≥1
Z/nZ of profinite

integers, you may alternatively view a Dirichlet character as a continuous group homo-

morphism

χ : Ẑ× → C×.

This is a first step towards the notion of automorphic representations. Vaguely speak-

ing, these are representations (in general infinite-dimensional) of non-commutative groups

somewhat resembling Ẑ×.
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Note that when we view Dirichlet characters as homomorphisms χ : Ẑ× → C×, there

is no longer a notion of a modulus of χ. However, we can recover the conductor of χ as

the smallest positive integer nχ for which χ can be factored as a composition

χ : Ẑ× → (Z/nχZ)× → C×.

Definition 1.8. Let χ : Z → C be a Dirichlet character modulo n. The Dirichlet L-

function attached to χ is the function

L(χ, s) =

∞∑
n=1

ann
−s.

In a similar way as for the Riemann ζ-function, one shows that the sum converges

absolutely and uniformly on every right half-plane of the form {s ∈ C | <s ≥ σ} with

σ > 1. This implies that the above Dirichlet series defines a holomorphic function L(χ, s)

on the right half-plane {s ∈ C | <s > 1}.
Furthermore, the multiplicativity of L(χ, s) implies the identity

L(χ, s) =
∏

p prime

1

1− χ(p)p−s
for <s > 1.

In Exercise 1.8, you will show that L(χ, s) admits an analytic continuation and functional

equation similar to those for ζ(s).

Remark 1.9. The functions L(χ, s) were introduced by P. G. Lejeune-Dirichlet in the proof

of his famous theorem on primes in arithmetic progressions:

Theorem (Dirichlet, 1837). Let n and a be coprime positive integers. Then there exist

infinitely many prime numbers p with p ≡ a (mod n).

1.2.4 An example of a Hecke L-function

Just as Dedekind ζ-functions generalise the Riemann ζ-function, the Dirichlet L-functions

L(χ, s) can be generalised to L-functions of Hecke characters. As the definition of Hecke

characters is slightly involved, we just give an example at this stage.

Let I be the group of fractional ideals of the ring Z[
√
−1] of Gaussian integers. We

define a group homomorphism

χ : I → Q(
√
−1)×

a 7→ a4,

where a ∈ Q(
√
−1) is any generator of the fractional ideal a. Such an a exists because

Z[
√
−1] is a principal ideal domain, and is unique up to multiplication by a unit in Z[

√
−1].

In particular, since all units in Z[
√
−1] are fourth roots of unity, χ(a) is independent of

the choice of the generator a. Furthermore, we have N(a) = |a|2. After choosing an

embedding Q(
√
−1) � C, we can view χ as a homomorphism I → C×. This is one of the

simplest examples of a Hecke character.

We define a Dirichlet series L(χ, s) by

L(χ, s) =
∑
a

χ(a)N(a)−s,
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where a runs over all non-zero integral ideals of Z[
√
−1], and where as before N(a) denotes

the norm of the ideal a. One can check that this converges for 4− 2s < −2 and therefore

defines a holomorphic function on {s ∈ C | <s > 3}. By unique ideal factorisation in

Z[
√
−1], this L-function admits an Euler product

L(χ, s) =
∏
p

1

1− χ(p)N(p)−s

=
∏

p prime

∏
p|p

1

1− χ(p)N(p)−s
.

where p runs over the set of all non-zero prime ideals of Z[
√
−1].

Concretely, the ideals of smallest norm in Z[
√
−1] and the values of χ on them are

a (1) (1 + i) (2) (2 + i) (2− i) (2 + 2i) (3) (3 + i) (3− i)
N(a) 1 2 4 5 5 8 9 10 10

χ(a) 1 −4 16 −7 + 24i −7− 24i −64 81 28− 96i 28− 96i

This gives the Dirichlet series

L(χ, s) = 1−s − 4 · 2−s + 16 · 4−s − 14 · 5−s − 64 · 8−s + 81 · 9−s + 56 · 10−s + · · ·

and the Euler product

L(χ, s) =
1

1 + 22 · 2−s
· 1

1− (−7 + 24i) · 5−s
· 1

1− (−7− 24i) · 5−s
· 1

1− 92 · 9−s
· · ·

=
1

1 + 22 · 2−s
· 1

1− 34 · 3−2s
· 1

1− 14 · 5−s + 54 · 5−2s
· · · .

1.3 Modular forms and elliptic curves

1.3.1 Elliptic curves

Let E be an elliptic curve over Q, given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients a1, . . . , a6 ∈ Z. We will assume that this equation has minimal discrim-

inant among all Weierstrass equations for E with integral coefficients. For every prime

power q = pm, we let Fq denote a finite field with q elements, and we consider the number

of points of E over Fq. Including the point at infinity, the number of points is

#E(Fq) = 1 + #{(x, y) ∈ Fq | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 = 0}.

For every prime number p, we then define a power series ζE,p ∈ Q[[t]] by

ζE,p = exp

( ∞∑
m=1

#E(Fpm)

m
tm

)
.
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Theorem 1.10 (Schmidt, 1931; Hasse, 1934). If E has good reduction at p, then there

exists an integer ap such that

ζE,p =
1− apt+ pt2

(1− t)(1− pt)
∈ Z[[t]].

Furthermore, ap satisfies

|ap| ≤ 2
√
p.

Looking at the coefficient of t in ζE,p, we see in particular that the number of Fp-rational

points is given in terms of ap by

#E(Fp) = p+ 1− ap. (1.3)

Next, suppose that E has bad reduction at p. Then an analogue of Theorem 1.10 holds

without the term pt2, and the formula (1.3) remains valid. In this case, there are only

three possibilities for ap, namely

ap =


1 if E has split multiplicative reduction at p,

−1 if E has non-split multiplicative reduction at p,

0 if E has additive reduction at p.

Remark 1.11. If E has bad reduction at p, then the reduction of E modulo p has a unique

singular point, and this point is Fp-rational. The formula (1.3) for #E(Fp) includes this

singular point. It is not obvious at first sight whether this point should be included in

#E(Fp) or not; it turns out that including it is the right choice for defining the L-function.

We combine all the functions ζE,p by putting

ζE(s) =
∏

p prime

ζE,p(p
−s).

By Theorem 1.10, the infinite product converges absolutely and uniformly on every set of

the form {s ∈ C | <s ≥ σ} with σ > 3/2.

More generally, one can try to find out what happens when we replace the elliptic

curve E by a more general variety X (more precisely, a scheme of finite type over Z). We

can define local factors ζX,p and their product

ζX(s) =
∏

p prime

ζX,p(p
−s).

in the same way as above; some care must be taken at primes of bad reduction. However,

much less is known about the properties of ζX(s) for general X. The function ζX(s) is

known as the Hasse–Weil ζ-function of X, and the Hasse–Weil conjecture predicts that

ζX(s) can be extended to a meromorphic function on the whole complex plane, satisfying

a certain functional equation.

For elliptic curves E over Q, the Hasse–Weil conjecture is true because of the modularity

theorem, which implies that ζE(s) can be expressed in terms of the Riemann ζ-function

and the L-function of a modular form. More generally, for other varieties X, one may

try to express ζX(s) in terms of “modular”, or more appropriately, “automorphic” objects,

and use these to establish the desired analytic properties of ζX(s). This is one of the

motivations for the Langlands conjecture.



CHAPTER 1. INTRODUCTION 14

Remark 1.12. For an interesting overview of both the mathematics and the history behind

ζ-functions and the problem of counting points on varieties over finite fields, see F. Oort’s

article [11].

1.3.2 Modular forms

We will denote by H the upper half-plane

H = {z ∈ C | =z > 0}.

This is a one-dimensional complex manifold equipped with a continuous left action of the

group

SL2(R) =

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}
.

A particular role will be played by the group

SL2(Z) =

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
and the groups

Γ(n) =

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1

0

0

1

)
mod n}

for n ≥ 1.

Definition 1.13. A congruence subgroup of SL2(Z) is a subgroup of SL2(Z) that contains

Γ(n) for some n ≥ 1.

Definition 1.14. Let Γ be a congruence subgroup of SL2(Z), and let k be a positive

integer. A modular form of weight k is a holomorphic function

f : H → C

with the following properties:

(i) For all
(
a
c
b
d

)
∈ Γ, we have

f

(
az + b

cz + d

)
= (cz + d)kf(z).

(ii) The function f is “holomorphic at the cusps of Γ”. (We will not make this precise

now.)

From now on we assume (for simplicity) that Γ is of the form

Γ1(n) =

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1

0

∗
1

)
mod n}

for some n ≥ 1. Then Γ contains the matrix
(

1
0

1
1

)
. Then the above definition implies that

every modular form for Γ can be written as

f(z) =
∞∑
m=0

am exp(2πiz) with a0, a1, . . . ∈ C.
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1.4 More examples of L-functions

1.4.1 Artin L-functions

We now introduce Artin L-functions, which are among the most fundamental examples

of L-functions in the “arithmetic world”. The easiest non-trivial Artin L-functions are

already implicit in the quadratic reciprocity law, and are obtained as follows.

Example 1.15. Let K be a quadratic field of discriminant d, so that K = Q(
√
d). Further-

more, let εK be the unique isomorphism Gal(K/Q)
∼−→ {±1}. Similarly to what we did

in §1.1, to every prime p that is unramified in K (i.e. to every prime p - d), we associate

a Frobenius element Frobp ∈ Gal(K/Q) by putting

Frobp =

{
id if p splits in K,

σ if p is inert in K.

In other words, we have

Frobp =

(
d

p

)
The Artin L-function attached to εK is then defined by the Euler product

L(εK , s) =
∏

p unramified in K

(1− εK(Frobp)p
−s)−1

=
∏

p prime

(
1−

(
d

p

)
p−s
)−1

.

The quadratic reciprocity law can be viewed as saying that if q is a prime number and

K = Q(
√
q∗), where q∗ = (−1)(q−1)/2q, and χq is the quadratic Dirichlet character defined

by χq(a mod q) =
(
a
q

)
, then we have an equality of L-functions

L(εK , s) = L(χq, s).

As a first step towards studying non-Abelian Galois groups and their (higher-dimensional)

representations, we make the following definition.

Definition 1.16. Let K be a finite Galois extension of Q, and let n be a positive integer.

An Artin representation is a group homomorphism

ρ : Gal(K/Q) −→ GLn(C).

Artin representations are examples of Galois representations. More general Galois

representations are obtained by looking at arbitrary Galois extensions of fields and GLn
over other rings.

Remark 1.17. Let Q be an algebraic closure of Q, and view K as a subfield of Q by

choosing an embedding. Then Gal(K/Q) is a finite quotient of the infinite Galois group

Gal(Q/Q). Just as we can view a Dirichlet character as a continuous one-dimensional

C-linear representation of the topological group Ẑ×, we can view an Artin representation

as a continuous n-dimensional C-linear representation of the topological group Gal(Q/Q)

factoring through the quotient map Gal(Q/Q)→ Gal(K/Q).
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Next, we want to attach an L-function to an Artin representation. If p is a prime

number such that the number field K is unramified at p, then we can define a Frobenius

conjugacy class at p in Gal(K/Q). If σp is any Frobenius element at p (i.e. an element of

the Frobenius conjugacy class), then we define the characteristic polynomial of Frobenius

Fρ,p ∈ C[t] by the formula

Fρ,p = det(1− ρ(σp)t) ∈ C[t].

(This is the determinant of an n × n-matrix with coefficients in C[t].) More generally, if

K is possibly ramified at p, we have to modify the above definition; this gives rise to a

polynomial Fρ,p ∈ C[t] of degree at most n.

Definition 1.18. Let ρ : Gal(K/Q) → GLn(C) be an Artin representation. The Artin

L-function of ρ is the function ∏
p prime

1

Fρ,p(p−s)
.

One can show that the product converges absolutely and uniformly for s in sets of the

form {s ∈ C | <s ≥ a} with a > 1.

Example 1.19. Let K be the splitting field of the irreducible polynomial f = x3 − x− 1 ∈
Q[x]. Because the discriminant of f equals −23, which is not a square, we have

K = Q(α,
√
−23),

where α is a solution of α3 − α− 1 = 0. The number field K has discriminant −233, and

the Galois group of K over Q is isomorphic to the symmetric group S3 of order 6.

The group S3 has a two-dimensional representation S3 → GL2(C) defined by

(1) 7→
(

1
0

0
1

)
,

(23) 7→
(

0
1

1
0

)
,

(12) 7→
(−1

0
−1
1

)
,

(13) 7→
(

1
−1

0
−1

)
,

(123) 7→
(−1

1
−1
0

)
,

(132) 7→
(

0
−1

1
−1

)
.

Composing this with some isomorphism Gal(K/Q)
∼−→ S3 gives an Artin representation

ρ : Gal(K/Q)→ GL2(C).

The Frobenius conjugacy class at a prime p can be read off from the splitting behaviour

of p in K, which in turn can be read off from the number of roots of the polynomial

x3 − x− 1 modulo p. (These are only equivalent because the Galois group is so small; for

general Galois groups, the situation is more complicated.) It is a small exercise to show

that for a prime number p 6= 23, there are three possibilities:

• −23 is a square modulo p, the polynomial x3 − x− 1 has three roots modulo p, and

the Frobenius conjugacy class is {(1)};

• −23 is a square modulo p, the polynomial x3−x− 1 has no roots modulo p, and the

Frobenius conjugacy class is {(123), (132)};

• −23 is not a square modulo p, the polynomial x3 − x − 1 has exactly one root

modulo p, and the Frobenius conjugacy class is {(12), (13), (23)}.
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Moreover, one computes the polynomial Fρ,p ∈ C[t] by taking the characteristic polynomial

of the matrices in the corresponding Frobenius conjugacy class. For the first few prime

numbers p, this gives

p 2 3 5 7 11 . . . 23 . . . 59 . . .

[σp] (123) (123) (12) (12) (12) . . . − . . . (1) . . .

Fρ,p 1 + t+ t2 1 + t+ t2 1− t2 1− t2 1− t2 . . . 1− t . . . 1− 2t+ t2 . . .

The Euler product and Dirichlet series of L(ρ, s) look like

L(ρ, s) =
1

1 + 2−s + 2−2s
· 1

1 + 3−s + 3−2s
· 1

1− 5−2s
· 1

1− 7−2s
· · · 1

1− 23−s
· · ·

= 1−s − 2−s − 3−s + 6−s + 8−s − 13−s − 16−s + 23−s − 24−s + · · · .

1.4.2 L-functions attached to elliptic curves

We have seen several examples of L-functions attached to number-theoretic objects such

as number fields, Dirichlet characters and Artin representations. It turns out to be very

fruitful to define L-functions for geometric objects as well. Our first example is that of

elliptic curves over Q.

Let E be an elliptic curve over Q. For every prime number p, we define ap as in §1.3.1,

and we put

ε(p) =

{
1 if E has good reduction at p,

0 if E has bad reduction at p.

We can now define the L-function of the elliptic curve E as

L(E, s) =
∏

p prime

1

1− app−s + ε(p)p1−2s
.

As we saw in §1.3.1, this infinite product defines a holomorphic function L(E, s) on the

right half-plane {s ∈ C | <s > 3/2}. Furthermore, the ζ-function of E can be expressed

as

ζE(s) =
ζ(s)ζ(s− 1)

L(E, s)
.

Example 1.20. Let E be the elliptic curve

E : y2 = x3 − x2 + x.

This curve has bad reduction at the primes 2 and 3. Counting points on E over the fields

Fp for p ∈ {2, 3, 5, 7, 11} gives

p 2 3 5 7 11

ap 0 −1 −2 0 4

This shows that the L-function of E looks like

L(E, s) =
1

1
· 1

1 + 3−s
· 1

1 + 2 · 5−s + 5 · 5−2s
· 1

1 + 7 · 7−2s
· 1

1− 4 · 11−s + 11 · 11−2s
· · ·

= 1−s − 3−s − 2 · 5−s + 9−s + 4 · 11−s + · · ·



CHAPTER 1. INTRODUCTION 18

We recall that by the Mordell–Weil theorem, the set E(Q) of rational points on E has

the structure of a finitely generated Abelian group. The rank of this Abelian group is still

far from understood; it is expected to be linked to the L-function of E by the following

famous conjecture.

Conjecture 1.21 (Birch and Swinnerton-Dyer). Let E be an elliptic curve over Q. Then

L(E, s) can be continued to a holomorphic function on the whole complex plane, and its

order of vanishing at s = 1 equals the rank of E(Q).

Some partial results on this conjecture are known; in particular, it follows from work

of Gross, Zagier and Kolyvagin that if the order of vanishing of L(E, s) at s = 1 is at most

1, then this order of vanishing is equal to the rank of E(Q).

Remark 1.22. There exists a refined version of the conjecture of Birch and Swinnerton-

Dyer that also predicts the leading term in the power series expansion of L(E, s) around

s = 1. The predicted value involves various arithmetic invariants of E; explaining these is

beyond the scope of this course.

1.4.3 L-functions attached to modular forms

Let n and k be positive integers, and let f be a modular form of weight k for the group

Γ1(n), with q-expansion

f(z) =

∞∑
m=0

amq
m (q = exp(2πiz)).

The L-function of f is defined as the Dirichlet series

L(f, s) =
∞∑
m=1

amm
−s

for <s > (k + 1)/2. (Note that a0 does not appear in the sum defining L(f, s).)

Furthermore, we define the completed L-function attached to f as

Λ(f, s) = ns/2
Γ(s)

(2π)s
L(f, s).

Theorem 1.23. Suppose f is a primitive cusp form. Then Λ(f, s) can be continued to a

holomorphic function on all of C. Furthermore, there exist a primitive cusp form f∗ and

a complex number εf of absolute value 1 such that Λ(f, s) and Λ(f∗, s) are related by the

functional equation

Λ(f, k − s) = εfΛ(f∗, s).

The proof of this theorem has some similarities to that of Theorem 1.2. The main

tools are the theory of newforms, the Fricke (or Atkin–Lehner) operator wn, and the

Mellin transform.

The following theorem was proved by Wiles in 1993, with an important contribution by

Taylor, in the case of semi-stable elliptic curves, i.e. curves having good or multiplicative

reduction at every prime. The proof for general elliptic curves was finished by a sequence

of papers by Breuil, Conrad, Diamond and Taylor.
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Theorem 1.24 (Modularity of elliptic curves over Q). Let E be an elliptic curve over Q.

Then there exist a positive integer n and a primitive cusp form f of weight 2 for the group

Γ0(n) such that

L(E, s) = L(f, s).

1.5 Exercises

Exercise 1.1. Let p be an odd prime number. Prove the following formulae for the

Legendre symbol
(
p

)
:

(
−1

p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4);(
2

p

)
=

{
1 if p ≡ 1, 7 (mod 8),

−1 if p ≡ 3, 5 (mod 8);(
−2

p

)
=

{
1 if p ≡ 1, 3 (mod 8),

−1 if p ≡ 5, 7 (mod 8).

(Hint: embed the quadratic fields Q(
√
d) for d ∈ {−1, 2,−2} into the cyclotomic field

Q(ζ8).)

Remark: Together with the quadratic reciprocity law
( q
p

)
= (−1)

p−1
2

q−1
2

(p
q

)
for odd

prime numbers q 6= p, these formulae make it possible to express
(
a
p

)
in terms of congruence

conditions on p for all a ∈ Z.

Exercise 1.2. Let K be a quadratic field, and let εK be the unique injective homomor-

phism from Gal(K/Q) to C×. Prove the identity

ζK(s) = ζ(s)L(εK , s).

Exercise 1.3. Show that the character χ : I → C× defined in §1.2.4, where I the group

of fractional ideals of Z[
√
−1], is injective.

Exercise 1.4. Let χ be a Dirichlet character modulo n. We consider the function Z→ C
sending an integer m to the complex number

τ(χ,m) =

n−1∑
j=0

χ(j) exp(2πijm/n).

(This can be viewed as a discrete Fourier transform of χ.) The case m = 1 deserves special

mention: the complex number

τ(χ) = τ(χ, 1) =
n−1∑
j=0

χ(j) exp(2πij/n)

is called the Gauss sum attached to χ.

(a) Compute τ(χ) for all non-trivial Dirichlet characters χ modulo 4 and modulo 5,

respectively.
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(b) Suppose that χ is primitive. Prove that for all m ∈ Z we have

τ(χ,m) = χ̄(m)τ(χ).

(Hint: writing d = gcd(m,n), distinguish the cases d = 1 and d > 1.)

(c) Deduce that if χ is primitive, we have

τ(χ)τ(χ̄) = χ(−1)n

and

τ(χ)τ(χ) = n.

Exercise 1.5. Let χ be a primitive Dirichlet character modulo n. The generalised

Bernoulli numbers attached to χ are the complex numbers Bk(χ) for k ≥ 0 defined by the

identity
∞∑
k=0

Bk(χ)

k!
tk =

t

exp(nt)− 1

n∑
j=1

χ(j) exp(jt)

in the ring C[[t]] of formal power series in t.

(a) Prove that if χ is non-trivial (i.e. n > 1), then we have

n−1∑
j=0

χ(j)
x+ exp(2πij/n)

x− exp(2πij/n)
=

2n

τ(χ̄)(xn − 1)

n−1∑
m=0

χ̄(m)xm

in the field C(x) of rational functions in the variable x. (Hint: compute residues.)

(b) Prove that for every integer k ≥ 2 such that (−1)k = χ(−1), the special value of the

Dirichlet L-function of χ at k is

L(χ, k) = − (2πi)kBk(χ̄)

2τ(χ̄)nk−1k!
.

(Hint: use the identity cos z
sin z = 1

z +
∑∞

m=1

(
1

z−mπ + 1
z+mπ

)
.)

Exercise 1.6. Let q be an odd prime number, and let q∗ = (−1)(q−1)/2q. Use Gauss sums

to prove that there exists an inclusion of fields

Q(
√
q∗) ↪→ Q(ζq).

Exercise 1.7. The Fourier transform of a quickly decreasing function f : R→ C is defined

by

f̂(y) =

∫ ∞
−∞

f(x) exp(−2πixy)dx.

(a) Let f : R→ C be a quickly decreasing function, let c ∈ R, and let fc(x) = f(x+ c).

Show that f̂c(y) = exp(2πicy)f̂(y).

(b) Let f : R → C be a quickly decreasing function, let c > 0, and let f c(x) = f(cx).

Show that f̂ c(y) = c−1f̂(y/c).
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(c) Let g+(x) = exp(−πx2). Show that ĝ+(y) = g+(y).

(d) Let g−(x) = πx exp(−πx2). Show that ĝ−(y) = −ig−(y).

(Hint for (c) and (d): shift the line of integration in the complex plane.)

Exercise 1.8. Let n be a positive integer, and let χ be a primitive Dirichlet character

modulo n. Recall that the Dirichlet L-function attached to χ is defined by

L(χ, s) =

∞∑
m=1

χ(m)m−s for <s > 1.

Recall that χ is called even if χ(−1) = 1 and odd if χ(−1) = −1. We define the completed

Dirichlet L-function Λ(χ, s) by

Λ(χ, s) =

{
ns/2 Γ(s/2)

πs/2
L(χ, s) if χ is even

ns/2 Γ((s+1)/2)

π(s−1)/2 L(χ, s) if χ is odd.

The goal of this exercise is to generalise the proof of Theorem 1.2 to show that Λ(χ, s)

admits an analytic continuation and functional equation.

We define two functions g+, g− : R→ C by

g+(x) = exp(−πx2),

g−(x) = πx exp(−πx2).

For every primitive Dirichlet character χ modulo n, we define a function

φχ(t) =

{∑
m∈Z χ(m)g+(mt) if χ is even,∑
m∈Z χ(m)g−(mt) if χ is odd.

(a) Prove the identity

φχ(t) =

{
τ(χ)
nt φχ̄

(
1
nt

)
if χ is even,

τ(χ)
int φχ̄

(
1
nt

)
if χ is odd.

(Hint: use the Poisson summation formula and Exercises 1.4 and 1.7.)

From now on, we assume that χ is non-trivial, i.e. n > 1.

(b) Give asymptotic expressions for φχ(t) as t → 0 and as t → ∞. (Note: the answer

depends on χ.)

(c) Let Mφχ be the Mellin transform of φχ,defined by

(Mφχ)(s) =

∫ ∞
0

φχ(t)ts
dt

t
.

Prove that the integral converges for all s ∈ C, and that the completed L-function

can be expressed as

Λ(χ, s) = ns/2(Mφχ)(s) for <s > 1.
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(d) Conclude that Λ(χ, s) can be continued to a holomorphic function on all of C (with-

out poles), and that Λ(χ, s) and Λ(χ̄, s) are related by the functional equation

Λ(χ, s) = εχΛ(χ̄, 1− s),

where εχ is the complex number of absolute value 1 defined by

εχ =


τ(χ)√
n

if χ is even,
τ(χ)
i
√
n

if χ is odd.

Exercise 1.9. Let a, b ∈ Z, and suppose that the integer ∆ = −16(4a3 +27b2) is non-zero.

Let E over Z[1/∆] be the elliptic curve given by the equation y2 = x3 + ax+ b. Let p be

a prime number not dividing ∆, and write

NE(Fp) = 1 + #{(x, y) ∈ Fp | y2 = x3 + ax+ b}.

Prove that

NE(Fp) = 1 +
∑
x∈Fp

((
x3 + ax+ b

p

)
+ 1

)
where

( ·
·
)

is the Legendre symbol.

Exercise 1.10. Up to isogeny, there are three distinct elliptic curves of conductor 57,

namely
E1 : y2 + y = x3 − x2 − 2x+ 2,

E2 : y2 + xy + y = x3 − 2x− 1,

E3 : y2 + y = x3 + x2 + 20x− 32.

The newforms of weight 2 for the group Γ0(57) are

f1 = q − 2q2 − q3 + 2q4 − 3q5 +O(q6),

f2 = q − 2q2 + q3 + 2q4 + q5 +O(q6),

f3 = q + q2 + q3 − q4 − 2q5 +O(q6).

Which form corresponds to which elliptic curve under Wiles’s modularity theorem?
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up on algebraic number theory from Neukirch’s book, the course of Stevenhagen, and the
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2.1 Profinite groups

Topological groups and algebraic groups

In this course a central role will be played by groups that are equipped with a topology.

This concept will be both important for automorphic forms and Galois representations.

Definition 2.1. A group (G,m) is a topological group if the underlying set G is equipped

with the structure of a topological space such that the multiplication map m : G×G→ G,

(g, h) 7→ gh and the inversion map G→ G, g 7→ g−1 are continuous.

Example 2.2. The following groups are all topological groups

• (Rn,+), (Cn,+), (R×,×), (R>0,×), (GLn(R), ·), (GLn(C), ·).

• (R/Z) = S1, the circle group.

• The set of solutions E(R)∪{∞} to the equation y2 = x3 +ax+ b of an elliptic curve

E/R adjoined with the point ‘∞’ at infinity, with the usual addition of points where

∞ serves as the identity element for addition.

• Any finite group is a topological group for the discrete topology and also the indis-

crete topology.

• An algebraic group G/C is actually a topological group for (at least) two topologies:

The Zariski topology, and the complex topology on G(C).

• .... and so on

Remark 2.3. A more formal way to think about topological groups is to use the concept of

“group object”. Consider a category C in which fibre products exist, so that in particular

C has a terminal object t. If A,B ∈ C are objects, we write A(B) = HomC(B,A). This

way A can be viewed as a covariant functor from C to the category of sets (cf. the Yoneda

lemma). A group object in C is a triple (G, e,m, i) with G ∈ C an object, e : t → G the

‘unit element’, m : G × G → G the ‘multiplication’ and i : G → G the ‘inversion’, such

that (?) for every test object T ∈ C the maps m(T ) and i(T ) on G(T ) turn the set G(T )

into a group with unit t(T )(•) (where ‘•’ is the unique element of t(T )). The condition

(?) can also be stated be requiring that a certain amount of diagrams involving m and i

are commutative (expressing for instance the fact that m should be associative). In this

sense, a topological group is a group object in the category of topological spaces.

Apart from topological groups, a typical example are the Lie groups. A Lie group is a

smooth manifold equipped with C∞-maps m : G × G → G and i : G → G making G into

a group. Finally, in this course, algebraic groups will play an important role as well.

Definition 2.4. Let k be a commutative ring (for instance an algebraically closed field).

An algebraic group over k is an affine or projective variety X over k with a section

e : spec(k) → X, a multiplication morphism m : X × X → X and an inversion mor-

phism i : X → X satisfying the usual group axioms, i.e. (X, e,m, i) is a group object in

the category of k-varieties.
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Example 2.5. The following are all algebraic groups,

• The variety GLn defined by the polynomial equation

det

 X11 X21 ··· Xn1
X21 X22 ··· Xn2
...

...
...

X1n X2n ··· Xnn

 6= 0

in n2-dimensional affine space, with coordinates X11, . . ., Xnn. The map sending

Xij to 1 if i = j and to 0 otherwise defines the unit section spec(k) → GLn. The

usual matrix product (Xij)
n
i,j=1 · (Yij)ni,j=1 = (

∑n
k=1XikYkj)

n
i,j=1 is a morphism of

varieties m : GLn×GLn → GLn. Similarly, the inverse map X = (Xij)
n
i,j=1 7→

1
det(X)

(
det(Xij)

)n
i,j=1

is a morphism of varieties (in the above formula Xij is the

minor of X, obtained by removing the i-th row and j-th column from X). Thus

(G, e,m, i) is an algebraic group.

• The multiplicative group Gm = specZ[X±1].

• The additive group Ga = specZ[X].

• An elliptic curve E/C equipped with its usual addition is an algebraic group.

Projective limits

Let I be a set, and Xi for each i ∈ I another set. We assume that I is equipped with

an ordering ≤ that is directed, i.e. for every pair i, j ∈ I there exists a k with i ≤ k and

j ≤ k. For every inequality i ≤ j we assume that we are given a map fji : Xj → Xi such

that whenever i ≤ j ≤ k we have fki = fji ◦ fkj and fii = idXi . We call the collection

of all these data (Xi, I,≤, fji) a projective system of sets. Viewing the ordered set (I,≤)

as a category in the obvious way, one could also say that a projective system is a functor

from the category I to the category of sets. The projective limit (or inverse limit) of the

projective system (Xi, I, fij) is by definition the topological space

lim←−
i∈I

Xi =

{
x = (xi)i∈I ∈

∏
i∈I

Xi | for all i, j ∈ I with i ≤ j:, fji(xj) = xi

}
, (2.1)

equipped with the topology induced from the product topology on
∏
i∈I Xi with the Xi

equipped with the discrete topology.

The projective limit X = lim←−Xi has projections pi : X → Xi. Conversely, if any other

set Y has maps qi : Y → Xi such that that for all i ≤ j we have fji ◦ qj = qi, then there

exist a unique map u : Y → X, such that qi = pi ◦ u for all i ∈ I. This is the universal

property of the projective limit.

Example 2.6. Consider a sequence of rational numbers (xi)
∞
i=1 ∈ Q converging to π =

3.1415 . . . (for instance take the decimal approximations). Put I = N with the usual

ordering of natural numbers. Put for each i ∈ N, Xi = {x1, x2, . . . , xi} with discrete

topology, and whenever i ≤ j define the surjection fji : Xj → Xi, xa 7→ xmin(a,i). Then

lim←−i∈I Xi = {x1, x2, . . . , π} with the weakest topology such that the points xi, i ∈ I are all

open, and a system of open neighborhoods of π is given by the subsets whose complement

is finite.
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Example 2.7. Take X a set and let (Xi)i∈I be a ‘decreasing’ collection of subsets of X:

Whenever i ≤ j we have Xj ⊂ Xi. Take the canonical inclusion maps fji. Then (X,≤, fji)
is a projective system. The projective limit of this system is the intersection

⋂
i∈I Xi ⊂ X.

Example 2.8. Take I to be the set of number fields F that are contained in C, and which

are Galois over Q. We write F1 ≤ F2 whenever F1 ⊂ F2. We take for each i ∈ I with

corresponding number field Fi ⊂ C, Xi equal to Gal(Fi/Q). Then lim←−i∈I Gal(Fi/Q) =

Autfield(Q), where the topology on the automorphism group is the weakest topology such

that for each x ∈ Q the stabilizer is an open subgroup of Autfield(Q). In fact, this will be

one of our main examples of a projective limit.

Example 2.9. Consider the circle group S1 = R/Z, take for each integer N ∈ Z, XN =

R/NZ. If M |N then we have the surjection fNM : XN → XM , x 7→ x mod MZ. Then

lim←−N XN = lim←−N R/NZ is called the solenoid.

Example 2.10. Consider for N ∈ Z the group Γ(N) of matrices g ∈ GL2(Z) such that

g ≡ ( 1 0
1 0 ) mod N . Consider the upper half plane H± = {z ∈ C | =(z) 6= 0}. If M |N we

have the canonical surjection pMN : Γ(N)\H± → Γ(M)\H±, x 7→ Γ(M)x. The projective

limit Y = lim←−N Γ(N)\H± with respect to these maps pmn is the modular curve of infinite

level. As we defined it here, Y is a topological space, but, as it turns out, Y is has naturally

the structure of a (non-noetherian) scheme.

Besides projective limits there are also inductive limits, basically obtained by making

the arrows ‘go in the other direction’. A first example is Q = lim−→F , where F ranges over

the number fields contained in Q (in fact any set-theoretic union is an inductive limit).

We encourage the reader to read on this subject. Projective systems, inductive systems

and limits of these can be defined in arbitrary categories, although they no longer need

to automatically exist (just as a product objects, may, or may not exist in your favorite

category C). For instance a projective system of groups is a projective system of sets

(Xi,≤, fji), where the Xi are groups and the fji are group morphisms. This projective

limit is a topological group (observe that the obvious group operations on (2.1) are indeed

continuous), and thus all projective limits exist in the category of groups.

Example 2.11. The ring R[[t]]of formal power series over a commutative ring R is the

projective limit the rings R[t]/tnR[t], ordered in the usual way, with the morphisms from

R[t]/tn+jR[t] to R[t]/tnR[t] given by the natural projection. The topology on R[[t]] coming

from the projective limit is referred to as the t-adic topology.

Example 2.12. Let OF be the ring of integers in a number field. Let p ⊂ OF be a prime

ideal. Then lim←−n∈Z≥1
OF /pn is the completion OF,p of OF at the prime p. The projective

limit OF,p is a complete discrete valuation ring.

Example 2.13. Continuing with the previous example, the group GLd(OF ) is profinite

as well, obtained as the projective limit lim←−n∈Z≥1
GLd(OF /pn). In fact for any algebraic

group G over OF , G(OF ) is profinite, given by a similar projective limit.

Profinite groups

Proposition 2.14. Let G be a topological group. The following conditions are equivalent

(i) G is a projective limit of finite discrete groups
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(ii) The topological space underlying to G is Hausdorff, totally disconnected and compact.

(iii) The identity element e ∈ G has a basis of open neighborhoods which are open sub-

groups of finite index in G.

These conditions are equivalent. If they are satisfied, we call the group G profinite.

The first examples of profinite groups are the (additive) groups Zp of p-adic inte-

gers, and the group of profinite integers Ẑ. We define Ẑ = lim←−N∈Z≥1
Z/NZ, so Ẑ is a

profinite group. In fact, Ẑ is even a topological ring, called the “Prüfer ring”, or the

ring of “profinite integers”. Similarly, for each prime number p, Zp is also a ring: “the

ring of p-adic integers”. By the Chinese remainder theorem the mapping Ẑ ∼→
∏
p Zp,

(xN )N∈Z≥1
7→
∏
p prime(xpn)n∈Z≥1

is an isomorphism of topological rings.

In fact, the group Ẑ arises as the absolute Galois group of a finite field. For a finite

extension FqN /Fq we have the famous Frobenius automorphism Frob: FqN → FqN , x 7→
xq. This Frobenius allows us to identify Gal(Fq/Fq) with Ẑ via the isomorphism Ẑ ∼→
Gal(Fq/Fq), x 7→ Frobxq . What does raising Frobq to the power of the profinite integer

x actually mean? Note that any t ∈ Fq actually lies in a finite extension FqN ⊂ Fq
for N ∈ Z≥1 sufficiently large. Then for x = (xN ) ∈ Ẑ the power Frobxq acts on t as

FrobxNq , which by the divisibility relations does not depend on the choice of N . We will

see that Galois theory goes through to the infinite setting and gives an inclusion reversing

bijection between the closed subgroups H of a Galois group Gal(Fq/Fq) and the subfields

M ⊂ Fq that contain Fq. In Exercise 2.16 we use this statement to classify all the algebraic

extensions of Fq.

Locally profinite groups

Let G be a totally disconnected locally compact topological group, then G is called locally

profinite. Equivalently, a topological group is locally profinite if and only if there exists an

open profinite subgroup K ⊂ G (Exercise 2.5). A typical example is the group Qp, with

open profinite subgroup Zp ⊂ Qp. Another example is GLn(Qp), which is locally profinite

and has GLn(Zp) as profinite open subgroup. At first the study of these locally profinite

groups may appear like a ‘niche’, but later in the course the groups GLn(Qp) play a crucial

role in describing the prime factor components of automorphic representations.

The topology on GLn(R), R a topological ring

Consider a topological ring R. Then we can make GLn(R) into a topological ring by

pulling back the topology via the inclusion i1 : GLn(R)→ Mn(R)×Mn(R), g 7→ (g, g−1),

where Mn(R)×Mn(R) ∼= R2n2
has the product topology. In many cases, for instance when

R = Qp,C,R it turns out that this topology is the same as pulling back the topology from

the inclusion i2 : GLn(R) → Mn(R), g 7→ g, with Mn(R) ∼= Rn
2

the product topology.

However, this is not always the case. The problem if you use i2 as opposed to i1, the

inversion mapping GLn(R)→ GLn(R), g 7→ g−1 is no longer guaranteed to be continuous.

Hence, one should use i1 to define the topology. The standard counter example is the ring

of adèles, which we will encounter later in the course.
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2.2 Galois theory for infinite extensions

Apart from studying Galois groups of finite Galois extensions of fields L/F it will be

important for us to also consider infinite Galois extensions L/F .

We call the extension L/F algebraic, if for every element x ∈ L there exists a polynomial

f ∈ F [X] such that f(x) = 0. The extension is separable if, for all x ∈ L, we can choose

the polynomial f such that it has no repeated roots over F . The extension is normal if

the minimal polynomial of x over F splits completely in L. Finally we call L/F Galois if

it is normal and separable. As in the finite case, the Galois group Gal(L/F ) is then the

group of field automorphisms σ : L
∼→ L that are the identity on F . The group Gal(L/F )

is given the weakest topology such that the stabilizers

Gal(L/F )x = {σ ∈ Gal(L/F ) | σ(x) = x} ⊂ Gal(L/F ), (2.2)

are open, for all x ∈ L. Equivalently, Gal(L/F ) identifies with the projective limit

Gal(L/F ) = lim←−
M

Gal(M/F ), (2.3)

where M ranges over all finite Galois extensions of F that are contained in L. If M,M ′ are

two such fields with M ⊂ M ′, then we have the map pM ′,M : Gal(M ′/F ) → Gal(M/F ),

σ 7→ σ|M . The projective limit in (2.3) is taken with respect to the maps pM ′,M . In

Exercise 2.17 you will show that the topology on Gal(L/F ) defined in (2.3) is equivalent

to the topology from (2.2).

Theorem 2.15 (Galois theory for infinite extensions). Let L/F be a Galois extension of

fields. The mapping

Ψ: {M | F ⊂M ⊂ L} → {closed subgroups H ⊂ Gal(L/F )}, M 7→ Gal(L/M),

is a bijection with inverse H 7→ LH . Let H,H ′ be closed subgroups of Gal(L/F ) with

corresponding fields M,M ′. Then

(i) M ⊂M ′ if and only if H ⊃ H ′.

(ii) Assume M ⊂ M ′. The extension M ′/M is finite if and only if H ′ is of finite index

in H. Moreover, [M ′ : M ] = [H : H ′].

(iii) L/M is Galois with group Gal(L/M) = H

(iv) σ(M) corresponds to σHσ−1 for all σ ∈ Gal(L/F ).

(v) M/F is Galois if and only if the subgroup H ⊂ Gal(L/F ) is normal, and Gal(M/F ) =

Gal(L/F )/H.

2.3 Local p-adic fields

The p-adic numbers

Let p be a prime number. The ring of p-adic integers Zp is defined as the projective limit

lim←−n∈Z≥0
Z/pnZ taken with respect to the surjections Z/pmZ→ Z/pnZ whenever m ≥ n.
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A second way to think about the p-adic integers is as infinite sequences x = a0 + a1p
1 +

a2p
2 +a3p

3 + . . . with ai ∈ {0, 1, 2, . . . , p−1}. If y = b0 + b1p
1 + b2p

2 + b3p
3 + . . . is another

such p-adic integer, we have the usual formula x+y = (a0+b0)+(a1+b1)p1+(a2+b2)p2+. . .

for addition, and the usual formula

x · y = a0b0 + (a1b0 + a0b1)p1 + (a2b0 + a1b1 + a0b2)p2+

+ (a3b0 + a2b1 + a1b2 + a0b3)p3 + . . .

for multiplication. The p-adic integer x corresponds to the element(
a0 + a1p

1 + a2p
2 + . . .+ anp

n
)
n∈Z≥0

∈ lim←−
n∈Z≥0

Zp/pnZp.

If x ∈ Zp, we write vp(x) for the largest integer n such that x ≡ 0 mod pn. Then vp(x) is

the valuation on Zp. We define the norm | · |p by the formula |x|p = p−vp(x). The p-adic

valuation and p-adic norm |x|p make sense for integers x ∈ Z as well. In particular we

can introduce a notion of p-adic Cauchy sequence of integers: Let (xi)i∈Z≥0
a sequence of

integers xi ∈ Z, then it is p-Cauchy, if for every ε > 0 there exists an integer M ∈ Z≥1

such that for all m,n > M we have |xm − xn|p < ε. In this sense Zp is the completion of

Z. Via the distance function d(x, y) = |x− y|p, Zp is a metric space.

Example 2.16. If N is an integer that is coprime to p, then N has an inverse yn modulo pn,

for every n. Moreover these yN are unique, and hence form an element of the projective

system (yN ) ∈ lim←−n∈Z≥1
Z/pnZ = Zp.

By the example, Zp contains the localization Z(p) of Z at the prime ideal (p). Just

as Z(p), the ring Zp is a discrete valuation ring with prime ideals (0) and (p). So Zp is a

completion of Z(p). In fact any local ring (R,m) can be completed for its m-adic topology,

by taking the projective limit over the quotients R/mn. For example, we will often consider

completions at the various prime ideals of the ring of integers of a number field.

We define the field of p-adic numbers Qp to be the fraction field of Zp. Similar to Zp, the

elements of x = Qp can be expressed as series x =
∑

i∈Z aip
i, where ai ∈ {0, 1, 2, . . . , p−1}

and such that for some M ∈ Z we have ai = 0 for all i < M . The topology on Qp is the

weakest such that Zp ⊂ Qp is an open subring. The valuation v on Zp extends to Qp by

setting v(x) = v(a) − v(b) if x = a/b ∈ Qp with a, b ∈ Zp and b 6= 0. One checks easily

that v(x) does not depend on the choice of a and b.

Norms

Let F be a field. A norm on F is a function | · | : F → R≥0 satisfying

(N1) for all x ∈ F , |x| = 0 if and only if x = 0,

(N2) for all x, y ∈ F , |xy| = |x||y|,

(N3) for all x, y ∈ F , |x+ y| ≤ |x|+ |y|.

Example 2.17. The trivial norm: |x| = 1 if and only if x 6= 0 is a norm on any field. Other

than this one we have | · |p and the absolute value on Q, which are both norms.
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Let F be normed field. A sequence (xi)
∞
i=1 of elements xi ∈ F is a Cauchy sequence if

for all ε > 0, there exists N > 0 such that for all n,m ≥ N we have |xn − xm| < ε. The

space F is complete if every Cauchy sequence converges. We say that two norms | · |1, | · |2
on a field are equivalent if a sequence of elements xi is Cauchy for the one norm, if and

only if it is Cauchy for the other norm. It turns out that | · |1 and | · |2 are equivalent if

and only if | · |α2 = | · |1 for some α > 0.

Theorem 2.18 (Ostrowski’s theorem). Any non-trivial norm | · | on Q is equivalent to

either the usual norm or a p-adic norm for some prime number p.

We call a norm | · | non-Archimedean, if it satisfies the stronger condition

(N3+) |x+ y| ≤ max(|x|, |y|).

When working with number fields and p-adic fields, all the non-archimedean norms are

discrete. We call | · | discrete if for every positive real number x there exists an open

neighborhood U ⊂ R>0 of x such that |F | ∩ U = {x}.

Places of a number field

If F is a number field, we write ΣF for the set of non-trivial norms on F , taken modulo

equivalence. We call the elements of ΣF the places or F -places if the field F is not clear

from the context. We have seen that ΣQ = {∞, 2, 3, 5, . . . , } so the elements of ΣF can be

thought of as an extension of the set of primes, in the following sense

Lemma 2.19. Write Σ∞F for the finite F -places. The mapping

Σ∞F → {non-zero prime ideals p ⊂ OF }, v 7→ {x ∈ OF | |x|v < 1}

is a bijection.

In general if L/F is an extension of number fields, we have the mapping ΣL → ΣF ,

w 7→ v given by restricting a norm | · |w on L to the subfield F ⊂ L, which yields a norm

| · |v on F that corresponds to a place v ∈ ΣF . The fibres of this map are finite, and we

say that the place w lies above v, and that v lies under w.

Completion

Recall that R is constructed from Q using Cauchy sequences. In fact, we may carry out

this construction in much greater generality. Let F be a number field and v ∈ ΣF be a

place with corresponding norm | · |v. Then (F, | · |v) is not complete, but, we can form

its completion Fv. This completion is a map iv : F → Fv, with the following universal

property. For any morphism f : F → M of F into a normed field M , such that |x|F =

|f(x)|M and for any Cauchy sequence (xi)
∞
i=1 in F the sequence (f(xi))

∞
i=1 has a limit

point in M , there exists a unique map from u : Fv →M such that u ◦ iv = f . The field Fv
can be constructed from F by considering the ring R of all Cauchy sequences and taking

the quotient by the ideal I in R of sequences that converge to 0.

Example 2.20. The field Qp is the completion of Q for the p-adic norm | · |p.
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Norms on a vector space

If V is a finite-dimensional vector space over a normed field (F, | · |), a norm on V is a

function ‖ · ‖ : V → R≥0 satisfying

(NV1) for all v ∈ V , we have ‖v‖ = 0 if and only if v = 0,

(NV2) for all v ∈ V and λ ∈ F , we have ‖λv‖ = |λ|‖v‖,

(NV3) for all v, w ∈ V , we have ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Example 2.21. If V = Fn, then v =
∑n

i=1 viei 7→ ‖v‖max := maxni=1 |vi| is a norm on V .

Proposition 2.22. Let F be a normed field which is complete. Let V be a finite-dimensional

vector space over F . Let ‖ · ‖1, ‖ · ‖2 be two norms on V . Then there exist constants

c, C ∈ R>0 such that for all v ∈ V we have c‖v‖1 ≤ ‖v‖2 ≤ C‖v‖2, i.e. all norms on V

are equivalent.

Valuations

To any non-Archimedean norm we may attach a valuation by taking the logarithm. Even

though the one can be deduced by a simple formula from the other, it is often more

convenient and intuitive to use both concepts. A valuation v on a field F is a mapping

F → R≥0 such that

(V1) vF (x) =∞ if and only if x = 0,

(V2) vF (xy) = vF (x) + vF (y),

(V3) vF (x+ y) ≥ min(vF (x), vF (y)),

for all x, y ∈ F .

p-Adic fields

Let F be a non-Archimedean local field. With this we mean a field F that is equipped

with a discrete norm | · |F which induces a locally compact topology on F . It turns out

that these fields F are precisely those fields that are obtained as a finite extensions of Qp

for some prime number p.

Proposition 2.23. (i) The topology on F is totally disconnected and | · |F is non-

Archimedean. In particular the topology on F is induced from a discrete valuation

vF : F → Z ∪ {∞}.

(ii) The subset OF = {x ∈ F | |x|F ≤ 1} ⊂ F is a subring ( the ring of integers).

(iii) The subset p = {x ∈ F | |x|F < 1} ⊂ OF is a maximal ideal.

(iv) OF ⊂ F is profinite and equal to the projective limit lim←−n∈Z≥0
OF /pn.

(v) OF is local.

(vi) OF is a discrete valuation ring.
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(vii) OF is of finite type over Zp (and hence the integral closure of Zp in F ).

Proof. (i) If | · |F were Archimedean, then F would be R or C, which do not have a discrete

norm. Thus (N3+) must hold, and then (N3+) implies that the topology on F is totally

disconnected. Since the norm is non-Archimedean, it induces a valuation vF on F , which

we may normalize so that it has value group Z.

(ii) By (N2), OF is stable under multiplication, and by (N3+), OF is stable under

addition, since also 0, 1 ∈ OF it is indeed an open subring of F .

For (iii) it is easy to see that p is an ideal. It is also prime, since if |xy| < 1 for

|x|, |y| ≤ 1 we must have |x| < 1 or |y| < 1. In (iv) we will see that the index of p in OF
is finite. Thus OF /p is a finite domain and therefore a field.

(iv) Note that p and OF are open subsets of F . Moreover, since we assumed F to be

locally compact, OF must contain an open neighborhood U of 1 with compact closure U

in F . Since the topology on F is induced from the norm, we have s ∈ Z large enough such

that ps ⊂ U . Thus ps is compact, hence profinite. The cosets of ps+1 form a disjoint open

covering of ps, which must be finite. By multiplying with a uniformizer we get bijections

pt/pt−1 ∼= pt−1/pt−2. Thus all the pt/pt−1 are finite. Hence OF is profinite.

(v) If x ∈ OF \p, then |x|F = 1, hence |x−1|F = 1 as well and thus x ∈ O×F . Hence any

element not in p is a unit, and therefore OF is local.

(vi) Exercise.

(vii) One way to see this is to use a topological version of Nakayama’s lemma, which

states that if you have a pro-p profinite ring Λ, a Λ-module X, also pro-p profinite, and

I ⊂ Λ a closed ideal. Then X is of finite type over Λ if and only if X/I is of finite type

over Λ/I; see Serre [12, page 89]. By this lemma, it suffices to show that OF /pOF is finite,

which is true.

Convention on normalizations

Both the valuation and norm on a p-adic F can be normalized is several ways. For now

in, these notes we will work with the convention that | · |F has no preferred normalization,

so strictly speaking, we work with | · |F well-defined only up to positive powers. However,

we will normalize the valuation vF in such a way that its value group is Z. In particular

vF ($F ) = 1, where $F ∈ F is a uniformizer, i.e. a generator of the non-zero prime ideal

p ⊂ OF .

Hensel’s lemma

Arguably the most important basic result in the theory of p-adic integers is Hensel’s lemma.

Let us first illustrate the lemma with an example.

Example 2.24. The number 7 is a square modulo 3, since 7 ≡ 12 mod 3. Even though 7

is not congruent to 12 modulo 25, we can replace x1 = 1 with x2 = 1 + a · 3, and find the

equation (1 +a1 · 3)2 ≡ 1 + 6a mod 32 which is satisfied for a = 1, so x2 = 1 + 31 is a root

of 7 modulo 32. Similarly, if x3 = (1 + a1 · 3 + a2 · 32) for some a2 ∈ {0, 1, 2}. Then

7 ≡ x2
3 ≡ (x2 + a2 · 32) ≡ x2

2 + 2x2a232 ≡ 16 + 8a232 mod 33
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Hence a2 = 1. Inductively, if we have

x2
n−1 = (a0 + a131 + a232 + . . .+ an−15n−1)2 ≡ 7 mod 3n

with ai ∈ {0, 1, 2}, then we can solve for an the equation (xn−1 + an3n)2 ≡ 7 mod 3n+1

which rewrites to (noting that 2xn−1 6≡ 0 mod 3, so 2xn−1 ∈ (Z/3n+1Z)×)

an3n ≡
7− x2

n−1

2xn−1
mod 3n+1.

Since 7 ≡ x2
n−1 mod 3n, there is a unique choice for an ∈ {0, 1, 2} satisfying this congru-

ence. Hence we have inductively defined a sequence of approximations xn of
√

7 in Z3.

Since these approximations xn are ‘correct’ modulo 3n, the sequence xn is Cauchy for | · |3
and hence converges to a 3-adic integer which we denote by the symbol

√
7 ∈ Z3. Note

for a0 we had two choices, we chose a0 = 1 for no good reason as we could also have taken

a0 = 2. After a0 has been fixed, the ai for i > 0 are uniquely determined by the above

inductive procedure. This reflects the fact that, as in any domain of characteristic 6= 2, 7,

we have two (or zero!) choices for the square root ±
√

7 of 7.

Proposition 2.25 (Hensel’s lemma). Let f ∈ Zp[X] be a monic polynomial such that

f(x) ≡ 0 mod p for some x ∈ Zp and f ′(x) 6= 0 mod p. Then f has a root α in Zp such

that α ≡ x mod p.

Sketch. Define an inductively by a0 = x, an+1 = an − f(an)y, where y ∈ Z is a lift of the

inverse of f ′(x) modulo p. Now show that limn→∞ an = α.

Example 2.26. For any prime number p the p − 1-th roots of unity lie in Zp. To see

this, consider the cyclotomic polynomial Φp−1 ∈ Zp[X]. For ζ ∈ Fp a generator of F×p ∼=
Z/(p− 1)Z, we have Φp−1(ζ) = 0. Moreover, Φp−1 divides the polynomial Xp−1 which is

separable modulo p. If the derivative d
dXΦp−1(ζ) were 0 then ζ would be a repeated zero

of Φp−1|Xp−1 − 1. Hence Φ′p−1(ζ) 6= 0. By Hensel’s lemma ζ lifts to a root in Zp.

Hensel’s lemma has many more forms. The first obvious generalizations are from Qp

to p-adic fields F , and instead of linear factors modulo p, look at lifting a factorization of

a polynomial that exists modulo p to a factorization in OF [x].

Proposition 2.27. Assume that f ∈ OF [X] is a monic polynomial, and that f ∈ κF [X]

factors into a product f = h · g of two monic, relatively prime polynomials h, g ∈ κF [X].

Then there exists polynomials H,G ∈ OF [X] such that H ·G = f and H = h, G = g.

Another, very general form of Hensel’s lemma is given in EGA IV [?, 18.5.17].

Theorem 2.28. Let R be an Henselian local ring with maximal ideal m, and let X be a

smooth R-scheme. Then X(R)→ X(R/m) is surjective.

In this theorem a local ring (R,m) is ‘Henselian’ if R satisfies the conclusion of Propo-

sition 2.25 stating that a mod m root α of a polynomial f lifts if f ′(α) /∈ m. There are

many equivalent ways to characterize henselian rings [16, Tag 04GE]. In particular the

ring OF for F a p-adic field is Henselian. Another example of an Henselian ring is Zh(p),
by which we mean the ring of all α ∈ Zp that are algebraic over Q. Since Zh(p) is countable

while Zp is uncountable, the subring Zh(p) ⊂ Zp is strict with a ‘huge’ index.
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For readers which are not familiar with schemes, we spell out explicitly what Theorem

2.28 translates to in terms of a system of polynomials (affine R-schemes). Suppose that

we are given a collection of polynomials f1, f2, . . . , fn ∈ R[X1, X2, . . . , Xd] and elements

α1, α2, . . . , αd ∈ R/m such that f i(α1, α2, . . . , αd) = 0 ∈ R/m for i = 1, 2, . . . , n and the

Jacobian matrix

Jac(α1, α2, . . . , αd) =


∂f1(α1)
∂X1

∂f1(α1)
∂X2

· · · ∂f1(α1)
∂Xd

∂f2(α1)
∂X1

∂f1(α2)
∂X2

· · · ∂f1(α2)
∂Xd

...
...

...
∂fn(α1)
∂X1

∂fn(α2)
∂X2

· · · ∂fn(α2)
∂Xd

 ∈ Matd×n(R/m)

has maximal rank d − n (in general the rank of Jac(α1, α2, . . . , αd) is at most d − n).

Then Theorem 2.28 states that α1, α2, . . . , αd lift to elements α̃1, α̃2, . . . , α̃d ∈ R such that

fi(α̃1, α̃2, . . . , α̃d) = 0 ∈ R for i = 1, 2, . . . , n.

Example 2.29. Consider the (affine part of the) elliptic curve E over Zp given by the

equation Y 2 = X3 + aX + b, so with discriminant ∆ = −16(4a3 + 27b2) not divisible by

p. The Jacobian matrix J is given by
(

3x2 + a,−2y
)

. If the rank of JFp were 0 < 1 at

some point (x, y) ∈ F2
p, then both entries of J(x, y) had to be zero modulo p, and then

the polynomial f = X3 + aX + b has a root in common with its derivative 3X2 + a,

contradicting ∆ 6≡ 0 mod p. Thus the mapping E(Zp) → E(Fp) is surjective. More

abstactly, any elliptic curve is smooth, so Theorem 2.28 applies.

Finite extensions of p-adic fields

Let L/F be a finite extension of p-adic fields. Let NL/F : L → F , be the norm mapping

from Galois theory, i.e. if x ∈ L, let x act on L ∼= Fn by multiplication, which gives a

matrix Mx ∈ Mn(F ), well-defined up to conjugacy. We put NL/F (x) := det(Mx), which

does not depend on the choice of basis. Recall that NL/F is compatible in towers, and

if α ∈ L is a primitive element, then NL/F (α) is (up to sign) the constant term of the

minimal polynomial of α over F .

Proposition 2.30. The mapping x 7→ |NL/F (x)| defines a norm on L.

Proof. The properties (N1) and (N2) being easy; let us focus on showing (N3+). We have

to show that for all x, y ∈ L

|NL/F (x+ y)|F ≤ max(|NL/F (x)|F , |NL/F (y)|F ).

We may assume that x/y ∈ OL (otherwise y/x ∈ OL, and we can relabel). Dividing by y,

it is equivalent to show that for all x ∈ OL we have

|NL/F (x+ 1)|F ≤ max(|NL/F (x)|F , 1).

Since x ∈ OL, we have x+ 1 ∈ OL as well. The statement thus reduces to NL/FOL ⊂ OF ,

which is clear.
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Eisenstein polynomials

When studying extensions of local fields a crucial role is played by the Eisenstein polynomi-

als. Later we will see that these polynomials give precisely the totally ramified extensions.

Proposition 2.31. Let f = a0 +a1X
1 +a2X

2 + . . .+Xn ∈ OF [X] be a monic polynomial

of degree n whose constant term a0 has vF (a0) = 1. Then f is irreducible if and only if

ai ∈ p for all i. In this case we call f an Eisenstein polynomial.

Proof. Assume f is Eisenstein and f = g · h is a factorization of f in F [X] where we may

assume g and h are monic. Any algebraic number that is a root of g is also a root of f

and hence is integral. Modulo p we have g · h ≡ Xn, hence every non-leading coefficient

of g and h lies in p. Let g0 (resp. h0) be the constant coefficient of g (resp. v). Then

g0h0 = a0, the constant coefficient of f . Since a0 ∈ p\p2 exactly one of the two coefficients

{g0, h0} lies in p. Say it is g0. Then h0 is a unit, and hence must be the leading coefficient

of h (because we established that all other coefficients lie in p). Thus deg(h) = 0 and f is

irreducible. Conversely, assume that f is irreducible and vF (a0) = 1. Modulo p we may

factor f = Xi · g where g ∈ κF [X] is some polynomial with non-zero constant term. By

Hensel’s lemma this factorization lifts to a factorization f = h · g with h = Xi. Since

deg(h) > 1, we must have deg(h) = deg(f) and deg(g) = 0 by irreducibility of f . Thus

f = Xdeg(f) and f is an Eisenstein polynomial.

Example 2.32. For an odd prime number p there are by Exercise 2.44 exactly 3 = #Q×p /Q
×,2
p −

1 quadratic extensions. They are easily written down: Qp(
√
ζ), Qp(

√
p), Qp(

√
ζp), where

ζ ∈ Qp is a primitive root of unity of order p − 1 (cf. Example 2.26). The quadratic ex-

tension Qp(
√
ζ) is ‘unramified’ and hence can not given by an Eisenstein polynomial (this

will be explained in the next section). The other two minimal polynomials are X2 +p and

X2 + ζp ∈ Zp[X], which are clearly Eisenstein. As we will see later, studying quadratic

extensions is in fact most interesting over Q2, due to the presence of ‘wild ramification’.

For p = 2, the following 7 = #(Q2/Q×2 )− 1 extensions are all the quadratic extensions of

Q2

Q2(
√

2), Q2(
√

6), Q2(
√

3), Q2(i)

Q2(
√
−2), Q2(

√
−6), Q2(

√
−3)

Precisely 1 of these 7 extensions is ‘unramified’, and hence can not given by an Eisenstein

polynomial (see next section). From the above list, this is the extension Q2(
√
−3), since√

−3 = 2ζ3+1. For all these extensions, except Q2(i) and Q2(
√

3), the minimal polynomial

of the given generator is Eisenstein. For the other two fields we can ‘shift’ the primitive

element to obtain an Eisenstein polynomial

Q2[X]/(X2 + 2X + 2)
∼→ Q2(i), X 7→ 1− i,

Q2[X]/(X2 + 2X − 2)
∼→ Q2(

√
3), X 7→

√
3− 1.

Ramification of local extensions

Let L/F be a finite extension of p-adic fields. We write vL, vF for the valuations on L

and F whose value group is Z ⊂ R, so they are normalized in such a way that they take

uniformizing elements to 1. Let P be the maximal ideal of OL and p the maximal ideal
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of OF . Then we have OF /(P ∩ OF ) ⊂ OL/P. Consequently, OF /(P ∩ OF ) is a finite

domain, and hence a field. Thus P ∩ OF equals the maximal ideal p of OF . In the other

direction for the OL-ideal generated by p we have pOL = PeL/F , where eL/F ∈ Z is called

the ramification index. We write fL/F = [κL : κF ] for the inertial degree. The unramified

extensions are those L/F with eL/F = 1, and the totally ramified extensions are those

with eL/F = [L : F ].

Proposition 2.33. We have [L : F ] = fL/F · eL/F .

Sketch. Since OL is torsion-free, it is projective over OF and hence free as OF is local

(see, e.g. [9, Exercise 11.10, Theorem 2.5], [9, Theorem 2.5]). Thus, OL ∼= OdF as OF -

module, and hence also L ∼= F d which implies d = [L : F ]. Similarly, the κF -dimension

of OL ⊗ κF ∼= OdF ⊗ κF is d. On the other hand the successive quotients of the filtration

Pi/PeL/F of OL ⊗ κF = OL/PeL/F are all κF -isomorphic to κL. Since the filtration is of

length eL/F , we obtain [L : F ] = dimκF (OL ⊗ κF ) = eL/F · fL/F .

Corollary 2.34. If L/M/F is a tower of finite extensions of p-adic fields, then eL/F =

eL/M · eM/F and fL/F = fL/M · fM/F .

Theorem 2.35. Let L/F be an extension of p-adic fields of degree n.

(i) The valuation vL is given by the formula vL(x) = f−1
L/F · vF (NL/F (x)).

(ii) The extension L/F is unramified if and only if it is of the form L = F (ζ) where ζ

is root of unity whose order is prime to p.

(iii) The subfield F ($L) ⊂ L is a (in general non-unique) maximal totally ramified ex-

tension of F in L.

(iv) The minimal polynomial f ∈ OF [X] of $L over F is an Eisenstein polynomial.

(v) Let f ∈ OF [X] be an Eisenstein polynomial. Then L = F [X]/(f) is a totally ramified

extension of F with uniformizer X.

Proof. (i) We know that |NL/F (·)|F defines a norm on L. Since all these norms are

equivalent, it follows that | · |L and |NL/F (·)|L differ by a power of a positive real number.

Thus also vL(·) = αvF (NL/F (·)) for some α ∈ R>0. Filling in an F -uniformizer, we obtain

vL($F ) = αvF (NL/F ($F )), and hence eL/F = αvF ($
[L:F ]
F ) = α[L : F ]. By Proposition

2.33 we have α = f−1
L/F .

(ii) Let ζ ∈ L be a root of unity of prime to p order. We check that F (ζ)/F is

unramified. The minimal polynomial f of ζ over F divides the polynomialXm−1 ∈ OF [X],

with m coprime to p. Hence f is separable modulo p. By Hensel’s lemma any factorization

of f lifts, and hence f must be irreducible. Consequently, the degree of κF (ζ) over κF is

equal to deg(f) = [F (ζ) : F ]. By Proposition 2.33, the extension F (ζ)/F is unramified.

The converse statement is similar: If M/F is an unramified subfield of L, then κM is

generated by a root of unity ζ over κF , whose order is prime to p. By Hensel’s lemma this

root of unity lifts to a root of unity ζ̃ ∈M . It is then easy to see that M = F (ζ̃).

(iii) Exercise 2.21.

(iv) By Proposition 2.33 we have κF = κL in the totally ramified case. Let $L ∈
OL be a primitive element and f ∈ OF [X] its minimal polynomial over F . We have
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vF (NL/F ($L)) = vL($L) = 1. Write f =
∑[L:F ]

i=0 aiX
i, then a0 = ±NL/F ($L). Hence

vF (a0) = 1, thus the constant term of f has valuation 1. On the other hand, assume

f ≡
∏k
i=1 φ

ei
i ∈ κF [X], with the φi ∈ κF [X] irreducible and coprime. By Hensel’s lemma

this factorization lifts to a factorization f =
∏k
i=1 fi ∈ OF [X], where fi lifts φeii . Since

f is irreducible, we must have k = 1. Now $L ≡ 0 mod P is a root of the irreducible

polynomial φ1. Hence φ1 = X and f = X [L:F ].

(v) Put L = F [X]/(f). The norm of X acting on L is equal to the constant term a0

of f , which has the property that a0 ∈ p\p2. Hence vL(X) = f−1
L/KvF (a0) = f−1

L/F , which

is only possible if fL/F = 1.

Primitive element theorem for p-adic rings

A basic theorem for finite extensions L/F of number fields is that any such extension has

a primitive element α such that L = F (α). However, on the level of rings of integers there

are many examples where OL can not be generated by a single element over OF . In case

of finite extensions of p-adic number rings the situation is better, in this case we can find

a fairly explicit generator.

Let L/F be a finite extension of p-adic fields. The first basic observation is that if

S ⊂ OL is a system of representatives for the quotient OL/P, then any element x ∈ OL
can be written as an infinite sum x =

∑∞
i=0 si$

i
L for si ∈ S. In particular, we may take

µ ⊂ OL the set of roots of unity of prime to p-order contained in O×L . Then µ is a system

of representatives for OL/P, and hence OL = Zp[$L, ζ], if ζ ∈ µ is of maximal order.

Thus, in case L/F is totally ramified, OL equals OF [$L], and if L/F is unramified, OL
equals OF [ζ]. In general we have

Proposition 2.36. We have OL = OF [$L + ζ].

Proof. Let Φ be the minimal polynomial of ζ over OF . Then Φ(ζ +$L) = d
dXΦ(ζ)$L + ε

for some ε ∈ OL with vL(ε) ≥ 2. Since Φ is separable modulo p we have Φ′(ζ) ∈ O×L .

Hence vL(Φ($L+ζ)) = 1 and Φ($L+ζ) is a uniformizing element of OL. For each integer

a ∈ Z≥0 we have (ζ + $L)a = ζa + $Lε for some ε ∈ OL. Consider the set S consisting

of 0 and the elements (ζ + $L)a for a = 0, 1, 2, . . . , pfF/L − 1. Then S is a system of

representatives S for the quotient OL/P. The result now follows by applying the remark

above the proposition to the uniformizer Φ(ζ +$L) and the set of representatives S.

Ramification groups, the lower numbering filtration

Let L/F be a finite Galois extension of p-adic fields with Galois group G = Gal(L/F ).

Write n for the degree [L : F ], p for the maximal ideal of OF and P for the maximal ideal

of L. The group Gal(L/F ) preserves the valuation vL(x) of elements x ∈ L. In particular

G acts on OL, which is easily seen to be faithful (choose a primitive element α of L/F

that is also integral, α ∈ OL). From this action we obtain G � AutOF (OL). The i-th

ramification subgroup Gi ⊂ G is defined to be the kernel of the composition

G� AutOF (OL)→ AutOF (OL/Pi+1).

Equivalently, Gi = {σ ∈ G | ∀x ∈ OL vL(σ(x) − x) ≥ i + 1}. The first 3 groups of this

sequence have a special name:
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• G−1 = G is the total Galois group,

• G0 = I(L/F ) is the inertia subgroup,

• G1 = I(L/F )wild is the wild inertia subgroup.

Let’s first analyze the case i = −1. Then we are looking at the mapping

G/G0 = Gal(L/F )/I(L/F )→ AutOF (OL/P) = AutκF (κL) = 〈Frob〉, Frob: x 7→ xq.

The subgroup I(L/F ) corresponds via Galois theory to the maximal extension Lur ⊂ L

of F that is unramified. We have seen that Lur = F (ζ), where ζ is a primitive root of

unity, whose order is prime to p. Hence Frob lifts to an automorphism of F (ζ): Send ζ to

ζq. This gives the Frobenius element Frob ∈ Gal(L/F )/I(L/F ). Abusing language, one

sometimes speaks of Frobenius elements Frob ∈ Gal(L/F ), with the understanding that

only their I(L/F ) coset is well-defined.

Let’s now look at the higher ramification groups. Let i ≥ 0, and define the subgroups

U
(i)
L = {x ∈ O×L | x ≡ 1 mod $i

L}.

Choose a uniformizing element $L ∈ OL, so thatOL = OF [α], then we obtain the injection

Gi/Gi+1 � U
(i)
L /U

(i+1)
L , σ 7→ σ($L)/$L.

We have

U
(i)
L /U

(i)
L ⊂

{
(κ×L , ·), i = 0

(κL,+), i > 0

Observe that κ×L is a finite group of order prime to p, while κL is a p-group. In particular

the wild inertia I(L/F )wild is a p-Sylow subgroup of Gal(L/F ), and this Sylow p-subgroup

is normal.

Example: Ramification groups of the cyclotomic extension

Let us look at the example Qp(ζpn) over Qp, where ζpn is a primitive pn-th root of unity.

We claim that Qp(ζpn) is a totally ramified extension of Qp. We have

Gal(Qp(ζpn |n ∈ Z≥1)/Qp) ⊂ Z×p .

in particular by the computation below it will follow that the degree of Qp(ζpn)/Qp is

(p− 1)pn−1 = deg(Φpn), hence the inclusion above is actually equality.

The minimal polynomial of ζpn over Q is given by the polynomial

Φpn(X) =
Xpn − 1

Xpn−1 − 1
= 1 +Xpn−1

+X2pn−1
+ . . .+Xpn−pn−1 ∈ Q[X].

By Theorem 2.35 we should be able to find a primitive element in the extension Qp(ζpn)/Qp

whose minimal polynomial is Eisenstein. Clearly Φpn(X) is not such a polynomial. In

fact, since ζpn ∈ Z[ζpn ] is a unit, it has no chance of being a uniformizer. The element

1 − ζpn ∈ Z[ζpn ] seems to be a better choice, since Zp[ζpn ]/(1 − ζpn)
∼→ Fp, ζpn 7→ 1 and

hence 1− ζpn ∈ Zp[ζpn ] can’t be a unit.
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We check with induction that indeed Φpn(X + 1) is an Eisenstein polynomial. Clearly,

Φpn(1) = p by the above formula, so we need only to check that the coefficients are divisible

by p. For n = 1 we have

Φp(X + 1) =
(X + 1)p − 1

X
≡ (Xp + 1)− 1

X
= Xp−1 ∈ Fp[X],

hence all its coefficients are divisible by p. Assume that the desired divisibility is true for

m < n, then compute

Φpn(X + 1) =
(X + 1)p

n − 1

(X + 1)pn−1 − 1
=

(X + 1)p
n − 1

XΦp(X + 1) · · ·Φpn−1(X + 1)

≡ (X + 1)p
n − 1

X ·Xp−1 · · ·Xpn−1−1
= Xpn−pn−1 ∈ Fp[X].

Hence Φpn(X + 1) is indeed Eisenstein. Consequently, Qp(ζpn)/Qp is totally ramified.

We compute the ramification subgroups Gal(Qp(ζpn)/Qp)i ⊂ Gal(Qp(ζpn)/Qp). By

definition, Gal(Qp(ζpn)/Qp)i consists of those σ ∈ Gal(Qp(ζpn)/Qp) such that v(σ(ζpn)−
ζpn) ≥ i+ 1. Let x ∈ (Z/pnZ)× be such that σ(ζpn) = ζxpn , then

v(σ(ζpn)− ζpn) = v(ζxpn − ζpn) = v(ζx−1
pn − 1) = vp(NQp(ζpn )/Qp(ζ

x−1
pn − 1))

Observe that ζx−1
pn − 1 generates the intermediate extension Qp ⊂ Qp(ζ

x−1
pn ) ⊂ Qp(ζpn)

where each step is totally ramified. Hence v(ζx−1
pn − 1) equals [Qp(ζpn) : Qp(ζ

x−1
pn )] =

vp(x− 1), and Gal(Qp(ζpn)/Qp)i identifies with the subgroup

{x ∈ (Z/pnZ)× | x ≡ 1 mod pi+1} ⊂ (Z/pnZ)×.

Example: Ramification subgroups of Qp(ζp,
p
√
2)/Qp

We assume that p 6= 2 and also that vp(2
p−1−1) = 1 (by Fermat’s little theorem vp(2

p−1−
1) > 0). In fact, with a simple for loop in Sage I found that among the odd prime numbers

p ≤ 106 this condition fails for p = 1093 and p = 3511, and holds true for all other p. (We

thank Maarten Derickx for helping us out with the exceptional primes, see below).

Write L = Qp(ζp,
p
√

2). We have the tower of subfields Qp ⊂ Qp(ζp) ⊂ L. The first

step in this tower being understood already in a previous example, let’s look at the second

step of the tower. The element p
√

2 is a root of the polynomial f = Xp − 2 ∈ Qp(ζp)[X].

We have f = (X − 2)p ∈ Fp[X]. By the assumption vp(2
p−1 − 1) = 1 the polynomial

f(X + 2) = (X + 2)p − 2 ∈ Qp[X] is Eisenstein. Hence the element α = p
√

2 − 2 ∈ L is a

uniformizer of a totally ramified degree p extensionM/Qp contained in L, andOM = Zp[α].

Since the degrees of M and Qp(ζp) are coprime, the degree of L over Qp is equal to

p(p − 1), and Gal(L/Qp) = Fp n F×p where σ = (x, y) ∈ Fp n F×p acts by σ(ζp) = ζyp
and σ( p

√
2) = ζxp

p
√

2. Finally, in general it is not true that the compositum of two totally

ramified extensions is totally ramified; however in case of L, we know that the valuation

of vL(p) is divisible by p (look at the intermediate extension Qp(ζp)) and also divisible by

p − 1 (look at the intermediate extension Qp(
p
√

2)). Thus p(p − 1)|vL(p); since we also

know that vL(p) ≤ p(p − 1), we must have vL(p) = p(p − 1), i.e. the extension L/Qp is

totally ramified.
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At this point we already know two steps of the ramification filtration on Gal(L/Qp):

G−1 = Gal(L/Qp) = Fp n F×p ⊂ G0 = I(L/Qp) = Fp n F×p ⊂ G1 = I(L/Qp)
wild = Fp,

simply because the wild inertia is the pro-p-part of the inertia group. There must be one

more jump in the filtration, and we want to compute in the straightforward way where

this jump happens.

Let’s first find a uniformizer of L. Note that vL(α) = p − 1 since L/M is totally

ramified of degree p − 1, and α is a uniformizer of M . Similarly, put β = 1 − ζp, then

β is a uniformizer of Qp(ζp), and hence vL(β) = p. Consequently, for γ = β/α, we have

vL(γ) = p− (p− 1) = 1, and hence γ is a uniformizer of L and OL = Zp[γ].

Let σ ∈ I(L/Qp)
wild. Then σ(ζp) = ζp and σ( p

√
2) = ζxp

p
√

2 for some x ∈ Fp. We

compute

vL(σ(γ)− γ) = vL(σ(β/α)− β/α)

= vL(β) + vL(1/σ(α)− 1/α)

= p− vL(ασ(α)) + vL (σ(α)− α)

= p− 2(p− 1) + vL (σ(α)− α)

= −p+ 2 + vL(ζxp
p
√

2− p
√

2)

= −p+ 2 + p

= 2,

(unless x = 0 of course). Hence the ramfication filtration on Gal(L/Qp) is

i −1 0 1 2

Gi Fp n F×p Fp n F×p Fp 0

For the primes p = 1093 and p = 3511 we used the computer program Pari and saw

that actually 1093
√

2 ∈ Q1093 and 3511
√

2 ∈ Q3511. In particular the extension Qp(ζp,
p
√

2)

simply equals Qp(ζp). After quite some discussions with Maarten Derickx, he finally found

that this is the what happens in general:

Lemma 2.37. If p is a prime number such that p2|2p−1 − 1, then p
√

2 ∈ Qp.

Proof. Since p2|2p−1 − 1 we have for a0 = 2 that ap0 ≡ 2 mod p2. We now consider

(a0 + pb)p − 2 modulo p3, and solve for b:

(a0 + pb)p − 2 ≡ ap0 +

(
p

1

)
ap−1

0 pb− 2 ≡ (ap0 − 2) + p2ap−1
0 b mod p3.

Since a0 is coprime to p, and ap0 − 2 is divisible by p2, there exists a b such that the last

equation is 0 mod p3. Take this b and put a1 = a0 + pb, so a1 is a solution modulo

p3. Since vp(f
′(a1)) = vp(pa

p−1
1 ) = 1 (a1 is a unit), and vp(f(a1)) = vp(a

p
1 − 2) ≥ 3, we

have 2vp(f
′(a1)) = 2 < 3 = vp(f(a1)), and hence the following variant of Hensel’s lemma

applies.

Lemma 2.38. Let f ∈ Zp[X] be a monic polynomial such that for some a ∈ Zp we have

2vp(f
′(a)) < vp(f(a)), then there exists an α ∈ Zp such that f(α) = 0.
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Remark 2.39. After working through the example we found on Wikipedia a page about

“Wieferich primes”, i.e. prime numbers such that p2|2p−1−1. Currently, there are precisely

2 of these numbers known, namely 1093 and 3511. It is known that any other prime p with

this property is at least 1017, which we also confirmed up to 106. Silverman showed that

the abc-conjecture implies that there are infinitely many. Moreover, if p is an odd prime,

x, y, z ∈ Z are integers such that xp + yp + zp = 0, and p does not divide xyz, then p is

a Wieferich prime (this result is proved by Wieferich in 1901, so long before modularity

of elliptic curves, hence also the name for these numbers. Using modularity, the authors

also proudly know an alternative proof).

2.4 Algebraic number theory for infinite extensions

In this section, we will recall some concepts and results from algebraic number theory and

generalise them to infinite algebraic extensions of Q. The most important ones are the

ring of integers and Frobenius elements.

Number fields and infinite algebraic extensions

Recall that a field extension L/K is algebraic if every α ∈ L is a zero of some non-zero

polynomial in K[X]. If α is algebraic, there exists a unique monic polynomial fα ∈ K[X]

of minimal degree having α as a zero; this fα is the minimal polynomial of α.

We recall that a number field is a finite, and hence algebraic, extension F of Q. Any

number field has a primitive element α ∈ F such that α generates F over Q.

The ring of integers OF of F is the set of α ∈ F whose minimal polynomial fα has

coefficients in Z. One checks that sums and products of integral elements are again integral,

so OF is a subring of F . The ring OF turns out to be a Dedekind domain, i.e. a noetherian,

integrally closed integral domain in which any non-zero prime ideal is maximal.

Remark 2.40. There are two other ways to characterize OF :

• The ring OF is the smallest among all subrings R ⊂ F with Frac(R) = F such that

R is a Dedekind domain.

• The ring OF is the largest subring of F that is finitely generated as a Z-module.

Any non-zero ideal I ⊂ OF admits a factorization into prime ideals

I =
t∏
i=1

pe11 · p
e2
2 · · · p

et
t in OF ,

where the pi are pairwise distinct prime ideals of OF and where the ei are positive integers.

This factorization is unique up to permutation.

Let M/F be an extension of number fields. Let p be a prime ideal of OF . Then

OMp is an ideal in OM which is no longer a prime ideal in general. The decomposition of

OMp =
∏t
i=1 P

ei
i is the splitting behaviour of p. The integer ei is called the ramification

index of Pi over p, and the degree fi = [k(Pi) : k(p)] of the extension of residue fields is

called the residue field degree. We say furthermore that

• p is ramified if ei > 1 for some i ∈ {1, 2, . . . , t}, and unramified otherwise.
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• p is totally ramified if t = 1 and e1 = [M : F ].

• p is inert if OMp is prime, or equivalently t = 1 and e1 = 1.

• p is totally split if t = [M : F ].

In any extension M/F of number fields, there are only finitely many primes ramified; by

contrast, there are infinitely many primes that are totally split. More precise results on the

splitting of primes can be deduced from Chebotarev’s density theorem (see Theorem 2.47

below).

Example 2.41. The ring of integers of the quadratic extension Q(i)/Q is Z[i]; it is called

the ring of Gauss numbers. The ring Z[i] is a principal ideal domain, and its primes are

given by

• π = 1 + i,

• π = a+ bi with a2 + b2 = p, p ≡ 1 (mod 4), a > b > 0,

• π = p if p ≡ 3 (mod 4).

The prime numbers p ≡ 1 (mod 4) split in Z[i] into p = (a+bi)(a−bi). The prime number

2 is equal to (1 + i)(1 − i). Since 1 + i and 1 − i differ by the unit i, we have as ideals

(2) = (1 + i)2, so the prime 2 ramifies in Q(i)/Q.

Example 2.42. Recall that even though we have ideal factorization in OF , in general the

element factorization into irreducible elements is not unique. Typical example:

21 = 3 · 7 = (1 + 2
√
−5) · (1− 2

√
−5) ∈ OQ(

√
−5)

Rings of integers of algebraic extensions of Q

Now let F be any (not necessarily finite) algebraic extension of Q. As in the case where F

is a number field, we define the ring of integers OF as the ring of elements x ∈ F that are

integral over Q. If F is infinite over Q, the ring OF is not noetherian, and hence is not a

Dedekind domain. In general, OF equals the union of all rings OL, where L runs over the

number fields contained in F , and hence is a ‘limit’ of Dedekind domains.

Lemma 2.43. Let F be an algebraic extension of Q, and let M be an algebraic extension

of F .

(i) For any prime ideal p in OF there exists a prime ideal P ⊂ OM such that P∩OF = p.

(ii) Let p be a non-zero prime ideal of OF above the prime number p. Then OF /p is an

algebraic extension of Fp.

(iii) If M/F is a Galois extension, then the action of the Galois group G = Gal(M/F )

on the set of primes of M lying above a prime p of F is transitive.

Proof. Exercise 2.36.

In contrast to the finite case, unique factorization of ideals fails for infinite algebraic

extensions of Q.
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Example 2.44. Consider the ring of integers Z of Q. We will show that all prime ideals p

of Z satisfy p2 = p.

Let p ∈ Z be the prime under p, and v : Q→ R∪{∞} the valuation corresponding to p,

normalized so that v(p) = 1. We will prove that the image of v equals Q∪{∞} ⊂ R∪{∞}.
For each number field L, let pL = p ∩ OL, and vL = v|L. Then vL is a non-normalized

valuation corresponding to pL. Write eL for the ramification index of pL over p. Then the

image of v equals the union, over all number fields L, of the images of the maps vL; we

note that this equals {∞}∪
⋃
L

1
eL
Z = {∞}∪Q. The square of p can be computed locally

at Op. But locally we have pOp = {x ∈ Q | v(x) ≥ 0} = {x ∈ Q | v(x) ∈ {∞} ∪ Q≥0}.
This implies

p2Op = {x ∈ Q | v(x) ∈ {∞} ∪ 2 ·Q≥0}
= {x ∈ Q | v(x) ∈ {∞} ∪ 2 ·Q≥0}
= pOp.

Frobenius elements

Let F be a number field, let M be a (possibly infinite) Galois extension of F , and let

OM be its ring of integers. Let P be a prime ideal of OM lying over a prime ideal p

of OF , and let k(P) = OM/P and k(p) = OF /p be the residue fields. Then k(p) is a finite

field, say of cardinality q. By Lemma 2.43(ii), k(P) is an algebraic extension of k(p). Let

DP = {σ ∈ Gal(M/F ) | σP = P} be the decomposition group of P. By reduction to the

case of finite extensions, one sees that every algebraic extension of a finite field is Galois,

and that we have a surjective continuous group homomorphism

r : DP −→ Gal(k(P)/k(p)).

The right-hand side is a pro-cyclic group (either a finite cyclic group of a topological group

isomorphic to Ẑ), topologically generated by the Frobenius element Frobq : x 7→ xq. The

kernel of r is called the inertia group of P over p, and any element in DP ⊆ Gal(M/F )

mapping to Frobq is called a Frobenius element at P and denoted by FrobP.

Let p be a prime of F such that the extension M/F is unramified at p. Then any

prime P of M lying over p determines a unique element FrobP ∈ Gal(M/F ). Any other

prime of M over p has the form σP with σ ∈ Gal(M/F ), and we have DσP = σDPσ
−1

and FrobσP = σFrobPσ
−1. The set of all FrobP with P a prime of M over p is therefore

a conjugacy class in Gal(M/F ), called the Frobenius conjugacy class at p. When no

confusion is possible, any element of this conjugacy class (or even the conjugacy class

itself) is denoted by Frobp.

Example 2.45. Assume p is unramified in F . Then p is totally split in M if and only if

the Frobenius conjugacy class at p equals the trivial conjugacy class {id} ⊆ Gal(M/F ).

Example 2.46. Let l be a prime number, and take F = Q and M = Q(ζl∞) =
⋃
n≥1 Q(ζln).

We have a canonical isomorphism

Z×l
∼−→ Gal(Q(ζl∞)/Q)

a 7−→ (ζln 7→ ζa mod ln

ln ).

For every prime number p 6= l, the element p ∈ Z×l is mapped to the Frobenius element

at p. (Note that this Frobenius element is unique because the extension is Abelian.)
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Densities of sets of primes; Chebotarev’s theorem

Let F be a number field, and let P be the set of all prime ideals of OF . For any subset

S ⊆ P , the natural density of S is defined by the following limit (provided it exists):

d0(S) = lim
X→∞

#{p ∈ S | N(p) ≤ X}
#{p ∈ P | N(p) ≤ X}

.

The Dirichlet density of S is defined by

d(S) = lim
s→1

∑
p∈S N(p)−s∑
p∈P N(p)−s

,

where the limit is taken over positive real numbers s tending to 1 from above. One can

show that the Dirichlet density always exists, and if the näıve density exists, then it is

equal to the Dirichlet density.

Theorem 2.47. Let F be a number field, and let M be a finite Galois extension of F that

is unramified outside a finite set Σ of places of F . Let X be a subset of G = Gal(M/F )

that is stable under conjugation. Let SX be the set of primes p of F such that p 6∈ Σ and

such that the Frobenius conjugacy class at p is contained in X. Then the näıve density of

SX exists and equals #X/#G.

There also exists a version for infinite extensions.

Theorem 2.48. Let F be a number field, and let M be a (possibly infinite) Galois exten-

sion of F that is unramified outside a finite set Σ of places of F . Let µ be the unique Haar

measure on the compact group G = Gal(M/F ) such that µ(G) = 1. Let X be a subset

of G that is stable under conjugation and such that the boundary X̄ \X◦ has measure 0.

Let SX be the set of primes p of F such that p 6∈ Σ and such that the Frobenius conjugacy

class at p is contained in X. Then the näıve density of SX exists and equals µ(X).

2.5 Adèles

We will now “unify” the various completions of a number field F by introducing the adèle

ring of F . This is a topological ring AF that admits every completion Fv as a quotient, but

behaves in a more civilised way than the product
∏
v Fv of topological rings. For example,

AF is locally compact, while
∏
v Fv is not.

The unit group A×F of AF deserves a careful study of its own. It is a fundamental

object in the modern formulation of class field theory. Likewise, its non-commutative

generalisations GLn(AF ) (note that A×F = GL1(AF )) play a central role in the modern

theory of automorphic forms, and hence in the Langlands programme.

The adèle ring of Q

We start by looking at the case F = Q. We define the ring of finite adèles A∞ = A∞Q as

the tensor product A∞ def
= Q⊗Z Ẑ, where we view Q and Ẑ as Z-modules. Like any tensor

product of commutative rings, A∞ inherits a multiplication map, given explicitly by(
n∑
i=1

qi ⊗ zi

)
·

 m∑
j=1

q′j ⊗ z′j

 =
∑
i,j

qiq
′
j ⊗ ziz′j
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for all
∑n

i=1 qi ⊗ zi and
∑m

j=1 q
′
j ⊗ z′j in A∞.

The ring A∞ is equipped with the strongest topology such that the map

Q× Ẑ −→ A∞

(x, z) 7−→ x+ z

is continuous, where Q is given the discrete topology. More concretely, the subsets of the

form

Ux,y = x · Ẑ + y ⊂ A∞ with x ∈ Q× and y ∈ Q

form a basis for the topology on A∞. This definition implies that A∞ is a locally profinite

topological ring containing Ẑ as an open subring.

Definition 2.49. The adèle ring A = AQ is the product ring A∞ ×R, equipped with the

product topology.

The adèle ring as a restricted product

In many texts the ring A is introduced as a “restricted product” ranging over all prime

numbers p, of the fields Qp with respect to the subrings Zp ⊂ Qp. This restricted product

arises from the following computation. Observe first that we can view Q as the inductive

limit Q = lim−→N∈Z≥1
Z[1/N ].

Using this, we compute lim−→
N∈Z≥1

Z[1/N ]

⊗ Ẑ = lim−→
N∈Z≥1

(
Z[1/N ]⊗ Ẑ

)
= lim−→

N∈Z≥1

∏
p|N

Qp ×
∏
p-N

Zp

 . (2.4)

For each N , we embed
∏
p|N Qp×

∏
p-N Zp ⊂

∏
p prime Qp. Hence, A∞ equals the so called

restricted product

∏′

p prime

(Qp,Zp) =

(αp) ∈
∏

p prime

Qp | for almost all primes p we have αp ∈ Zp

 .

A basis for the topology on the restricted product is given by the sets

Ux,y = {(αp) ∈ A∞ | vp(αp − y) ≥ vp(x)}

with x ∈ Q× and y ∈ Q.

The full adèle ring is obtained from A∞ by attaching a component for the infinite place

as well. As a restricted product, we have

A =
∏′

Q-places v

(Qv : Zv)

where for v =∞, we take by definition Zv = Qv = R.
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The adèle ring of a number field

If F is a number field, the analogue of Ẑ is the ring of profinite F -integers,

ÔF = Ẑ⊗OF = lim←−
N∈Z≥1

OF /NOF = lim←−
I⊂OF

OF /I,

where I ranges over all the non-zero ideals of OF . As before, we define the ring of finite

adèles of F by A∞F = F ⊗OF ÔF , where the topology is the strongest such that the map

F × ÔF −→ A∞F
(x, z) 7−→ x+ z

is continuous. Then A∞F is a locally profinite topological ring containing ÔF as an open

subring. The adèle ring of F is then defined by

AF
def
= (F ⊗Q R)× A∞F .

In the same way as for the adèle ring of Q, we can write AF as a restricted direct product

AF =
∏′

v∈ΩF

(Fv : OFv),

where ΩF is the set of all places of F .

Lemma 2.50. Let G be a totally disconnected topological group. Then G is Hausdorff.

Proof. Let e be the identity element of G. In any topological space, the connected com-

ponents are closed, so {e}, which by assumption is a connected component of G, is closed.

The diagonal in G×G is the inverse image of {e} under the continuous map G×G→ G

defined by (g, h) 7→ gh−1, so it is closed in G×G. We conclude that G is Hausdorff.

Lemma 2.51. Let F be a number field.

1. The topological ring AF is a locally compact Hausdorff space.

2. The topology on F induced from AF is the discrete topology.

3. The subgroup F is closed in AF .

4. The quotient group AF /F is a compact Hausdorff space.

Proof. For simplicity, we do the case F = Q; the general case is left as an exercise.

To prove (1), we note that A∞ is totally disconnected and therefore Hausdorff by

Lemma 2.50. Since R is also Hausdorff, the space A = R×A∞ is a product of two Hausdorff

spaces and is therefore Hausdorff. Similarly, A∞ and R are both locally compact, so A is

a product of two locally compact spaces and is therefore locally compact.

For (2), we observe that U = (−1, 1) × Ẑ ⊂ A is open and U ∩ Q = {0}. Hence the

point 0 is open for the topology on Q induced from AQ. By translating U by elements

of Q, we see similarly that every point in Q is open for the topology induced from AQ.

Claim (3) follows from (2) and the (easily verified) fact that every discrete subspace of

a Hausdorff space is closed.

Finally, to prove (4), we first note that a quotient of a Hausdorff topological group by

a closed subgroup is again Hausdorff. To show compactness, consider the compact subset

[−1, 1] × Ẑ ⊂ A. It is left as an exercise to show that this surjects onto A/Q (Exercise

2.51).
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Partial adèle rings: omitting a set of places

It is often convenient to look at adèle rings where certain places are excluded from the

products. A fairly standard notation is the following. Let Σ1, Σ2 be two sets of places

of F . Then we define

AF,Σ1

def
=
∏′

v∈Σ1

(Fv : OFv),

AΣ2
F

def
=
∏′

v/∈Σ2

(Fv : OFv),

so sets in the superscript denote “excluded places” and sets in the subscript denote “in-

cluded places”. For instance, this explains the notation A∞Q for the finite adèles of Q.

Example 2.52. Let q be a prime number. Then A∞,qQ denotes the ring of finite adèles away

from the prime number q. It is canonically isomorphic to the quotient of AQ by the ideal

R×Qq (note: not a subring of AQ).

2.6 Idèles

The idèle group

If (R, T ) is a topological ring, its unit group R× is equipped with a canonical topology T ×

making R× into a topological group. One way to define T × is as the subspace topology

induced from the injection
R× → R×R,
x 7→ (x, x−1),

where R × R is equipped with the product topology. Equivalently, T × is the weakest

topology on R× for which both the inclusion R× → R and the inversion map R× → R×

are continuous.

Remark 2.53. The topology T × is a refinement of the subspace topology from R; it may

or may not be a strict refinement. If F is a local field, then the topology on F× is just

the subspace topology from F ; see Exercise 2.53. On the other hand, the topology on A×F
(see below) is strictly finer than the subspace topology from AF .

Definition 2.54. The group of finite idèles of a number field F is defined as the unit

group A∞,×F of A∞F . Similarly, the group of idèles, or idèle group, of F is defined as the

unit group A×F of AF .

We view A∞,×F and A×F as topological groups equipped with the topology defined above.

As a restricted product, we have (putting O×v = F×v for every infinite place v)

A∞,×F =
∏′

finite F -places v

(F×v : O×Fv),

A×F =
∏′

F -places v

(F×v : O×Fv)

∼= (F ⊗Q R)× × A∞,×F .

Recall that for every place v of F we have a local norm

| · |Fv : F×v → R>0.
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The adèlic norm | · |A×F on A×F is the product over all the local norms:

| · |A×F : A×F → R>0

(xv) 7→
∏
v

|xv|Fv ,

where v runs over the set of all places of F . Note that this product is well defined because

|xv|Fv = 1 for all but finitely many v; it is a continuous group homomorphism.

In Exercise 2.54, you will prove the product formula for the adèlic norm | · |A×F , i.e.

|x|A×F = 1 for all principal idèles x ∈ F× ⊂ A×F .

The following lemma is an analogue of Lemma 2.51.

Lemma 2.55. Let F be a number field.

1. The topological group A×F is a locally compact Hausdorff space.

2. The topology on F× induced from A×F is the discrete topology.

3. The subgroup F× is closed in A×F .

However, as we will see below, AF /F× is not compact.

Class groups and idèle class groups

Recall from algebraic number theory the notion of fractional OF -ideals. By definition these

are the non-zero OF -submodules I ⊂ F such that for some x ∈ F× we have xI ⊂ OF . The

principal fractional ideals are then those submodules that are generated by an element of

F×. The class group of F is then the group ClF of fractional OF -ideals modulo principal

ideals. This group is finite for all F . In Exercise 2.59, you will show that there is a

canonical isomorphism

A∞,×F /F×Ô×F ∼= ClF . (2.5)

In the modern formulation of class field theory, one introduces the idèle class group,

which is the locally compact topological group

CF = F×\A×F .

The isomorphism (2.5) describes the class group as a quotient of the idèle class group CF
by a closed subgroup of finite index.

Remark 2.56. In the notation for the quotient F×\A×F , we have written the quotient by

F× on the left. Because A×F is commutative, we could just as well have written this

quotient as A×F /F
×. However, writing the subgroup on the left is more consistent in the

non-commutative setting; there one encounters quotients such as GL2(F )\GL2(AF ), in

which there is a difference with the corresponding quotient on the right.

By the product formula, the adèlic norm | · |A×F induces a surjective continuous group

homomorphism

| · |CF : CF → R>0.

The kernel of | · |CF is a compact subgroup of CF and is denoted by C1
F .
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Hecke characters

We will now take a closer look at Dirichlet characters in the adèlic setting. This will

motivate the definition of Hecke characters.

By Exercise 2.60, there is a canonical isomorphism

R>0 × Ẑ× ∼−→ Q×\A× (2.6)

of topological groups. If χ : (Z/nZ)× → C× is a Dirichlet character modulo some positive

integer n, then χ induces a continuous group homomorphism

Ẑ× → C×

u 7→ χ(u mod n).

In view of the isomorphism (2.6), it is natural to extend this to a continuous group homo-

morphism

R>0 × Ẑ× → C×

(t, u) 7→ ts · χ(a mod n)

where s ∈ C can be chosen freely. Finally, we can use (2.6) to identify this with a

homomorphism

ωχ,s : A× → C×

that is trivial when restricted to Q×.

Definition 2.57. Let F be a number field. A Hecke character for F is a continuous group

homomorphism

ω : A×F → C×

that is trivial on the subgroup F× of A×F .

Unfortunately, general Hecke characters are not as easy to describe explicitly as are

Dirichlet characters. It is already a lot simpler for number fields of class number 1.

Example 2.58. Let F = Q(
√
−1). In §1.2.4, we considered the character χ of the group I

of fractional ideals of OF = Z[
√
−1] defined by

χ : I → F×

a 7→ a4,

where a is a generator of the fractionalOF -ideal a. Embedding F into C, we can“translate”

the character χ into a Hecke character ω of F as follows (explaining why this is the correct

“translation” would require more details about the relationship between the classical and

adèlic language):

ω : A×F −→ C×

(xv)v∈ΩF 7−→ x4
∞ ·
∏
p

π
−4vp(xp)
p .

Here p runs over all prime ideals of Z[
√
−1] and πp is any generator of p. Note that the

result does not depend on the choice of the πp because the exponent is a multiple of 4.
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2.7 Class field theory

Let Q(µ∞) = lim−→n≥1
Q(µn) be the (infinite) algebraic extension of Q obtained by adjoining

all roots of unity. Recall that there exist canonical isomorphisms

(Z/nZ)×
∼−→ Gal(Q(µn)/Q) for all n ≥ 1,

and hence a canonical isomorphism

Ẑ× ∼−→ Gal(Q(µ∞)/Q).

In particular, Q(µ∞) is an Abelian extension of Q. By the famous Kronecker–Weber

theorem, every Abelian extension of Q can be embedded into Q(µ∞). It turns out that for

general number fields, the description of all Abelian extensions is much more involved; for

this reason, class field theory was developed.

Let F be a field, let F̄ be an separable closure of F , and let G = Gal(F̄ /F ). The

commutator subgroup of G is the closed subgroup [G,G] ⊆ G (topologically) generated by

all commutators [g, h] = ghg−1h−1 with g, h ∈ G. The Abelianisation of G is the quotient

Gab = G/[G,G]

of topological groups. There is a unique maximal extension F ab of F inside F̄ that is

Abelian over F ; it is called the maximal Abelian extension of F and equals the fixed field

of [G,G] inside F̄ . Galois theory gives an isomorphism

Gab ∼−→ Gal(F ab/F ).

In the case where F is a local or global field, the aim of class field theory is to describe

F ab and Gab in terms of “data coming from F”. In the case where F is a local field, the

relevent object is just the unit group F×. In the case of number fields, the relevant object

is the idèle class group CF introduced earlier.

Theorem 2.59 (Main theorem of local class field theory). Let F be a local field.

1. There is a canonical inclusion-reversing bijection between the partially ordered set

of finite Abelian extensions of F (inside F̄ ) and the partially ordered set of closed

subgroups of finite index in F×.

2. If L is a finite Abelian extension of F and NL is the corresponding closed subgroup

of finite index in F×, then there is a canonical isomorphism

F×/NL
∼−→ Gal(L/F ).

As a consequence, the above isomorphisms induce an isomorphism

F̂×
∼−→ Gal(F ab/F ) (2.7)

of topological groups, where F̂× is the profinite completion of F×.

Theorem 2.60 (Main theorem of global class field theory). Let F be a number field.
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1. There is a canonical inclusion-reversing bijection between the partially ordered set

of finite Abelian extensions of F (inside F̄ ) and the partially ordered set of closed

subgroups of finite index in CF .

2. If L is a finite Abelian extension of F and NL is the corresponding closed subgroup

of finite index in CF , then there is a canonical isomorphism

CF /NL
∼−→ Gal(L/F ).

As a consequence, one obtains a canonical isomorphism

CF /UF
∼−→ Gal(F ab/F )

of topological groups, where UF is the intersection of all closed subgroups of finite index

in CF .

One possible choice for a closed subgroup of finite index is the image of (F⊗QR)××Ô×F
in CF . The corresponding finite Abelian extension of F is the Hilbert class field HF of F .

This is the maximal unramified Abelian extension of F (where the extension C/R is

regarded as being ramified for this purpose). The Galois group Gal(HF /F ) is canonically

isomorphic to the ideal class group of F ; see Exercise 2.64. Another choice is the smaller

subgroup where at the real places one only takes the the subgroup of positive elements;

this gives rise to the narrow Hilbert class field of F , the maximal Abelian extension that

is unramified at all finite places.

Example 2.61. The imaginary quadratic field K = Q(
√
−15) has discriminant −15 = −3·5.

The field H = Q(
√
−3,
√

5) is an unramified quadratic extension of K, and can in fact be

shown to be the Hilbert class field of K.

Example 2.62. The Hilbert class field of K = Q(
√
−23) is HK = K(α), where α3−α−1 =

0. In this example the description of HK is harder to “guess” than in the previous example.

However, there exists a general method to determine Hilbert class fields (and other Abelian

extensions) of imaginary quadratic fields, namely the theory of complex multiplication.

Example 2.63. Let K be the cubic field Q(α) of discriminant −3299, where α3−α2 +9α−
8 = 0. The Hilbert class field of K is HK = K(β), where β3− (α+1)β−1 = 0. To “guess”

HK in cases of this kind, one can use the (as yet unproved) Stark conjectures.

2.8 Appendix: Weak and strong approximation

Let Ω be the set of all places of Q.

Let X be an (affine or projective) algebraic variety over Q (or more generally a global

field). We have injective maps

X(Q) ⊆ X(A) ⊆
∏
v∈Ω

X(Qv)

of topological spaces; here X(Q) is equipped with the discrete topology, X(Qv) with

the v-adic topology, X(A) with the restricted product topology, and
∏
v∈ΩX(Qv) with

the product topology. (Defining the topology on X(A) for general varieties X requires
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discussing integral models. We will not do this here, since in the particular cases that we

are interested in, there is an “obvious” notion of integral points.)

Note that both of the above inclusions are continuous, but the topology on X(A)

is in general finer than the subspace topology inherited from
∏
v∈ΩX(Qv). However, if

the variety X is projective, then X(Zv) is equal to X(Qv) for every finite place v, and

consequently the topological spaces X(A) and
∏
v∈ΩX(Qv) can be identified.

We say that X satisfies weak approximation if (the image of) X(Q) is a dense subspace

of
∏
v∈ΩX(Qv). In other words X satisfies weak approximation if and only if every non-

empty open subset of
∏
v∈ΩX(Qv) contains a rational point. Because of the definition of

the product topology, this is equivalent to saying that for every finite subset S ⊂ Ω, the

subset X(Q) is dense in
∏
v∈S X(Qv).

We say that X satisfies strong approximation if X(Q) is dense in X(A) equipped with

the restricted product topology.

Note that if X satisfies strong approximation, then X also satisfies weak approximation

because the inclusion map from X(A) to
∏
v∈ΩX(Qv) is continuous with dense image.

However, the converse does not hold; since the topology on X(A) is finer than the subspace

topology inherited from
∏
v∈ΩX(Qv), the closure of X(Q) in X(A) is in general smaller

than the intersection of X(A) with the closure of X(Q) in
∏
v∈ΩX(Qv).

Example 2.64. The affine line satisfies weak approximation but not strong approximation:

Q is dense in
∏
v∈Ω Qv (Exercise 2.66), but is discrete as a subspace of A. For example,

there are no rational numbers x satisfying |x|v ≤ 1 for all finite places v and |x− 1/2|∞ <

1/2. However, the affine line does satisfy strong approximation outside any non-empty set

of places of Q; see Exercise 2.67.

There are analogous notions “away from a fixed set of places”. If Σ is any subset of Ω,

then X satisfies weak approximation away from Σ if X(Q) is dense in
∏
v∈Ω\ΣX(Qv), and

X satisfies strong approximation away from Σ if X(Q) is dense in X(AΣ) (defined in the

same way as X(A) but using the set of places Ω \ Σ instead of Ω).

2.9 Exercises

Profinite groups

Exercise 2.1. Show that a group object in the category of groups Grp is an abelian group,

in the following sense. Let A be an abelian group. Then, notice that, m : A×A→ A and

i : A → A are morphisms of groups, and hence (A,m, i) is a group object in Grp. Show

that all group objects in Grp are of this form.

Exercise 2.2. Let Y be a projective limit of a projective system of topological spaces

(Yi)i∈I . Let X be a topological space, and f : X → Y be a continuous morphism. Show

that if for every i ∈ I the composition X → Y → Yi is surjective, then f has dense image.

Exercise 2.3. Show that in the category of topological spaces, a projective limit of com-

pact Hausdorff spaces is non-empty.

Exercise 2.4. Let X be a topological space. Show that X is homeomorphic to a pro-

jective limit of finite discrete spaces if and only if X is Hausdorff, compact and totally

disconnected.
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Exercise 2.5. Let G be a topological group. Show that G is totally disconnected and lo-

cally compact (i.e. “locally profinite”) if and only if there exists an open profinite subgroup

K ⊂ G.

Exercise 2.6. (a) Show that the only continuous group homomorphism from Ẑ to the

additive group of C is the trivial homomorphism.

(b) Show that every continuous group homomorphism Ẑ→ C× has finite image.

(c) Let p be a prime number. Show that the only continuous group homomorphism

from Qp to the additive group of C is the trivial homomorphism.

(d) Let p be a prime number. Show that the image of a continuous group homomorphism

Qp → C× is either trivial or infinite, and give an example of the second case.

Exercise 2.7. (a) Give the C-algebra R over C such that specR = Gm,C ×C Gm,C.

(b) The multiplication mapping m : specR→ Gm,k induces on global sections a mapping

C[X±1]→ R; describe this map explicitly.

(c) Compute the endomorphism ring EndC-Grp(Gm,C).

Exercise 2.8. Let G be a topological group.

(a) Let H ⊂ G be an open subgroup. Show that H is also closed.

(b) Show that the converse does not hold by giving an example of a closed subgroup

that is not open.

(c) Assume G is compact. Show that any open subgroup H of G contains an open

normal subgroup.

Now assume that G is profinite.

(a) Show that any open subgroup has finite index.

(b) Show that any continuous morphism ρ : G→ GLn(C) has finite image.

Exercise 2.8.1
2 .Let ρ be as in the previous exercise. Show that any ρ : G→ GLn(C) has

up to conjugation image in GLn(F ) where F ⊂ C is some number field.

Exercise 2.9. Let G be locally profinite group.

(a) Let C∞c (G) be the space of locally constant functions f : G → C that are com-

pactly supported. Show that there exists an, up to scalar unique, non-trivial lin-

ear functional µ : C∞c (G) → C that is invariant under left translation by G, i.e.

µ ∈ C∞c (G)∗ = HomC(C∞c (G),C) is such that for all f ∈ C∞c (G) and all g ∈ G we

have µ(f) = µ(gf) where gf is the function x 7→ f(g−1x).

(b) The functional µ is the left Haar measure of G. We write
∫
G f dµ for µ(f). The

group G is called unimodular if µ is invariant under right translations. Give an

example of a locally profinite group which is unimodular, and one which is not.
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Exercise 2.10. Let G be a profinite group and ρ : G → GLn(Q`) be a continuous mor-

phism. Show that ρ has up to conjugation image in the group GLn(Z`).

Exercise 2.11. Let G be a profinite group of pro-order prime to `, i.e. G is isomorphic to

a projective limit of finite groups that are of order prime to `. Show that any continuous

morphism G→ GLn(Q`) has finite image.

Exercise 2.12. Let G be a profinite group and ρ : G → GLn(Q`) be a continuous mor-

phism. Show that ρ has, up to conjugation, image in GLn(F ) where F ⊂ Q` is a finite

extension of Q`.

Exercise 2.13. Let p be a prime number. Consider the group SL2(Zp) of invertible 2×2-

matrices
(
a b
c d

)
with coefficients in Zp, such that ad−bc = 1. We give SL2(Zp) a topology by

pulling back the product topology on M2(Zp)2 ∼= Z8
p, via the injection SL2(Zp) � M2(Zp)2,

g 7→ (g, g−1).

(a) Show that the group SL2(Zp) is profinite.

(b) Show that we have an isomorphism SL2(Zp)
∼→ lim←−n∈Z≥1

SL2(Z/pnZ).

(c) Show that the mapping SL2(Z)→ SL2(Zp) has dense image. Show that the mapping

GL2(Z)→ GL2(Zp) does not have dense image.

Exercise 2.14. Let {Gi, i ∈ I,≤} be a filtered projective system of groups, so where I is

an index set that is partially ordered by ≤, and where for each i ∈ I we have a finite group

Gi, and for each pair of indices i, j ∈ I with i ≤ j we have a surjection fji : Gj � Gi. We

require that for all inequalities of the form i ≤ j ≤ k in I we have that fki = fji ◦ fkj , and

for all i ∈ I that fii = IdGi .

(a) Show that the projective limit G = lim←−i∈I Gi is either finite or uncountably infinite.

(b) Show that as a topological space, Z2 is isomorphic to the Cantor set.

Infinite Galois theory

Exercise 2.15. Show that any profinite group G arises as the Galois group of some,

possibly infinite, Galois extension L/F of fields.

Exercise 2.16. Consider the set S of formal products x =
∏
p prime p

np , where np ∈
Z≥0 ∪ {∞}.

(a) Show that the set S parametrizes naturally the (algebraic) extensions M ⊂ Fq of Fq.

(b) Let x, y ∈ S and Mx,My ⊂ Fq be the corresponding fields. Express in terms of

x, y when Mx is a subfield of My, and determine in this case the profinite group

Gal(My/Mx).

Exercise 2.17. Show that the topologies defined in (2.2) and (2.3) are equivalent.

Exercise 2.18. Let L/M/F be (possibly infinite) Galois extensions of the number field

F . Show that the mapping Gal(L/F )→ Gal(M/F ) is surjective.
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Exercise 2.19. In the spirit of Grothendieck, there is a more categorical way to formulate

Galois theory (Theorem 2.15): Let F be an algebraic field with absolute Galois group

G = Gal(F/F ). Define

CF = The category of F -algebras M such that every element x ∈M satisfies f(x) = 0 for

some separable polynomial f ∈ F [X].

G-spaces= The category of compact, totally disconnected topological spacesX that are equipped

with a continuous G-action, and the space of orbits X/G is finite.

Let X be a G-space. Write Map(X,F ) for the F -algebra of continuous functions X → F

with pointwise addition and pointwise multiplication. The group G acts on Map(X,F ) by

translation on the functions g(f) = (x 7→ f(g−1x)) (g ∈ G, f ∈ Map(X,F )). Use Theorem

2.15 to show that the functor CF → G-spaces, M 7→ HomF (M,F ) is quasi-inverse to the

functor that assigns the algebra of invariant functions Map(X,F )G to the G-set X.

Exercise 2.20. Let p1, p2, p3, . . . ∈ Z≥1 be the (infinite) list of all the (positive) prime

numbers in Z. Consider the extension M = Q(
√
p1,
√
p2, . . .) of Q obtained by adjoining

square roots
√
p1,
√
p2, . . ., of the prime numbers.

(a) Explain that M is an infinite Galois extension and determine its Galois group

Gal(M/Q) as a profinite group. (Hence, also determine its topology!).

(b) Show that the group Gal(M/Q) has uncountably many subgroups of index 2 that

are not closed for its topology.

(c) Explain that in the statement of infinite Galois theory, one cannot remove the con-

dition that the subgroups are closed.

Local fields

Exercise 2.21. Prove Theorem 2.35.(ii).

Exercise 2.22. Let L/F be a finite Galois extension of p-adic fields. Show that for all

x ∈ L and all σ ∈ Gal(L/F ) we have |σ(x)| = |x|.

Exercise 2.23. Consider the power series ring R = R[[T ]]. Show that there exist an

element
√

1 + T ∈ R whose square is 1 + T ∈ R.

Exercise 2.24. Let F be a topological field of characteristic 0 with non-discrete topology.

Show that F is a p-adic field if and only if it is locally profinite.

Exercise 2.25. Let v be a (finite or infinite) place of Q. Show that any field automorphism

σ ∈ Autfields(Qv) is automagically continuous. Deduce that Autfields(Qv) = 1.

Hint: Try to characterize the topology by some algebraic property. For the p-adic fields

Qp show that |α|p = 1 if and only if α has an m-th root in Qp for all positive integers m

prime to p(p− 1).

Exercise 2.26. Show that Theorem 2.28 implies Proposition 2.27.
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Exercise 2.27. On page 39 we computed the higher ramification groups Gal(Qp(ζp,
p
√

2)/Qp)i
for all (odd) prime numbers p. The goal of this exercise is to generalize this computation

to Qp(ζp, p
√
c) for all c ∈ Zp, c 6= 0.

(a) Assume vp(c) = 0 and [Qp(ζp, p
√
c) : Qp] = p(p − 1). Show that the ramification

filtration on Gal(Qp(ζp, p
√
c)/Qp) is

i −1 0 1 2

Gi Fp n F×p Fp n F×p Fp 0

(b) Assume 0 < vp(c) < p. Show that the ramification filtration on Gal(Qp(ζp, p
√
c)/Qp)

is
i −1 0 1 2 · · · p p+ 1

Gi Fp n F×p Fp n F×p Fp Fp · · · Fp 0

(c) Give an explicit necessary and sufficient condition on p, similar to the one we found

when c = 2 that predicts when [Qp(ζp, p
√
c) : Qp] = p− 1.

Exercise 2.28. Give an example of a prime number p such that p
√

15 ∈ Qp.

Hint: You may want to use a computer for this, because the smallest such prime number

p is larger than 25000.

Exercise 2.29. Let p = 3. Find a uniformizer of the field Qp(ζp2 , p
2√p).

Exercise 2.30. Recall the conjecture that any finite group arises as a Galois group of a

Galois extension of Q. In contrast, explain that over Qp the Galois group of a finite Galois

extension is always solvable and moreover give an example of a finite solvable group G such

that for all prime numbers p and all finite Galois extensions F/Qp we have G 6∼= Gal(F/Qp).

Exercise 2.31. Determine all prime numbers p such that Qp has a finite Galois extension

F/Qp whose Galois group is the symmetric group S4. You may use the fact that the

polynomial f = X4 − 2x+ 2 has Galois group S4 over Q2.

Exercise 2.32. Give an example of a prime number p, two totally ramified extensions

M1,M2 of Qp both contained in a fixed algebraic closure Qp, such that the compositum

M1M2 ⊂ Qp is not totally ramified.

Exercise 2.33. Compute the Galois group of the splitting field of x5 + x+ 1 over Q3.

Algebraic number theory for infinite extensions

Exercise 2.34. (a) Give an example of an infinite algebraic extension M/Q and a prime

p that is totally split in M .

(b) Give an example of an infinite algebraic extension M/Q and a prime p that is inert

in M .

Exercise 2.35. Let f1, . . . , fn ∈ Z[X] be monic polynomials of degree at least 2. Prove

that there exists a prime p such that all the fi are reducible modulo p.
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Exercise 2.36. Prove Lemma 2.43. Make for each of the items a reduction to the finite

case. For the finite cases you may refer to any standard text on algebraic number theory,

such as the book of Neukirch [10].

Exercise 2.37. Let F be a number field. Let G be a finite group, equipped with the

discrete topology. Let ϕ : Gal(F/F ) → G be a continuous homomorphism. For every

prime p of F and every prime P of F over p, let IP denote the inertia group at P. Show

that ϕ is unramified at almost all primes of F , i.e. for almost all primes p of F we have

ϕ(IP) = {1} for all primes P of F over p.

Exercise 2.38. Let v be a finite place of F and choose an embedding ι : F → F v. Show

that the induced mapping ψι : Gal(F v/Fv)→ Gal(F/F ) is injective.

Hint: look up Krasner’s lemma (you may use this lemma in your solution).

Exercise 2.39 (The ring of integers of Q(µ`n)). Let `n be a power of a prime number `

in Z. Let µ`n ⊂ Q× be the roots of unity of order dividing `n. We show in this exercise

that Z[µ`n ] is the ring of integers of Q(µ`n).

(a) Let p ∈ Z be a prime number different from `. Show that p is unramified in Q(µ`n).

(b) Use Minkowski’s theorem to show that ` ramifies in Q(µ`n)/Q.

(c) Show that the principal ideal ` · Z[µ`n ] decomposes into the `n−1(`− 1)-th power of

a principal prime ideal.

(d) Deduce that Z[µ`n ] is regular at all prime numbers, and therefore integrally closed.

(e) Conclude that Z[µ`n ] is the ring of integers of Q(µ`n).

Exercise 2.40. Let n be a positive integer, and let Q(µn) be the n-th cyclotomic field.

Prove that the ring of integers of Q(µn) equals Z[µn].

Exercise 2.41 (The cyclotomic character). We write Q(µ`∞) for the extension of Q
obtained by adjoining for each positive integer n ∈ Z≥1 the `n-th roots of unity to Q.

Let p be a prime number different from `.

(a) Recall that for each n ∈ Z≥1, there exists a unique isomorphism χ`,n : Gal(Q(ζ`n))
∼→

(Z/`nZ)× such that σ(ζ) = ζχ`,n(σ) for all `n-th roots of unity ζ ∈ Q(ζ`n). Show that

the collection of maps {χ`,n}n∈Z induces an isomorphism χ` : Gal(Q(µ`∞)/Q)
∼→ Z×` .

(b) Explain that for all x ∈ Z×` and all roots of unity ζ ∈ µ`∞ of `-power order, the

exponentiation ζx is well-defined. Then show that χ` is characterized by the property

that for all ζ ∈ µ`∞ we have σ(ζ) = ζχ`(σ).

(c) Let p be a prime number different from `. Let p be an Q(ζ`n)-prime dividing p. Show

that the composition µ`n ⊂ Z[µ`n ]→ Z[µ`n ]/p is injective.

(d) Deduce that χ`(Frobp) = p for all roots of unity ζ ∈ µ`n of `-power order and all

prime numbers p different from `.

(e) Let I` ⊂ Gal(Q(µ`∞)/Q) be the inertia group. What is the image of I` under χ`?
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Exercise 2.42. This exercise is a continuation of Exercise 2.20

1. Compute for every prime ideal p ⊂ OM the algebraic extension Mp of Q contained

in M corresponding to inertia group I(p/p) ⊂ Gal(M/Q). So Mp = M I(p/p).

2. Prove that there exists a morphism ϕ : Gal(Q/Q)→ {±1} of abstract groups that is

ramified at infinitely many prime numbers.

Note: By Exercise 2.37, the morphism ϕ cannot be continuous.

Exercise 2.43. Let p be a prime number. Show that there are infinitely many prime

ideals q of Z[ζp] such that 2 is a p-th power in the finite field Z[ζp]/q.

Exercise 2.44. 1 The exact sequence {±1} → F
× → F

×
is equivariant for the Galois

action of Gal(F/F ) on F
×

. Taking the long exact sequence of Galois cohomology, we

obtain

F
×,Gal(F/F ) → F

×,Gal(F/F ) → H1(Gal(F/F ), {±1})→ H1(Gal(F/F ), F
×

). (2.8)

(a) Show that Homcts(Gal(F/F ), {±1}) = H1(Gal(F/F ), {±1}).

(b) Show using Hilbert 90 and the result from previous exercise, that Sequence (2.8)

induces an isomorphism F×/F×,2
∼→ Homcts(Gal(F/F ), {±1}).

(c) Assume that F = Q. Let χ : Gal(Q/Q) → {±1} be a non-trivial, continuous mor-

phism that corresponds to the element α ∈ Q×/Q×,2 from the previously found

bijection. Consider the field of invariants, E = Qker(χ)
, i.e. E is the set of x ∈ Q

such that for all σ ∈ Gal(Q/Q) with χ(σ) = 1 we have σ(x) = x. Explain that E/Q
is a quadratic extension and give a generator of this field in terms of α.

Adèles

Exercise 2.45. (a) Determine the prime ideals P ⊂ A that are open for the topology

on A.

(b) Prove that there are uncountably many prime ideals P of A that are not open.

Exercise 2.46. Consider the canonical inclusion map f : A →
∏
v place of QQv. Prove or

disprove the following statements.

1. The map f is continuous.

2. The map f is open.

3. The map f is a homeomorphism onto its image.

Exercise 2.47. (a) Explain that in Q ⊗
∏
p prime Zp the tensor product does not com-

mute with the product.

(b) Explain that in Z[1/N ] ⊗
∏
p prime Zp the tensor product does commute with the

product (cf. equation (2.4)).

1This exercise is for students who know, or are willing to learn, some basic Galois cohomology. A good

reference for this is Serre’s book [13].
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Exercise 2.48. Let F be a number field. Show that AF is canonically isomorphic to

F ⊗ AQ.

Exercise 2.49. Let L/F be a finite extension of number fields. Show that there is an

induced ring homomorphism AF → AL, and that this is a homeomorphism of AF onto a

closed subring of AL.

Exercise 2.50. (a) Let (R × Ẑ)/Z be the quotient of R × Ẑ by the group Z that is

diagonally embedded in R× Ẑ, i.e. the image of the map Z→ (R× Ẑ), x 7→ (x, x).

Show that the mapping

(R× Ẑ)/Z −→ (R× A∞)/Q
(x, y) mod Z 7−→ (x, y) mod Q

is an isomorphism of topological groups.

(b) Show that the mapping

lim←−
N∈Z≥1

R/NZ −→ (R× Ẑ)/Z

(xN mod NZ)N≥1 7−→ (x1, (x1 − xN mod NZ)N≥1) mod Z

is an isomorphism of topological groups, and give a description of its inverse.

(c) Conclude that A/Q is isomorphic to the solenoid S = lim←−N∈Z≥1
R/NZ.

Exercise 2.51. Prove the identity

A = Q + ([−1, 1]× Ẑ).

(In other words, any adèle α ∈ A can be written, not necessarily uniquely, as x + β with

x ∈ Q and β ∈ [−1, 1]× Ẑ.)

Idèles

Exercise 2.52. Let R be a topological ring, and let R× be the unit group of R equipped

with the topology defined in the text. Prove that the standard action of R× on R (i.e. the

map R× ×R→ R defined by (a, b) 7→ ab) is continuous.

Exercise 2.53. Prove that if F is a local field, then the topology on F× defined in the

text is the subspace topology induced from the inclusion F× → F .

Exercise 2.54. Let F be a number field. Show that |x|A×F = 1 for all x ∈ F× ⊂ A×F (the

“product formula”).

Hint: First do the case where F = Q.

Exercise 2.55. Prove Lemma 2.55.

Exercise 2.56. Let F be a number field. Show that the subset A×F ⊂ AF (equipped with

the subspace topology) is closed but not open.

Exercise 2.57. Consider the set S = {p}, where p is a prime number.
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(a) Construct an explicit isomorphism from the quotient AS,×Q /Q×ẐS,× to the circle R/Z.

(In particular, Q×ẐS,× is closed in AS,×Q .)

(b) Conclude that Q× is not dense in AS,×Q .

(c) Show that Q×Ẑ{p,q},× is dense in A{∞,p,q},×.

Exercise 2.58. Let F be a number field. Let S be a finite set of places of F . Show that

the subset F× ⊂ A×F,S =
∏
v∈S F

×
v is dense.

Exercise 2.59. Let F be a number field. Consider the group Frac(ÔF ) consisting of those

OF -submodules I ⊂ AF such that I ⊗OFv is non-trivial for every v, and for some x ∈ A×F
we have xI ⊂ ÔF .

(a) Show that the mapping Frac(OF )→ Frac(ÔF ), I 7→ ÔF ⊗OF I is a bijection.

(b) Show that there is a canonical isomorphism Frac(ÔF ) ∼= A∞,×F /Ô×F .

(c) Deduce that there is a canonical isomorphism ClF = Frac(OF )/F×
∼−→ A∞,×F /Ô×FF×.

Exercise 2.60. (a) Prove (without using Exercise 2.61) that the idèle class group CQ =

Q×\A× of Q is canonically isomorphic to R>0 × Ẑ×.

(b) Let UQ be the intersection of all closed subgroups of finite index in CQ (cf. Sec-

tion 2.7). Prove (without using the main theorem of class field theory) that UQ
equals the image of R>0 under the isomorphism R>0 × Ẑ× ∼−→ CQ from part (a).

Exercise 2.61. Let F be a number field. Prove that there exists a canonical long exact

sequence

1 −→ O×F −→ Ô
×
F × (F ⊗ R)× −→ CF −→ ClF −→ 1.

Exercise 2.62. Show that every continuous homomorphism A× → C× that is trivial

on Q× is of the form ωχ,s (see Section 2.6), where χ : (Z/nZ)× → C× is a Dirichlet

character modulo some positive integer n and s ∈ C.

Exercise 2.63. Let F be a number field, and let V be a finite-dimensional vector space

over F . Let XF be the set of OF -lattices in V , and let X̂F be the set of ÔF -lattices in the

A∞F -module V̂ = A∞F ⊗F V .

(a) Show that the mapping XF → X̂F , Λ 7→ Λ̂ = ÔF ⊗OF Λ is a bijection.

(b) Fix a lattice Λ0 ∈ V . Show that the map GLF (V ) → XF , g 7→ gΛ0 induces a

bijection GLF (V )/GLOF (Λ0)
∼→ XF . And similarly, GLA∞F (V̂ )/GLÔF (Λ̂0)

∼→ X̂F .

(c) Deduce that the mapping GLF (V )/GLOF (Λ0)→ GLA∞F (V̂ )/GLÔF (Λ̂0), g 7→ A∞F ⊗F
g, is a bijection.
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Class field theory

Exercise 2.64. Let F be a number field, let CF = F×\A×F be the idèle class group of F ,

and let U be the image of (F ⊗Q R)× × Ô×F ⊂ A×F in CF .

(a) Show that U is an open subgroup of CF .

(b) Show that the finite Abelian extension of F associated to U by the main theorem

of class field theory is the maximal unramified extension of F . (Here the extension

C/R of Archimedean local fields is regarded as being ramified.)

Exercise 2.65. Let F be a number field.

(a) Assume that F has two `-adic places λ1, λ2 whose inertial degree and ramification

degree over Q are the same. Show that any continuous character χ : Gal(F λ1/Fλ1)→
Q×` globalizes to a character of the absolute Galois group of F , i.e. there exists a

continuous character χ̃ : Gal(F/F )→ Q×` such that χ̃|Gal(Fλ1/Fλ1 ) = χ.

(b) Now assume that ` is inert in F . Let λ be the F -place above `. Give a necessary

and sufficient condition for a character χ : Gal(F λ/Fλ)→ Q×` to globalize.

Approximation

Exercise 2.66. Prove that weak approximation holds for the affine line over Q, i.e. Q is

dense in
∏
v∈Ω Qv.

Exercise 2.67. Let S be a finite set of places of Q. The goal of this exercise is to prove

strong approximation for the adèles of Q outside S, i.e. the statement that Q is dense

in AS , holds if and only if S 6= ∅.

(a) Prove that Q is not dense in A (i.e. strong approximation fails for S = ∅).

(b) Prove that Q is dense in A∞ (i.e. strong approximation holds for S = {∞}).

(c) Let p be a prime number. Show that for all γ ∈ A, all ε > 0, and every finite set Σ

of places of Q with p 6∈ Σ and ∞ ∈ Σ, the open subset
∏
v∈ΣB(γv, ε)×

∏
v 6∈Σ,v 6=p Zv

of A{p} contains a rational number.

(d) Conclude that Q is dense in AS for every non-empty finite set S of places of Q.

Exercise 2.68. (a) Prove that Q× is not dense in A× (i.e. strong approximation fails

for the multiplicative group over Q).

(b) Let v be a place of Q. Show that Q× is not dense in A{v},× (i.e. strong approximation

outside {v} fails for the multiplicative group over Q).

(c) Does there exist a finite set S of places of Q such that Q× is dense in AS,× (i.e. such

that strong approximation outside S holds for the multiplicative group over Q)?



Chapter 3

Galois representations

In this chapter, we will develop the basic theory of Galois representations. We have

already seen one type of Galois representations in §1.4.1, namely Artin representations

ρ : Gal(Q/Q)→ GLn(C). In modern number theory and arithmetic geometry, it turns out

to be indispensable to consider representations with coefficients in fields other than C. In

this way, one obtains a much more intricate theory. From the point of view of number

theory, the representations of Galois groups of number fields are the most interesting ones.

However, in studying these, one is led to representations of Galois groups of local fields.

3.1 Basic representation theory

The purpose of this section is to give a brief overview of the most important concepts from

representation theory. We recommend the reader to also have a look on Serre’s book [14]

Let G be a group, and let A be a commutative ring. An A-linear representation of G

consists of a free A-module V together with a group morphism ρV : G → AutA(V ). It

is very useful to introduce the group algebra A[G] =
⊕

g∈GA consisting of finite formal

A-linear combinations of elements of G. The group algebra has the structure of a ring

with point-wise addition, and with multiplication given by(∑
g∈G

agg

)(∑
h∈G

bhh

)
=
∑
g,h∈G

agbhgh =
∑
g∈G

(∑
h∈G

agh−1bh

)
g.

Note that A[G] is commutative if and only if either G is Abelian or A is the zero ring.

In the terminology of group rings, an A-linear representation of G is the same as a left

A[G]-module V that is free as an A-module; the group homomorphism ρ is then part of

the A[G]-module structure. It is customary to still write ρ(g)v instead of gv to denote the

image of v ∈ V under the action of g ∈ G when there is a possibility of confusion. In other

words, the category of A-linear representations of G is isomorphic to the category of left

A[G]-modules V that are free over A.

Remark 3.1. Note that to give a representation of a group G is to give two pieces of

information. First an A-module V and then a morphism ρV : G → GLA(V ). We will

often suppress ρV from the notation, and say V is the representation (so making the

map ρV implicit). Note that different authors with different backgrounds have different

preferences. Some authors write the map ρ : G → GL(V ) and suppress the A-module V

62
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from the notation. Yet other authors do not want to suppress anything and write (V, ρ)

to denote a representation.

Remark 3.2. In the previous chapter we spoke about group objects in arbitrary categories.

Using this language a representation of G is nothing but a G-set object in the category of

A-modules (for which the underlying A-module is free).

Let V and W be two A-linear representations of G. A morphism from V to W is

by definition an A[G]-linear map V → W . Equivalently, a morphism V → W is an A-

linear map that is compatible with the G-actions on both sides. The representations V

and W are called isomorphic or equivalent if they are isomorphic as left A[G]-modules.

The A-linear representations of G with morphisms between them form a category, which

we identify with the category A[G]Mod of left A[G]-modules. Like any category of modules

of a ring, this is an Abelian category.

Example 3.3. Let G = Sn be the symemtric group on n symbols. Then we have the

permutation of representation Sn acting on Cn: If σ ∈ Sn, (xi) ∈ Cn, then we put

σ · (xi) = (xσ−1i).

Example 3.4. Consider the additive group R and let L2(R) be the space of square integrable

functions f : R→ C, i.e. these are functions such that the integral
∫
R |f(x)|2dx converges.

Two such functions are considered equivalent if their difference is supported on a set of

measure 0. Then L2(R) is a Hilbert space. Moreover the group R acts on L2(R) by

translating functions.

From now on we will restrict ourselves to the case where A is a field K. Let V be a

K-linear representation of G. We say that V is simple or irreducible if V is simple as a

K[G]-module, i.e. if V has exactly two K[G]-submodules, namely 0 and V . In particular,

the zero representation is not regarded as irreducible. Furthermore, we say that V is

semi-simple if V is a direct sum of simple K[G]-modules.

Theorem 3.5 (Maschke). Let G be a finite group, let K be a field such that #G is not

divisible by the characteristic of K, and let V be a K[G]-module of finite K-dimension.

Then V is a direct sum of simple K[G]-modules.

In other words, every finite-dimensional K-linear representation of G is a direct sum of

irreducible representations. We will not give a proof; the idea is to show that every short

exact sequence of K[G]-modules splits.

Remark 3.6. The assumption that #G is not divisible by the characteristic of K is nec-

essary, as the following example shows. Let K be a field of characteristic p > 0, let G be

a cyclic group of order p, and let g be a generator of G. Let V = K2, made into a K[G]-

module by letting g act as g(x, y) = (x+ y, y). Then V ′ = K ⊕ {0} is a K[G]-submodule

of V (with trivial G-action), and G also acts trivially on the quotient V ′′ = V/V ′. How-

ever, the short exact sequence [V ′ � V � V ′′] of K[G]-modules does not split. This

can be viewed as an manifestation of the fact that the matrix
(

1
0

1
1

)
∈ GL2(K) is not

diagonalisable.

Lemma 3.7 (Schur). Let K be a field, and let G be a group

(i) Let V and W be two simple K[G]-modules, and let f : V →W be a K[G]-linear map.

Then f is either the zero map or an isomorphism.
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(ii) Let V be a simple K[G]-module. Then the K-algebra EndK[G]V of K[G]-linear en-

domorphisms of V is a division algebra.

(iii) Let V be a simple K[G]-module, where K is algebraically closed and V is finite-

dimensional. Then EndK[G](V ) = K.

Proof. If f : V →W is a morphism between simple K[G]-modules, then ker f and im f are

submodules of V and W , respectively, so either ker f = 0 and im f = W , or ker f = V and

im f = 0. This proves (i), and (ii) follows by taking W = V . For (iii) let X ∈ EndK[G](V ).

Choose V ∼= Kn, then X induces an n× n-matrix, and since we are over an algebraically

closed field, X will have an eigenvalue λ with corresponding eigenvector v. Then X − λ ∈
EndK[G](V ), and since (X − λ)(v) = 0 the endomorphism X − λ can’t be invertible, and

we must have X = λ.

We now restrict to complex representations.

Proposition 3.8. Let G be a finite group. Then the group ring C[G], viewed as a left

module over itself, is the direct sum of all irreducible C-linear representations V of G, with

each V occurring dimC V times.

The C-linear representation C[G] ofG is called the (left) regular representation of G. As

it “contains” all irreducible representations of G, the regular representation is apparently

a useful representation to consider. In a similar vein, we will see later that for more

general (infinite topological) groups G, such as GL2(AQ), it will be essential to study

representations of G via suitable spaces of continuous functions G→ C.

We finish this section with a very useful result on constructing representations of a

group G from representations of a subgroup H.

Theorem 3.9 (Frobenius reciprocity). Let G be a group, let H be a subgroup of G, and

let A be a commutative ring. Let ResGH : A[G]Mod→ A[H]Mod denote the forgetful functor

sending every A[G]-module V to itself viewed as an A[H]-module.

(i) The functor

cIndGH : A[H]Mod −→ A[G]Mod

V 7−→ A[G] ⊗
A[H]

V

(where A[G] is viewed as a right A[H]-module) is a left adjoint of ResGH .

(ii) The functor

IndGH : A[H]Mod −→ A[G]Mod

V 7−→ A[H]Hom(A[G], V )

(where A[G] is viewed as a left module over its subalgebra A[H] and IndGH V is viewed

as a left A[G]-module through the right action of A[G] on itself) is a right adjoint of

ResGH .

By the above theorem, we have functorial isomorphisms

A[G]Hom(cIndGH V,W ) ∼= A[H]Hom(V,ResGHW )
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and

A[H]Hom(ResGHW,V ) ∼= A[G]Hom(W, IndGH V )

In particular, there are canonical maps

V → ResGH cIndGH V,

cIndGH ResGHW →W,

W → IndGH ResGHW,

ResGH IndGH V → V.

The proof is left as an exercise.

Remark 3.10. The abbreviations Ind and cInd stand for “induction” and “compact induc-

tion”, respectively. In the wider literature on representation theory, the left adjoint of

ResGH is often denoted by IndGH instead of cIndGH , and the right adjoint of ResGH is often

denoted by CoindGH instead of IndGH . Our usage conforms to the usual convention in the

theory of automorphic forms.

We will mostly need a variant of the Frobenius reciprocity theorem when G is a topo-

logical group and H is a closed subgroup. In that context it is harder to define the induced

representation using group algebras. Instead, one notes that there is a canonical isomor-

phism IndGH V
∼= HHom(G,V ) where the right-hand side is the set of morphisms of left

H-sets, and the G-action on it is defined through the right action of G on itself. This

characterisation of the induced representation is easier to generalise to topological groups.

3.2 Galois representations

Artin representations

In section 1.4.1 we discussed Artin representations. These representations are the first

examples of Galois representations and in some sense also the most difficult ones. Let

F be a number field. An Artin representation of F is a finite-dimensional representation

V/C of its absolute Galois group Gal(F/F ), such that the mapping Gal(F/F )× V → V ,

(σ, x) 7→ σ · x is continuous for the complex topology on V the profinite topology on

Gal(F/F ) and the product topology on Gal(F/F ) × V . We have seen in Exercise 2.8

that any such representation has finite image and factors over the Galois group Gal(L/F )

of some finite Galois extension L of F with L ⊂ F . Let v be a finite F -place. The

representation V is called unramified at v, if for every, equivalently for some (cf. Exercise

3.6), embedding of ιv : F → F v the restriction of V to Gal(F v/Fv) is trivial on the inertia

subgroup I(F v/Fv) ⊂ Gal(F v/Fv). Since almost all finite F -places are unramified in L/F ,

any Artin representation is unramified at almost all F -places v.

Let F be a number field and let V be an Artin representation of Gal(F/F ). Let S

be the set of finite F -places v where V ramifies. Let v be a finite F -place that is not in

S. For any v /∈ S we have the Frobenius element Frobv in the group Gal(F
ker(ρV )

/F ) =

Gal(F/F )/ ker(ρV ), which is well-defined up to conjugation. Hence its characteristic poly-

nomial

charpol(Frobv, V ) = det(1− ρV (Frobv)X) ∈ C[X],
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is well-defined (and in particular the trace Tr(Frobv, V ) is well-defined as well). In fact it

is easy to see that charpol(ρV (FrobV )) ∈ Q[X].

The partial L-function of V outside S is defined by the infinite product

LS∪{v|∞}(V, s) :=
∏

v/∈S∪{v|∞}

Lv(V, s) (3.1)

where for every place v /∈ S∪{v|∞} the function Lv(V, s) (the Euler factor at v) is defined

in terms of charpol(Frobv, V ) and the cardinality qv of the residue field κ(v) as

Lv(V, s) =
1

charpol(Frobv, V )|X=q−sv

. (3.2)

Theorem 3.11 (Artin). The infinite product LS∪{v|∞}(V, s) converges absolutely and uni-

formly for s in sets of the form {s ∈ C | <s ≥ a} with a > 1. Moreover LS∪{v|∞}(V, s)

has a unique extension to a meromorphic function on C.

The main ingredient in the proof of this result is the following theorem by Brauer.

Theorem 3.12 (Brauer). Suppose that r is a finite-dimensional complex representation

of a finite group G. Then there are subgroups Hi ⊂ G, one-dimensional representations

ψi of the Hi and integers ni such that

Tr r(σ) =
∑
i

ni · Tr(IndGHi ψi)(σ) for all σ ∈ G.

The L-factors at the remaining (ramified) finite F -places v are given by

Lv(V, s) :=
1

charpol(Frobv, V Iv)|X=q−sv

∈ C(p−s), (3.3)

where Iv ⊂ Gal(F/F ) is the inertia group at v (which is well defined up to conjugation).

Note that since Iv is normal in the local decomposition group Dv, the quotient Dv/Iv has

a natural action on the space V Iv , and hence taking the characteristic polynomial of Frobv
acting on V Iv is a well-defined operation. Note moreover that, in case v is unramified,

(3.2) and (3.3) coincide.

To obtain the correct functional equation, the local L-factors at the infinite places

have to be defined. In this course we will not pay too much attention to these local

factors, but this does not mean they are unimportant. Thus, let us take the effort to

write down the formulas here. For the infinite places v|∞ the Artin L-function is obtained

by multiplying Γ factors, as follows. First recall that the Gamma function Γ is defined

by analytic continuation in z of the integral Γ(z) =
∫∞

0 xz−1e−xdx, which converges for

numbers z ∈ C with positive real part. The function Γ can then be extended to all

complex numbers, except the non-positive integers (where Γ has simple poles). Define

now ΓR(s) := π−s/2Γ
(
s
2

)
and ΓC(s) := ΓR(s)ΓR(s + 1) = 2(2π)−sΓ(s). Then for v an

infinite F -place,

Lv(V, s) :=

{
ΓR(s)dimV DvΓR(s+ 1)codimV Dv if v is real

ΓC(s)dim(V ) if v is complex,
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where Dv is the decomposition group at v (so Dv = 1 if v is complex and Dv
∼= Gal(C/R)

if v is real). This defines the Euler factors at the infinite places.

A discussion about why these definitions for the L-factors are what they are can be

found in Cogdell’s paper [4]. Very roughly, one could say that the definitions come from

the desire that the L-functions are compatible with sums and induced representations,

and definitions that were already known from the abelian case.

With the Lv(V, s) defined for all F -places v the L-function L(V, s) is defined at the

product over all v of Lv(V, s). This function is known to have meromorphic continua-

tion (see above), and is in fact expected to be holomorphic unless V contains the trivial

representation:

Conjecture 3.13 (Artin Conjecture). Let V be an irreducible Artin representation of

Gal(F/F ). Then L(V, s) is holomorphic if and only if V is non-trivial.

Langlands has shown that this conjecture would follow if enough of the Langlands pro-

gram were shown. Explaining this is one of the main goals of this course. More precisely,

according to Langlands’s conjecture there should exist for every algebraic automorphic rep-

resentation π of GLn(AF ) a corresponding Galois representation ρ : Gal(F/F )→ GLn(Q`),

and also conversely. The correspondence should be such that the L-function of π matches

the L-function of ρ. We will understand later that actually most ρ have infinite image, but

for those that do have finite image, we can choose an isomorphism ι : C ∼→ Q`, and obtain

a complex representation ιρ whose L-function does not depend on ι (see Exercise 3.21).

The Artin conjecture follows then immediately from the known properties of L-functions

of automorphic representations.

Conductor of an Artin representation

As we have seen at local places the Galois groups are filtered by the higher ramification

groups. These groups can be used to measure ‘how ramified’ your representation is. More

precisely, let V be a continuous representation of Gal(F/F ) in a complex vector space,

where now F is a local p-adic field. Write G = Gal(F/F )/ ker(ρV ), then G is a finite

group and the induced action of G on V is faithful. Note also that G is the Galois group

of some finite extension L/F . Let v be a finite F -place. We define the conductor exponent

of V by

nV = dim(V/V G0)︸ ︷︷ ︸
tame exponent

+
∞∑
i=1

1

[G0 : Gi]
dim(V/V Gi)︸ ︷︷ ︸

wild exponent

(3.4)

As indicated, the conductor exponent nV breaks up into a sum two components, the wild

exponent and the tame exponent.

Theorem 3.14 (Artin). We have nV ∈ Z.

With the conductor exponent defined, the conductor of V is the ideal NV = ($nV
F ).

Finally, if F is a number field, then the conductor of V is defined by

nV =
∏

v finite F -place

p
nV,v
v ⊂ OF ,

where pv ⊂ OF is the prime ideal corresponding to the place v, and NV,v is the local

conductor exponent from (3.4).
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Functional equation

Theorem 3.15 (Artin?). Let V be an Artin representation of Gal(F/F ), where F is a

number field. Then the L-function of V satisfies the following functional equation

L(V, s) = w
(
|OL/NV | ·

√
|∆F |

dim(V )
) 1

2
−s
L(V ∗, 1− s),

where V ∗ = HomC(V,C) is the dual representation, ∆F is the discriminant of F , w is the

root number.

`-adic representations

Let ` ∈ Z be a prime number and Q` be an algebraic closure of Q`. A finite-dimensional

Q`-vector space has a, up to equivalence unique, norm compatible with the norm on Q`.

In particular, any finite extension E of Q` contained in Q` has a unique norm extending

the norm on Q`. We normalize the norm on E so that |`|E = `−1. Then, for any pair

E,E′ ⊂ Q` the restriction of the norm on E′ down to E, agrees with the norm on E.

Hence the norms (| · |E)E⊂Q` define a norm on Q`. Using this norm we equip Q` with a

topology. Note that, in exercise 3.16 we will see that Q` is not complete for this norm.

Let E be a topological ring, M a topological E-module and G a topological group. A

continuous G-representation in M is an E[G]-module structure on M such that the action

G ×M → M is continuous. A morphism of continuous representations is a continuous

morphism of E[G]-modules. Assume E is a subfield of Q` containing Q`. In this case, we

call a continuous, finite-dimensional representation of a topological group G in an E-vector

space an `-adic representation of G. We will mainly look at the case where the group G

is the Galois group of some (infinite) Galois extension of algebraic fields in Q or of closed

subfields in Qp for some prime number p, but of course in principle one could study `-adic

representations of any topological group.

Example 3.16. In the exercises we have seen that there is a unique continuous morphism

of groups, χ` : Gal(F/F ) → Z×` ⊂ Q×` , such that for all `n-power roots of unity ζ ∈ µ`∞
and all σ ∈ Gal(F/F ) we have σ(ζ) = ζχ`(σ). This morphism is the cyclotomic character.

Through the character χ` we may let Gal(Q/Q) act on Q` via Gal(Q/Q) × Q` → Q`,

(σ, x) 7→ χ(σ)·x. This is an example of a one-dimensional `-adic Gal(Q/Q)-representation.

Another fundamental example is given by the Tate module of elliptic curves, we will study

these in the next section.

Let F be some subfield of Q or a closed subfield of Qp for some prime number p. Let E

be a subfield of Q` containing Q`. Suppose ψ : Gal(F/F )→ E× is a continuous morphism.

We write E(ψ) for the Gal(F/F )-representation with space E and Gal(F/F )-action given

by ψ. If ψ = χk for some k ∈ Z then we will write E(k) := E(χk). More generally, if V

is an arbitrary `-adic Gal(F/F )-representation, then we write V (ψ) := V ⊗E E(ψ) and

V (k) = V ⊗E E(k). The Gal(F/F )-representation V (ψ) is called a twist of V by ψ.

We call an `-adic representation irreducible, or simple, if it has precisely two invariant

subspaces. An `-adic representation is semi-simple if it is a direct sum of simple repre-

sentations. An `-adic representation V can be made semi-simple in a functorial manner

in the following way. In Exercise 3.1 we will see that any `-adic representation V has a

canonical filtration 0 = V0 ⊂ V1 ⊂ · · ·Vn = V where the successive quotients Vi/Vi+1 are
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all semi-simple; this is called the socle filtration of V . The representation V is irreducible

if and only if V1 = V .

Proposition 3.17. Let Λ be an algebra over a field K of characteristic zero, and let ρ1,

ρ2 be two Λ-modules of finite K-dimension. Assume that ρ1 and ρ2 are semi-simple and

TrK(ρ1(λ)) equals TrK(ρ2(λ)) for all λ ∈ Λ. Then ρ1 is isomorphic to ρ2.

Proof. [?, chapter 8, sect. 12, n◦ 1, prop. 3].

Proposition 3.17 has a variant for characteristic p coefficients.

Theorem 3.18 (Brauer-Nesbitt). Let G be a finite group, E a perfect field of characteristic

p and ρ1, ρ2 two semi-simple E[G]-modules, of finite dimension over E. Then ρ1
∼= ρ2 if

and only if the characteristic polynomials of ρ1(g) and ρ2(g) coincide for all g ∈ G.

Proof. [?, theorem 30.16].

`-adic Galois representations

Let ` be a prime number. Let G be a profinite group and E ⊂ Q` a closed subfield. We call

an `-adic representation a continuous representation of G in a finite-dimensional E-vector

space. We will be mostly looking at the case where either E is a finite extension of Q` or

E = Q`.

Assume now that G is the absolute Galois group of some number field F . Then a

Galois representation of Gal(F/F ) (or of F ) is by definition an `-adic representation V

over E of Gal(F/F ) such that V is unramified at almost all F -places v. More precisely,

we require that for almost all F -places v, and all (equivalently: one) embedding of F

in an algebraic closure F v of Fv, the restriction of ρV : Gal(F/F ) → GLE(V ) down to

Gal(F v/Fv) is trivial on the inertia subgroup I(F v/Fv) ⊂ Gal(F v/Fv). (cf. Exercise 3.6).

Theorem 3.19. Let V, V ′/E be two semi-simple Galois representations of Gal(F/F ). Let

S be a finite set finite of F -places v such that S contains all finite F -places where V or

V ′ is ramified. Assume Tr(Frobv, V ) = Tr(Frobv, V
′) for all finite F -places v such that

v /∈ S. Then V ∼= V ′.

Proof. The field K = Qker(ρV )∩ker(ρV ′ ) is a Galois extension of F which is unramified at

almost all F -places. By the Chebotarev density theorem the set of Frobenius elements in

Gal(K/F ) is dense subset. Hence the equality Tr(Frobv, V ) = Tr(Frobv, V
′) extends to

an equality Tr(σ, V ) = Tr(σ, V ′) for all σ ∈ Gal(F/F ). Hence the theorem follows from

Proposition 3.17.

L-factors and L-functions

Let F be a local p-adic field with absolute Galois group Gal(F/F ) and inertia subgroup

I ⊂ Gal(F/F ). Let (V, ρ) be an `-adic Gal(F/F )-representation, where ` is not p. The

L-factor of (V, ρ) is defined by

Lv(V, s) :=
1

det(1− ρ|V I (Frobv) · q−sv )
∈ Q`(q

−s
v ), (3.5)
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where for now we view the symbol “q−sv ” as a transcendental variable over Q`, and with the

notation ρ|V I we mean the representation ρ restricted to the space of invariants V I under

the action of the inertia group I on V . To obtain from (3.5) an L-factor with complex

coefficients we choose an isomorphism ι : Q`
∼→ C (see Exercise 3.20), and apply ι to (3.5),

to obtain ιLv(V, s) ∈ C(q−sv ). If we have an `-adic Galois representation of a number field,

we get in this way local factors for all places that do not divide `. For the places dividing

` it is also possible to define local L-factors, but the definition is more involved, and we

will not go into this question during this course. The (partial) L-function of V is then

defined as the product

L`,ι(V, s) =
∏
v-`

ι(Lv(V, s)) ∈ C(p−s).

In general the function L`,ι(V, s) depends in a bad way on the isomorphism ι (and in

particular also the prime `!). But, as we will hopefully see, for many interesting Galois

representations (those that come from geometry), the function L`,ι(V, s) is nicely behaved

and depends only on its restriction of ι to the algebraic number Q (which is contained

both in Q` and C).

3.3 Elliptic curves

Let F be a field. An elliptic curve over F is a variety that can be given by a smooth

equation in projective coordinates x, y, z of the form

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

called the Weierstrass equation. If the characteristic of F is not 2 or 3, the variables

can be changed, and the equation can always be simplified to an equation of the form

y2z = x3 + axz2 + bz3. The smoothness condition translates to an explicit condition on

the coefficients. For the second equation, it simply states 4a3 + 27b2 6= 0. In the language

of varieties over F , and elliptic curve is a connected projective smooth curve E of genus

1, that is equipped with the structure of a commutative group variety, so it has a natural

addition operation E ×E → E, satisfying the usual group axioms (see also the section on

group objects).

Elliptic curves over the complex numbers

In case F = C, you can use the Weierstrass equation to view E as a complex manifold,

which we denote by Ean. Then Ean is a connected compact Lie group of dimension 1. The

objects that you get in this way are precisely the 1-dimensional complex tori, i.e. a space

of the form V/Λ, where V is a 1-dimensional complex vector space and Λ ⊂ V is a free

Z-submodule with Λ ⊗Z R ∼→ V , λ ⊗ x 7→ λx. The module Λ is then the first homology

group H1(E,Z) of E. In fact, we have an equivalence of categories

{Complex elliptic curves} ∼−→ {pairs (V,Λ) with V a 1-dim C-vsp, Λ ⊂ V a lattice}
E −→ (Ω1(E)∨,H1(E,Z))

V/Λ←− (V,Λ).
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Tate modules

The Tate module is a canonical way to attach to an elliptic curve E over a field F an

`-adic Galois representation of Gal(F/F ). The Tate module is an analogue over more

general fields F of the module Λ = H1(E,Z) from complex elliptic curves. However, if

you are over a field F different from C it is not clear how to attach a free Z-module Λ of

rank 2 to elliptic curves E/F . If F = Q you can base change to C and take the H1(E,C)

but then the Galois action of Gal(Q/Q) does not respect the geometry, and hence does

not pass to an action on H1(E,Z). Thus you won’t get a Galois representation out of the

construction, which is our main goal. Furthermore, if F is a finite field Fq and you have

an elliptic curve E/Fq the situation is even worse as there is no ‘reasonable’ way to extend

the scalars to C.

The first attempt to solving the problem is to, instead of trying to attach to E/F the

module Λ, to try to attach to E the profinite completion Λ̂ of Λ. Let N be an integer, and

E(C) = V/Λ an elliptic curve over C. Let EN ⊂ E(C) be the subset of N torsion, i.e. the

set of x ∈ E(C) such that N · x = 0. In terms of the equality E(C) = V/Λ, it is easy to

see that EN = 1
NΛ/Λ, and hence

Λ̂ = lim←−
N∈Z≥1

Λ/NΛ = lim←−
N∈Z≥1

1
NΛ/Λ = lim←−

N∈Z≥1

EN

where the transition morphisms in the projective system on the right hand side are the

maps EN → EN ′ , x 7→ (N/N ′) · x. Now notice that on the right hand side the N -torsion

EN of E can be defined over arbitrary base fields F . In concrete terms, the addition law

+: E ×E → E is given by an polynomial in the coordinates. Hence the N -torsion of E is

the space of solutions of the polynomial law applied N -times to itself, which shows that

EN is the solution space of some polynomial. Thus indeed EN is a subvariety of E. More

formally, EN fits in a Cartesian diagram

EN //

��

E

[N ]

��
spec(F ) e

// E

where EN = spec(F ) ×e,E,[N ] E. Since fibre products exist in the category of varieties

over F , the space EN is indeed a variety over spec(F ). Its dimension is 0 and has at most

N2-points over an algebraic closure F of F . In case the characteristic of F divides N ,

the cardinality #EN (F ) will however be strictly smaller than N2. For instance, if F has

characteristic p and N = p, then either #Ep(F ) = p (E is ordinary), or #Ep(F ) = 1 (E

is supersingular).

We are now ready to define the Tate module. Let F be a field field algebraic closure F

and let E be an elliptic curve over F . We define T (E) = lim←−EN (F ), where the projective

limit ranges over all N ∈ Z≥1. The Galois group Gal(F/F ) acts on the finite sets EN (F ),

and since the multiplication by N -maps E → E are defined over F , this Galois action

passes in the limit to a Galois action on T (E). Similarly, the addition law is defined by

polynomials over F , so the Galois action commutes with this additional law, which means

that the Galois action on T (E) is linear. Similar to the decomposition Ẑ =
∏
` Z`, we

can decompose T (E) into a product T (E) =
∏
` T`(E) where the product ranges over all
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primes numbers ` and T`(E) is the projective limit of the finite groups E`n(F ). Let p be

the characteristic of F (so possibly p = 0). For all primes ` different from p the module

T`(E) is free of rank 2 over Z`. For ` = p, so when F has positive characteristic, the

module Tp(E) is in many ways not the right object (for instance its rank is at most 1),

and even though it does carry a Galois action, it is (for our purposes) better to discard it.

Good reduction

Let E be an elliptic curve over a p-adic field F . We say that E has good reduction if there

exists an elliptic curve E over OF such that E ⊗ F ∼= E. To make this notion precise, one

would need to define what an elliptic curve over OF is (which we did not do). Fortunately,

the definition of good reduction can also be stated without referring to schemes, using

Weierstrass equations, but since multiple Weierstrass equations can define the same curve,

some care is needed to formulate the notion of good reduction in the correct manner. Let

E be an elliptic curve over a p-adic field F , given by the (affine) Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (3.6)

with discriminant ∆ with vF (∆) = e. Like we said, several Weierstrass equations can give

rise to the same elliptic curve. In fact, for any u ∈ F we can replace (x, y) by (u−2x, u−3y),

the coefficients ai of the equation then get replaced by uiai. Thus, for i large enough we

will have ai ∈ OF . Moreover, we can take u such that vF (∆) is as small as possible. In

this case we call our Weierstrass equation minimal. In terms of a minimal Weierstrass

equation E has good reduction if and only if (3.6) defines an elliptic curve over Fq, i.e.

vF (∆) = 0.

Theorem 3.20 (Néron-Ogg-Tate-Shafarevich). Let E be an elliptic curve over a p-adic

field F with p different from `. Then the curve E has good reduction if and only if the

Galois representation V`(E) = Q⊗Z T`(E) of Gal(F/F ) is unramified.

Note that the above discussion gives meaning also to the reduction of elliptic curves E

over number fields F . Namely, if v is a finite F -place, then Fv is a p-adic local field. The

coefficients of the Weierstrass equation of E lie in F and hence also in Fv. When over Fv
we have the uniformizer $Fv , and use this uniformizer to replace our Weierstrass equation

with one that is minimal, say of discriminant ∆v(E). The elliptic curve E then has good

reduction at v if and only if vFv(∆v(E)) = 0. Moreover, if we choose an embedding

ι : F → F v we obtain an isomorphism

T`(E/F ) = lim←−
`n
E`n(F )

∼→ lim←−
`n
E`n(F v) = T`(E/Fv)

which is equivariant for the Gal(F v/Fv)-action if we restrict the Gal(F/F )-action to

Gal(F v/Fv) along the inclusion Gal(F v/Fv)→ Gal(F/F ) induced by ι.

Elliptic curves over finite fields

The Tate module T`(E) of an elliptic curve E over a finite field Fq can be used to count the

number of rational points E(Fq). The set Fq-points E(Fq) is the set of triples (x, y, z) ∈ F3
q

that satisfy the Weierstrass equation taken up to the equivalence (x, y, z) ∼ (λx, λy, λz)
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for λ ∈ F×q , i.e. the equivalence from the projective space. Similarly, the set of Fq-rational

points E(Fq) on E would be the set of triples (x, y, z) such that, for some λ ∈ F×q , we have

(λx, λy, λz) ∈ F3
q .

Theorem 3.21. Let E be an elliptic curve over the finite field Fq. Then we have the

formula

Tr(Frobq, T`(E)) = 1−#E(Fq) + q. (3.7)

Sketch. We would like prove this formula, but unfortunately we do not have enough time

to go in all the details. We recommend the reader to have a look in Silverman’s book [15],

where the theory is properly built up, and the above theorem can be proved. However, we

will give the main ideas that go into (3.7).

Consider again E over Fq. Concretely this means that E is given by a Weierstrass

equation where the coefficients of the equation lie in Fq. A morphism of elliptic curves

is a morphism of group varieties which can be defined over Fq (or equivalently, they are

morphisms over Fq that are invariant under the Galois action).

Consider a point (x, y, z) ∈ P2(Fq) on E, i.e.

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

Raising this equality to the q-th power, we obtain

(y2z + a1xyz + a3yz
2)q = (x3 + a2x

2z + a4xz
2 + a6z

3)q

(yq)2zq + aq1x
qyqzq + a3y

qzq = (xq)3 + aq2(xq)2(zq) + aq4x
q(zq)2 + aq6(zq)3.

Since, moreover a1, . . . , a6 ∈ Fq we have aqi = ai for all i. Thus (xq, yq, zq) defines another

point on E. We obtain the Frobenius endomorphism,

φq : E(Fq)→ E(Fq), (x, y, z) 7→ (xq, yq, zq).

We only defined φq on the geometric points, but it can be defined on the elliptic curve E.

Lemma 3.22. The set of rational points E(Fq) ⊂ E(Fq) is precisely the set of points

(x, y, z) ∈ E(Fq) that are fixed under the action of φq.

Proof. Assume that (x, y, z) is a fixed point under Frobenius. There exists some λ ∈ F×q
such that Frobq(x, y, z) = (xq, yq, zq) = (λx, λy, λz). One of the coordinates of (x, y, z)

must be non-zero; say it is z (the other cases are the same). Then we can normalize so

that z = 1, then λ must be 1 as well, and we find xq = x, yq = y and zq = z in Fq. By

Galois theory: x, y, z ∈ Fq.

Consider the morphism

f = (idE −φq) : E → E, (x, y, z) 7→ (x, y, z)− (xq, yq, zq).

The kernel of f is then precisely the set #E(Fq).

Fact 1: A non-constant morphism h : E → E′ is called an isogeny. Any isogeny has a

degree, which is defined to be the degree of the corresponding extension F (E)/F (E′) of
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function fields. More concretely, if E is given by the affine equation y2 = x3 + ax+ b and

E′ is given by the equation y2 = x3 + cx+ d, then h induces a morphism of fields

h∗ : Frac

(
Fq[x, y]

y2 − (x3 + cx+ d)

)
→ Frac

(
Fq[x, y]

y2 − (x3 + ax+ b)

)
For the isogenies h where this extension is separable, the degree is also the cardinality

#ker(h)(Fq) of the kernel. For the non-separable morphisms h : E → E, the degree of h is

still the size of its kernel, but the kernel might not be reduced, and one can not simply use

the Fq-points to measure its size. The degree of our isogeny f is equal to #E(Fq) (since

this f is separable), and in case of φq the degree is q (even though φq : E(Fq)→ E(Fq) is

injective, it’s not separable and its degree is q).

Fact 2: Any non-zero morphism h : E → E has a unique dual h∨ : E → E such that

h ◦ h∨ and h∨ ◦ h equal to are equal to multiplication by the degree of h.

In particular, due to our particular choice of f , f = idE −φq, we have

[#E(Fq)] = f ◦ f∨ = (1− φq) ◦ (1− φ∨q ) = 1− (φq + φ∨q ) + q ∈ EndFq(E). (3.8)

Thus φq is a root of the polynomial

(X − φq)(X − φ∨q ) = X2 − (φq + φ∨q ) ·X + φq ◦ φ∨q
= X2 − (1−#E(Fq) + q) ·X + q ∈ EndFq(E)[X].

Put aE = 1−#E(Fq) + q. The polynomial X2− aEX + q is the characteristic polynomial

of φq. Since the Tate module T`(E) is a functor in E, the Frobenius Frobq acting on T`(E)

is a root of the same quadratic polynomial, and Tr(Frobq, T`(E)) = 1−#E(Fq) + q.

The L-function of an elliptic curve at unramified places

At this point we have

Theorem 3.23. Let E be an elliptic curve over a number field F , given by a Weierstrass

equation, whose discriminant is ∆. Fix a prime number ` ∈ Z. Let v be a finite F -place

with v(∆) = 0 and v - `, then

L(ι)
p (V`(E), s) =

1

1− av(E)q−sv + qvq
−2s
v
∈ C(p−s)

where E(κ(v)) denotes the set of solutions of the fixed Weierstrass equation for E over the

residue field κ(v) of F at v, qv = #κ(v), and av(E) = 1−#E(κ(v)) + qv.

3.4 Elliptic curves with complex multiplication

Elliptic curves with CM

Let F be a number field and E and elliptic curve over F . Embed F ⊂ Q and consider the

algebra of Q-endomorphisms EndQ(E). For many elliptic curves E this algebra is equal to

Z, so the only endomorphisms of E are the multiplication by N maps [N ] : E → E. The

second, and only other possibility, is that the ring EndQ(E) is an order R in a quadratic
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imaginary field K. We recall, an order in a number field K is a subring R ⊂ K, which

is of finite type as Z-module, and whose fraction field is K. Such rings R only contain

elements that are integral over Z, and hence R ⊂ OK , but the inclusion may be strict.

Example 3.24. The elliptic curve E : y2 = x3 + x. Observe that I : (x, y) 7→ (−x, i · y)

is an endomorphism of E that is defined over Q(i) (hence also over Q). Observe that

I2 is the endomorphism (x, y) 7→ (x,−y), which is the endomorphism −1. Consequently

Z[I] ⊂ EndQ(E). Since we know that EndQ(E) is an order, and Z[I] is the largest order

inside Q(i), we must have Z[I] = EndQ(E) in this case.

Example 3.25. The elliptic curve E : y2 + y = x3 has CM by Z[ζ3], via (x, y) 7→ (x, ζ3y),

where ζ3 is a primitive 3-rd root of unity.

It is insightful to also look what CM elliptic curves look like over C. Over C we can

construct such curves as follows. Suppose that K/Q is quadratic imaginary and that

R ⊂ OK is a subring which is free of rank 2 as Z-module (i.e. R is an order in K). For

instance, we could have R = OK . Any fractional ideal I ⊂ R is then also free of rank 2

as Z-module. Moreover I ⊂ C is a lattice, since R⊗ I has an action by R⊗K ∼= C. Thus

E = C/I is a complex elliptic curve. Any element r ∈ R maps the fractional ideal I into

itself, therefore r acts on C/I = E and we obtain the mapping R→ EndC(E). In general

EndC(E) is an order in K too, but it may be larger than R (the multiplier ring of I in K

may be larger than R).

Tate module of a CM elliptic curve

Let F be a number field and E an elliptic curve over F and complex multiplications by an

order R in the quadratic imaginary field K ⊂ C. We have two actions on the Tate module

Gal(F/F )

�

V`(E) � Q` ⊗ EndQ(E) = Q` ⊗K.

These actions need not commute, but if we assume that the complex multiplications R are

defined over F , then the actions do commute. Since V`(E) is a free K` = Q` ⊗K-module

of rank 1, the action is given by a continuous morphism Gal(F/F ) → K×` , and hence

comes via class field theory from a continuous morphism

χ` : A×F /F×(F ⊗ R)×,+ ∼= Gal(F/F )ab → K×` , (3.9)

uniquely characterized by the property that the morphism χ` is unramified at the finite

F -place v - ` if and only if E has good reduction at v, in which case

TrK`/Q`(χ`($Fv)) = 1−#E(κv) + qv ∈ Z,

i.e.

χ`($Fv) + χ`(ϕFv) = 1−#E(κv) + qv ∈ Z,

where · denotes the non-trivial automorphism of K.

The Hecke characters we obtained in (3.9) take values in an `-adic field. Observe that

in (3.9) the prime number ` is arbitrary. More precisely, for every pair of prime numbers

(`, `′) we have maps

χ` : A×F /F×(F ⊗ R)×,+ ∼= Gal(F/F )ab → K×`

χ`′ : A×F /F×(F ⊗ R)×,+ ∼= Gal(F/F )ab → K×`′ ,
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such that for all v - `, `′ where E has good reduction, we have that

Z` 3 χ`($Fv) + χ`(ϕFv) = 1−#E(κv) + qv = χ`′($Fv) + χ`′(ϕFv) ∈ Z`′ . (3.10)

Remark 3.26. By (3.10) we call the family of characters (χ`)primes ` is a compatible fam-

ily of Galois representations. In fact general conjectures predict that, any `-adic Galois

representation arising from geometry should fit in such a family. We have seen this for

elliptic curves, and again here for the abelian character attached to CM elliptic curves,

but it should hold in general for geometric Galois representations. Next week when Peter

will discuss étale cohomology, he might say some more about these compatible families of

Galois representations.

Apart from characters χ` for ` finite, we will see that it is also possible to attach to

E/F an ‘infinite’ character χ∞. This χ` takes values in C×. It is however not a character

of the Galois group Gal(F/F )ab, but of the extension

A×F /F
× → A×F

/
F×(F ⊗ R)×,+ ∼= Gal(F/F )ab ,

of the Galois group Gal(F/F )ab. (Recall that any continuous morphism from Gal(F/F )

to C× must have finite image; in particular Gal(F/F ) does not have ‘enough’ maps to

C×.)

Algebraic Hecke characters

Let F be a number field. An algebraic Hecke character χ is a continuous morphism

A×F /F
× → C× such that for each embedding ϕ of F → C and corresponding infinite place

v|∞ of F the restriction χ|F×v is given, on an open subgroup U of F×v , by a morphism of

the form U 3 z 7→ ϕ(zav)ϕ(zbv) where ϕ is the complex conjugate of ϕ. If T is the R-

torus given by ResF⊗R/RGm, the requirement is equivalent to the existence of an algebraic

morphism t : T → ResC/RGm, such that t(R)|U = χ.

We say that χ is unramified at a finite F -place v if χv is trivial on O×Fv . In this case

χv($Fv) does not depend on the choice of a local uniformizer $Fv ∈ Fv, and we can define

the local L-factor at v by Lv(χ, s) := (1 − χv($Fv)q
−1
v )−1 ∈ C(p−s). If χ ramifies at v

the L-factor is set to be 1. There is also a definition of the L-factors at infinity, but we

do not discuss them. The L-function (which is the product over all places of the local

L-factors) of these algebraic Hecke characters is known to converge in a right half plane,

have analytic continuation and satisfies a functional equation (Tate’s thesis).

Theorem 3.27. Let E/F be an CM elliptic curve with complex multiplications that are

defined over F . There exists an algebraic Hecke character χ : A×F /F
× → C× such that for

all places v where E is unramified we have

χ($Fv) + χ($Fv) = 1−#E(κ(v)) + #κ(v),

where κ(v) is the residue field of F at v.

In terms of L-functions, the above means that the L-function of E can be identified as

the product of the L-function of χ with the L-function of χ. In particular the sought-after

analytic properties of L(E, s) follows from those properties of L(χ, s) (and L(χ, s)).
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3.5 Étale cohomology

Generally speaking, homology and cohomology are collective names for certain types of

functors from varieties to suitable Abelian categories. The philosophy is that many inter-

esting properties of varieties can be captured in a “linear” way. In our case, we will be

interested in the case where the “linear” objects are Galois representations.

Historically, the first example of a (co)homology theory is singular (or Betti) (co)homology

of ordinary topological spaces. This already gives a useful theory for complex algebraic

varieties equipped with the complex analytic topology. Later, sheaf cohomology was in-

troduced. This also gives a nice theory for coherent sheaves with respect to the Zariski

topology, i.e. for algebraic varieties over fields other than C. However, for more advanced

applications, one needs various other cohomology theories.

Étale cohomology was initially developed by Grothendieck and Artin to prove the Weil

conjectures on zeta functions of varieties over finite fields.

Let X be a smooth projective variety over a finite field k = Fq of q elements. We define

a power series ζX ∈ Q[[t]] by

ζX = exp

( ∞∑
m=1

#E(Fqm)

m
tm

)
.

Theorem 3.28 (Weil conjectures; Dwork, Grothendieck, Deligne). Let X be a smooth

projective variety of dimension n over Fq.

(i) There exist polynomials P0, . . . , P2n ∈ Z[t] with constant coefficient 1 such that ζX
can be written as the rational function

ζX =
P1P3 . . . P2n−1

P0P2 . . . P2n

(ii) The rational function ζX satisfies

ζX

(
1

qnt

)
= ηXt

eζX(t)

for some e ∈ Z and ηX ∈ Q×.

(iii) The polynomial Pi factors over C as
∏bi
j=1(1−αi,jt) where all the αi,j have absolute

value qi/2.

Example 3.29. In Exercise 3.60, you will show that

ζP1
Fq

=
1

(1− t)(1− qt)

and more generally

ζPnFq
=

1

(1− t)(1− qt) . . . (1− qnt)
.
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Basic properties

We first state some of the basic results from étale cohomology from a “black box” point of

view, without any proofs.

We fix a base field k with separable closure k̄, and a prime number ` different from the

characteristic of k.

It will be useful to introduce the notations

Q`(1) = Q` ⊗Z` lim←−
r

µ`r(k̄)

which is the one-dimensional representation of Gal(k̄/k) corresponding to the cyclotomic

character, and more generally

Q`(n) =

{
Q`(1)⊗n if n ≥ 0,

Hom(Q`(1)⊗(−n),Q`) if n < 0.

If X is a smooth projective variety over a field k and ` is a prime number, we have

étale cohomology groups

Hi(Xk̄,ét,Q`) (i ∈ Z).

These groups vanish unless 0 ≤ i ≤ 2n, where n is the dimension of X. Each of them is a

finite-dimensional Q`-vector space.

The construction gives a contravariant functor from the category of smooth projective

varieties over k. This means that given a morphism of smooth projective varieties

f : Xk̄ → Yk̄,

we have induced Q`-linear maps

f∗ : Hi(Yk̄,ét,Q`) −→ Hi(Xk̄,ét,Q`).

In particular, we can apply this to the automorphisms

σ# : Xk̄
∼−→ Xk̄ for σ ∈ Gal(k̄/k)

obtained by base change from the automorphisms σ# : spec k̄
∼−→ spec k̄ (note, however,

that σ# is actually not a morphism of varieties over k̄, but the construction works anyway).

This gives Q`-linear maps

σ∗ = (σ#)∗ ∈ AutQ`H
i(Xk̄,ét,Q`).

This shows that the étale cohomology groups are equipped with a natural continuous

action of Gal(k̄/k).

If X and Y are two smooth projective varieties over K, there are canonical Künneth

isomorphisms

Hi((X × Y )k̄,ét,Q`)
∼−→

⊕
a+b=i

Ha(Xk̄,ét,Q`)⊗Q` Hb(Yk̄,ét,Q`).
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Now assume (in addition to the above hypotheses) that X is geometrically connected.

Then one has canonical isomorphisms

H0(Xk̄,ét,Q`) ∼= Q`

and

H2n(Xk̄,ét,Q`) ∼= Q`(−n).

Furthermore, one has a canonical Poincaré duality pairing

Hi(Xk̄,ét,Q`)×H2n−i(Xk̄,ét,Q`) −→ H2n(Xk̄,ét,Q`)
∼−→ Q`(−n).

inducing isomorphisms

Hi(Xk̄,ét,Q`)
∼−→ HomQ`(H

2n−i(Xk̄,ét,Q`),Q`(−n)),

H2n−i(Xk̄,ét,Q`)
∼−→ HomQ`(H

i(Xk̄,ét,Q`),Q`(−n)).

Now assume that the base field k is a finite field Fq of cardinality q. For all i ∈ Z, we

define

Vi = Hi(XFq ,ét,Q`)

and

Pi = det(1− t · Frob−1
q | Vi)

Note that we use the inverse of the usual Frobenius automorphism in this definition;

this is called the geometric Frobenius automorphism. Then Grothendieck showed that the

polynomials Pi are the polynomials occurring in Theorem 3.28. In particular, the Pi are

independent of the choice of `.

In the following sections, we will try to explain in a nutshell how one defines these étale

cohomology groups for a variety X over a field k. The objects from which one constructs

étale cohomology groups of X are sheaves of Abelian groups for the étale topology on X.

Étale morphisms

Let f : U → X be a morphism of varieties. We say that f is étale if f is smooth of relative

dimension 0. (There are various other definitions, but this one is the most intuitive.) The

simplest examples of étale morphisms are open immersions.

Example 3.30. Let k be a field, let X be the affine line over k, and let U be the affine variety

defined by P (x, y) = 0 with P ∈ k[x, y] having positive degree in y. Let B = k[x, y]/(P ),

and let f : U → X be the obvious map corresponding to the ring homomorphism k[x]→ B

given by x 7→ x. Then the module of relative differentials for U → X is

ΩU/X(U) = ΩB/k[x]

=
B dy

∂P
∂y B dy

This means that f is étale on the open subset of U where ∂P
∂y is invertible. To give a

concrete example, if P = x− yn with n not divisible by the characteristic of k, then there

is a natural isomorphism k[y]
∼−→ B, inducing an isomorphism

k[y]/(nyn−1)
∼−→ ΩU/X(U).

This means that f is étale over the open subset x 6= 0 of X.
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Étale sheaves

If X is a variety, we write Xét for the category whose objects are étale morphisms f : U →
X, and where the morphisms between two objects f : U → X and g : V → X are the

morphisms of varieties h : U → V such that f = g ◦ h. It is known that such an h is

automatically étale itself; see Exercise 3.63.

For any variety Y , an étale covering of Y is a family of étale morphisms {fi : Ui → Y }i∈I
satisfying

⋃
i∈I im(fi) = Y .

Definition 3.31. A presheaf (of Abelian groups) for the étale topology on X is a con-

travariant functor

F : Xét → Ab

from Xét to the category of Abelian groups. We say that F is a sheaf if it satisfies the

following glueing condition: for every étale morphism U → Y and every étale covering

{fi : Ui → U} of U , the sequence

0 −→ F(U)
(f∗i )i∈I−→

∏
i∈I
F(Ui)

g−→
∏
i,j∈I
F(Ui,j)

is exact. Here Ui,j is the fibre product Ui ×U Uj , and the morphism g is defined by

g((si)i∈I = (p∗i,jsi − q∗i,jsj)i,j∈I ,

where pi,j : Ui,j → Ui and qi,j : Ui,j → Uj are the projections onto the first and second

coordinates.

Example 3.32. Let A be an Abelian group. For every variety U , let A(U) be the group

of continuous (i.e. locally constant) functions U → A, where U has the Zariski topology

and A the discrete topology. Then for every variety X, the functor (U → X) 7−→ A(U) is

a sheaf for the étale topology on X (the proof is left as an exercise). This sheaf is called

the constant sheaf AX .

Example 3.33. For every variety U , let Gm(U) be the group OU (U)× of invertible regular

functions on U . Then for every variety X, the functor (U → X) 7−→ Gm(U) is a sheaf

for the étale topology on X. This sheaf is called the multiplicative group over X and is

denoted by Gm,X .

Remark 3.34. The sheaves AX and Gm,X in the above examples can also be viewed as

varieties over X (except that AX is only of finite type over X if A is finite or X is empty).

For our purposes this is not important, however.

Construction of étale cohomology

Let Ab(Xét) denote the category of sheaves of Abelian groups for the étale topology

on X. It turns out that this is an Abelian category with enough injectives. This means

that starting from the global sections functor

Γ(Xét, •) : Ab(Xét)→ Ab

we obtain a sequence of right derived functors

Hi(Xét, •) : Ab(Xét)→ Ab (i ∈ Z).
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For technical reasons, one does not get the correct results when one directly applies

the definition to the sheaf Q`. Therefore, instead of considering Q` as a sheaf on Xk̄,ét,

one defines

Hi(Xk̄,ét,Q`) = Q` ⊗Z` lim←−
r

Hi(Xk̄,ét,Z/`
rZ).

Étale cohomology of a curve

Let C be a smooth, projective, connected curve over an algebraically closed field k. Let

j : {η} → C be the inclusion of the generic point, and for each closed point x ∈ C let

ix : {x} → C be the inclusion. We have push-forward sheaves j∗Gm,η and ix,∗Z{x} for all

closed points x ∈ C, fitting in a short exact sequence of sheaves of Abelian groups on Cét:

1 −→ Gm,C −→ j∗Gm,η
div−→

⊕
x∈C

ix,∗Z{x} −→ 0.

Taking the long exact cohomology sequence and doing various computations gives the

following canonical isomorphisms:

Hi(C,Gm) ∼=


k× if i = 0,

PicC if i = 1,

0 otherwise.

The above example is more or less the only one in which one directly takes étale

cohomology with coefficients in a non-torsion sheaf. In most other cases, étale cohomology

is only well-behaved when one takes torsion coefficients. For every positive integer n that

is not divisible by the characteristic of k, we consider the short exact sequence

1 −→ µn −→ Gm
n−→ Gm −→ 1

Taking étale cohomology gives a long exact sequence, which splits into

1 −→ µn(k) −→ k× −→ k× −→ 1

1 −→ H1(C, µn) −→ PicC
n−→ PicC −→ H2(C, µn) −→ 1.

From this we obtain canonical isomorphisms

Hi(C, µn) ∼=


µn(k) if i = 0,

(PicC)[n] if i = 1,

Z/nZ if i = 2,

0 otherwise.

In particular, choosing a prime number ` different from the characteristic of k and taking

a direct limit over n = `r gives

Hi(C,Q`(1)) = Q` ⊗Z` lim←−
r

Hi(C, µ`r)

∼=


Q`(1) if i = 0,

V`(J) if i = 1,

Q` if i = 2,

0 otherwise.
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Here J is the Jacobian variety of C; this is a g-dimensional Abelian variety over k, where

g is the genus of C. The latter implies that dimQ` H1(C,Q`(1)) = 2g. If you don’t know

what the Jacobian variety is, you can take

V`(J) = Q` ⊗Z` lim←−
r

(PicC)[`r]

as a definition.

Comparison theorem

The following fundamental theorem shows that étale cohomology gives “the same” results

as ordinary (singular) cohomology for smooth projective complex varieties.

Theorem 3.35 (Comparison between singular and étale cohomology). Let X be a smooth

projective variety over C, let Xan be the corresponding compact complex manifold X(C),

viewed as a topological space with the analytic topology, and let ` be a prime number. Then

there are canonical isomorphisms

Hi(Xét,Z/`rZ)
∼−→ Hi(Xan,Z/`rZ) for all r ≥ 0,

and hence

Hi(Xét,Q`)
∼−→ Q` ⊗Z Hi(Xan,Z).

Galois representations

We now turn to the case where the base field is Q or Qp (although everything generalises

to number fields and their completions).

Theorem 3.36. Let p be a prime number, let X be a smooth projective variety over Qp,

and let ` be a prime number different from p. If X has good reduction at p, then for

all i ∈ Z, the finite-dimensional Q`-linear representation H i(XQp,ét,Q`) of Gal(Qp/Qp) is

unramified.

Corollary 3.37. Let X be a smooth projective variety over Q, and let ` be a prime

number. Then for every prime number p 6= ` such that X has good reduction at p, the

finite-dimensional Q`-linear representation H i(XQ,ét,Q`) of Gal(Q/Q) is unramified at p.

Equivalently, let N be a positive integer such that X admits a smooth projective model

over Z[1/N ]. Then for all i ∈ Z, the finite-dimensional Q`-linear representation H i(XQ,ét,Q`)

of Gal(Q/Q) is unramified outside N`.

We now fix a smooth projective variety X over Q and an integer i, and we consider

the family of `-adic Galois representations

V` = Hi(XQ,ét,Q`)

where ` runs over all prime numbers.

By the above results, for each prime number p, the characteristic polynomial of Frobp
on V`, which a priori has coefficients in Q`, actually has coefficients in Z and is independent

of the choice of `.
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Definition 3.38. A compatible family of `-adic representations of Gal(Q/Q) is a family

{ρ` : Gal(Q/Q)→ AutQ`V`}`

where V` is a finite-dimensional Q`-vector space and ρ` is a continuous representation, with

the following property. There exists a finite set S of primes such that for all primes p 6∈ S
the following compatibility condition holds: for all primes ` 6= p the representation V` is

unramified at p, and the characteristic polynomial of Frobp on V` has coefficients in Z and

is independent of `.

3.6 Weil–Deligne representations

In this section, F denotes a p-adic field.

Morally speaking, the local Langlands programme links n-dimensional representations

of the Galois group of F with admissible representations of GLn(F ). Due to the fact that

we are interested in complex representations, it is extremely useful to formulate the Galois

side of the Langlands correspondence not in terms of the Galois group, but in terms of

the closely related Weil group.

A classical reference for Weil groups and their properties is Tate [18]. We also refer to

Bushnell and Henniart [3, Chapter 7].

The Weil group

Recall that the absolute Galois group GF = Gal(F̄ /F ) fits in a short exact sequence

1 −→ IF −→ GF −→ Ẑ −→ 1,

where the map GF → Ẑ sends a Frobenius element to 1.

Definition 3.39. The Weil group of F is the subgroup WF ⊂ GF consisting of all elements

whose image in Ẑ lies in Z. It is equipped with the coarsest topology making GF into

a topological group containing IF as an open subgroup with the subspace topology from

GF .

Remark 3.40. Besides Weil groups (named after André Weil), there also exist Weyl groups

(named after Hermann Weyl). Other than the fact that they both play a role in the

context of the Langlands programme, these groups are not related to each other.

Thus we have a short exact sequence

1 −→ IF −→WF −→ Z −→ 1.

The reciprocity map from local class field theory (2.7) restricts to an isomorphism

recF : F×
∼−→W ab

F

of topological groups. Conversely, the isomorphism (2.7) can be obtained from the above

isomorphism by taking the profinite completion on both sides.

There are two natural normalisations of the above isomorphism. We choose the one

such that the image of a uniformiser $F ∈ F× in W ab
F is a geometric Frobenius element
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(inducing the inverse of the q-th power map on the residue field of F̄ ). We define a group

homomorphism
‖ · ‖F : WF −→ qZ ⊂ Q×

w 7−→ |rec−1
F (w)|F .

With this definition, the geometric Frobenius elements φ ∈ WF satisfy ‖φ‖F = q−1, and

more generally every element w ∈WF acts on the residue field of F̄ as x 7→ x‖w‖F .

Grothendieck’s monodromy theorem on `-adic representations

In practice, many interesting representations of WF that one encounters are continuous

`-adic representations, which are not necessarily smooth (i.e. locally constant). It turns

out that the `-adic representations of WF can be transformed into Weil–Deligne represen-

tations. These have a purely algebraic definition (i.e. independent of the topology of the

field of coefficients), to be given below.

We recall that the tame inertia group of F (the quotient of IF by its maximal pro-p

subgroup, the wild inertia group) is canonically isomorphic to
∏
`6=p Z`(1), where ` runs

over all prime numbers different from p.

Let ` be a prime number different from p. By the above result, we can choose a

surjective group homomorphism

t` : IF → Z`.

This is unique up to multiplication by an element of Z×` , and one can show (Exercise 3.71)

that t` satisfies

t`(wxw
−1) = ‖w‖F t`(x) for all x ∈ IF , w ∈WF . (3.11)

Theorem 3.41 (Grothendieck). Let V be a finite-dimensional Q`-vector space, and let

σ : WF → AutQ`V be a continuous representation of WF . Then there exists an open

subgroup H ⊆ IF such that σ|H is unipotent (i.e. for any h ∈ H, the matrix σ(h) has all

its eigenvalues equal to 1).

For the next corollary, we note that if N is a nilpotent matrix over a field of charac-

teristic 0, then exp(N) =
∑∞

r=0N
r/r! is well-defined since the sum is finite, and exp(N)

is unipotent. Conversely, if U is a unipotent matrix, then I − U is nilpotent, and we can

define log(U) = −
∑∞

r=1(I − U)r/r. These operations are mutually inverse.

Corollary 3.42. With the above notation, there exists a unique nilpotent endomorphism

N ∈ EndQ`
V such that all h in a sufficiently small open subgroup of IF satisfy

σ(h) = exp(t`(h)N).

Proof. Let H be as in the above theorem. Because H has finite index in IF , there exists

h0 ∈ H such that the element t`(h0) ∈ Z` is non-zero. It is clear that the only choice is

N = t`(h0)−1 log(σ(h0)).

We have to show that the claim holds with this choice of N .

After shrinking H if necessary, the representation σ|H factors through t` (“only the pro-

` part can have infinite image”), i.e. there exists a continuous homomorphism φ : t`(H)→
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AutQ`V such that σ(h) = φ(t`(h)) for all h ∈ H. The two homomorphisms t`(H) →
AutQ`V mapping x to φ(x) and exp(xN), respectively, agree on the element t`(h0) and

hence on the closed subgroup of t`(H) generated by t`(h0), which is also open in t`(H).

It follows that the homomorphisms H → AutQ`V mapping h to σ(h) and exp(t`(h)N),

respectively, agree on an open subgroup of H, which is what we had to prove.

Weil–Deligne representations

Definition 3.43. Let E be a field of characteristic 0. A Weil–Deligne representation of F

is a triple (ρ, V,N) where V is a finite-dimensional E-vector space, ρ : WF → AutE(V ) is

a smooth (i.e. locally constant) representation, and N ∈ EndE(V ) is a nilpotent endomor-

phism (i.e. there exists n ≥ 1 such that Nn = 0) satisfying the compatibility relation

ρ(w)Nρ(w)−1 = ‖w‖FN ∈ EndE(V ) for all w ∈WF .

Let σ : WF → AutQ`V be a continuous representation. We choose a geometric Frobe-

nius element

φ ∈WF

(i.e. an element inducing the inverse of the q-th power map on the residue field of F̄ ).

Let N be the nilpotent endomorphism of V given by Corollary 3.42. We define a smooth

representation ρσ of WF by

ρσ(φah) = σ(φah) exp(−t`(h)N) for all a ∈ Z, h ∈ IF .

Theorem 3.44. With the above notation, (ρσ, V,N) is a Weil–Deligne representation

of WF that (up to isomorphism) is independent of the choice of φ and t`. This construction

defines an equivalence of categories from the category of continuous finite-dimensional Q`-

linear representations of WF to the category of Weil–Deligne representations of F .

3.7 Exercises

In the exercises below, unless otherwise mentioned F is a number field, F is an algebraic

closure and ` is a prime number.

Exercise 3.1. Let G be a group and C a field. Show that for any finite-dimensional

G-representation V there exists a filtration of V by G-stable subspaces 0 = V0 ⊂ V1 ⊂
· · · ⊂ Vm = V such that for all i the quotient Vi/Vi+1 is semi-simple. Moreover show that

this filtration can be defined in such a way that it depends functorially on V .

Exercise 3.2. Prove Theorem 3.9.

Exercise 3.3. Let V be a finite-dimensional complex representation of Gal(F/F ). Show

that the mapping Gal(F/F )→ GLC(V ) is continuous if and only if the mapping Gal(F/F )×
V → V , (σ, x) 7→ σx is continuous. Does this result also hold for representations in finite-

dimensional vector spaces over Q`?
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Exercise 3.4. Let G be a finite group. Let S be the set of all isomorphism classes of

irreducible complex representations of G. Pick for each s ∈ S a Vs that represents the

elements in the isomorphism class s. Show that for all g ∈ G we have

∑
s∈S

dim(Vs) · Tr(g, Vs) =

{
#G g = 1

0 otherwise.

Exercise 3.5. Show by counter example that Proposition 3.17 becomes false if the con-

dition “semi-simple” is removed from the statement.

Exercise 3.6. Let F be a number field and v a place of F . Choose an algebraic closure

F of F and choose an algebraic closure F v of Fv.

(a) Show that there exist an F -morphism ιv : F → F v.

(b) Deduce that there exists a natural injection ι∗v : Gal(F v/Fv)→ Gal(F/F ).

(c) Show that if ι′v is another choice of embedding of Fv into F v, then there exists an

element σ ∈ Gal(F/F ) such that ι∗v = σ ◦ ι′,∗v ◦ σ−1.

(d) Deduce that if V is a Galois representation of a number field F then the local

representation V |Gal(F v/Fv) is well-defined up to isomorphism.

(e) Show that if V/C is an Artin representation of Gal(F/F ) then V is unramified for

almost all finite F -places v.

Exercise 3.7. Let F be a number field, let v be a finite F -place and fix an algebraic closure

F v of Fv. Show that to give an F -place w above v is to give a Gal(F v/Fv)-conjugacy class

in HomF (F , F v).

Exercise 3.71
2 . Let O(n) be the group of real orthogonal matrices g ∈ GLn(R) such that

gtg = 1. Let G be a finite group. Show that any representation r : G → GLn(R) of G on

the vector space Rn is GLn(R)-conjugate to a morphism G→ O(n).

Exercise 3.8. Let V be a Galois representation of a number field F in a vector space V

over a closed subfield C of C, Q`, or Q. Let v be a finite F -place where V is unramified.

Show that the element ρ(Frobv) ∈ GLC(V ) is well-defined up to conjugation.

Exercise 3.9. Does there exist a group G and a non-trivial representation V of G such

that V contains no irreducible subrepresentation?

Exercise 3.10. Does there exist an irreducible 2-dimensional Galois representation V/Q`

of Gal(F/F ) such that V ⊗Q` Q` is reducible?

Exercise 3.11. Let F be a field of characteristic p > 0. Give an example of a finite group

G such that p|#G and a 2-dimensional representation V/F of G that is not semi-simple.

Exercise 3.12. Does there exist a continuous representation of Gal(Q/Q) in a two-

dimensional Q`-vector space that is ramified at infinitely many prime numbers?
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Exercise 3.13. In this exercise F is a local p-adic field. Let V1 and V2 be two continuous

representations of Gal(F/F ) in finite-dimensional complex vector spaces. Use Formula 3.4

to express the conductor exponent nV1⊕V2 of V1 ⊕ V2 in terms of the conductor exponents

nV1 and nV2 of V1 and V2.

Exercise 3.14. Let V/Q` be an `-adic representation of the absolute Galois group Gal(F/F )

of some number field F . Assume that V ∼= V⊗χ for some non-trivial character χ : Gal(F/F )→
Q×` with finite image. Show that the representation V is reducible when restricted to an

open subgroup of Gal(F/F ).

Exercise 3.15. Let K be the splitting field of the polynomial f = x3−x−1 considered in

Example 1.19, and let V be the Artin representation considered in that example. Compute

the conductor exponent nV,23.

Exercise 3.16. Show that the field Q` is not complete for the norm | · |.

Exercise 3.17. Let V be an `-adic representation of the absolute Galois group Gal(F/F )

of some number field F . Show that there exists a finite extension L/Q` such that Tr ρV (σ) ∈
OL for all σ ∈ Gal(F/F ).

Exercise 3.18. Let χ` be the cyclotomic character of Gal(Q/Q). Let p be a prime

number different from `. Compute Lιp(χ, s) for some choice of isomorphism ι : Q`
∼→ C.

General conjectures predict that for “nice Galois representations” (i.e. those that come

from geometry), the Galois representations should come in families where ` ranges over all

prime numbers. Using this, explain (without proving) what the natural definition of the

factor L`(χ, v) at the prime ` of χ` should be.

Exercise 3.19. Let V/Q` be an `-adic representation of Gal(F/F ), which is not neces-

sarily a Galois representation. Show that for almost all finite F -places v the wild inertia

group I(F v/Fv)
wild acts trivially on V .

Exercise 3.20. Show that there exists an isomorphism of fields ι : Q`
∼→ C. Explain

that such an isomorphism is “very far” from continuous, and that the number of such ι

is uncountably infinite. Are there continuous isomorphisms ι : Q`
∼→ Q`′ if `′ is a prime

different from `?

Exercise 3.21. Let V be an Artin representation of Gal(F/F ). Let σ be a not neces-

sarily continuous field automorphism of C. Show that Vσ := V ⊗C,σ C is another Artin

representation of Gal(F/F ). Show that the Euler factors at the finite places of Vσ are

conjugate to the Euler factors of V .

Exercise 3.22. Let V/Q` be a semi-simple Galois representation of Gal(F/F ), such that

for all most all finite F -places v where r is unramified, the characteristic polynomial of

r(Frobv) has coefficients in Q. Let `′ be a prime number different from `. Let ι : Q`
∼→ Q`′

be an isomorphism of fields (non-continuous).

(a) Show that there exists at most one semi-simple `′-adic Galois representation (r′, V ′)

over Q`′ of Gal(F/F ) such that for all most all finite F -places v where r and r′ are

unramified ιcharpol(r(Frobv)) equals charpol(r′(Frobv)) in Q[X].
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(b) Give an example of a triple (`, `, r′) where `, `′ are prime numbers, (r, V )/Q` is

a Galois representation such that for any choice of ι : Q`
∼→ Q′` there does not

exist a Galois representation (r′, V ′)/Q`′ such that r and r′ have almost everywhere

matching characteristic polynomials (via ι, as in part (a)).

Exercise 3.23. Let L/F be a finite Galois extension of number fields with L ⊂ F .

Consider the 1-dimensional representation 1 of Gal(F/L) with space C and trivial Galois

action. Express the L-function of the Galois representation Ind
Gal(F/F )

Gal(F/L)
(1) in terms of the

Dedekind zeta functions of L and F .

Exercise 3.24. Let E/Q be a quadratic extension of Q. Let χ : Gal(E/E) → C× be a

non-trivial continuous morphism. Let (r, V ) be the induced representation Ind
Gal(Q/Q)

Gal(E/E)
(χ).

Let p be a prime number that is unramified in E and such that χ is unramified at the

E-places above p. Determine the characteristic polynomial of r(Frobp).

Exercise 3.25. Let r : Gal(F/F ) → GLn(Q`) be a Galois representation, and let Hr ⊂
GLn(Q`) be the Zariski closure of the image of r.

(a) Show that Hr is a group.

(b) Give an example of a representation r as above such that Hr = GLn(Q`) for some

n ≥ 2.

(c) Give an example of an irreducible Galois representation r such that Hr is non-

connected (for the Zariski topology) and infinite.

Exercise 3.26. Let r : Gal(F/F )→ GLn(Q`) be a Galois representation. Show that there

exists a finite extension E ⊂ F of F such that for any finite extension L ⊂ F of F that

is linearly disjoint from E, the groups Gal(F/F ) and Gal(F/E) have the same Zariski

closure in GLn(Q`).

Exercise 3.27. (Place holder)

Exercise 3.28. Let r1, r2 be two semi-simple n-dimensional `-adic Galois representations

of Gal(F/F ), both unramified outside a finite set of F -places S. Assume that there exists

an integer k ∈ Z≥1 such that Tr r1(Frobjv) = Tr r2(Frobjv) for all integers j ≥ k. Show that

r1 and r2 are isomorphic.

Exercise 3.29. Let V/Q` be an `-adic Galois representation of the absolute Galois group

Gal(F/F ) of some number field F where V is a finite-dimensional Q`-vector space. Let

Λ ⊂ V be a stable lattice (cf. Exercise 2.10). Show that the representation of Gal(F/F )

on Λ ⊗ F` is irreducible if and only if the only Galois stable lattices in V are the lattices

of the form `nΛ for n ∈ Z.

Exercise 3.30. Let V1, V2/Q` be two Galois representations of Gal(F/F ) and H ⊂
Gal(F/F ) a normal open subgroup. Show that the space HomQ`[H](V1, V2) of vector space

morphisms has a natural structure of an Artin representation of Gal(F/F ).
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Exercise 3.31. Let F be a number field. Let ρ : Gal(F/F ) → GLn(Q`) be a Galois

representation such that its restriction ρ|Gal(F/L) is irreducible for all extensions L of

F contained in F . Let ρ′ : Gal(F/F ) → GLn(Q`) be another Galois representation of

dimension n such that for almost all places v of F where ρ and ρ′ are unramified we have

Tr(ρ(Frobv)) = ±Tr(ρ′(Frobv)) for some sign ± (that may depend on v).

(a) Show that there exists a finite extension L/F such that ρ|Gal(F/L)
∼= ρ′|Gal(F/L).

(b) Show that ρ ∼= ρ′ ⊗ χ where χ : Gal(F/F )→ {±1} is a quadratic character.

Exercise 3.32. Let T = Tr r be the trace mapping Gal(F/F )→ Z` attached to a Galois

representation (r, V )/Q` of Gal(F/F ). Show that there are infinitely many F -places v

such that T (Frobv) ≡ dim(V ) mod ` and give a lower bound for the density of such v.

Exercise 3.33. Let (r, V )/Q` be a semi-simple `-adic Galois representation of Gal(F/F )

and (r′, V ′)/Q`′ be a semi-simple `′-adic Galois representation of Gal(F/F ). We assume

that for almost all finite F -places v where r and r′ are unramified the characteristic

polynomials match (with respect to some fixed ι : Q`
∼→ Q`′ , cf. Exercise 3.18). Show that

the image of r is finite if and only if the image of r′ is finite.

Exercise 3.34. Consider a continuous morphism ρ : Gal(Q/Q) → GLn(Q`)/{±1} that

is unramified almost everywhere. In this exercise we investigate the question when ρ

lifts to a continuous representation ρ̃ : Gal(Q/Q) → GLn(Q`), such that ρ̃(σ) ≡ ρ(σ) ∈
GLn(Q`)/{±1} for all σ ∈ Gal(Q/Q).

(a) Show that there exists a map of topological spaces r : Gal(Q/Q) → GLn(Q`) such

that r(σ) ≡ ρ(σ) ∈ GLn(Q`)/{±1} for all σ ∈ Gal(Q/Q).

(b) Show that (σ, σ′) 7→ cσ,σ′ = r(σ)r(σ′)−1 defines a continuous 2-cocyle of Gal(Q/Q)

with values in {±1}.

(c) Show that ρ̃ exists if and only if the 2-cocycle c is cohomologous to the trivial 2-

cocycle (σ, σ′) 7→ 1.

Exercise 3.35. Let (ρ, V ) be a semi-simple `-adic Galois representation of Gal(F/F )

such that its image contains a regular unipotent element N of GLQ`
(V ). Show that V is

irreducible. (A unipotent element N of GLQ`
(V ) is a matrix such that N − 1 ∈ EndQ`

(V )

is nilpotent; N is regular unipotent if furthermore (N − 1)dim(V )−1 6= 0.)

Exercise 3.36. Let p be a prime number and q ∈ Qp
× with |q| < 1. Consider the

group Q×p /qZ as a module of Z[Gal(Qp/Qp)]. Let ` be a prime number different from

p, and consider the module Λ = lim←−Q×p /qZ[`n] where the limit ranges over n ∈ Z≥1.

Compute the space of I(Qp/Qp)-invariants (resp. I(Qp/Qp)-coinvariants) ΛI(Qp/Qp) (resp.

ΛI(Qp/Qp)) of Λ.

Exercise 3.37. Let K be the splitting field of x3 − x − 1 ∈ Q[x] as in Example 1.19,

and put F = Q(
√
−23), viewed as a subfield of K. Let G = Gal(K/Q), and let H =

Gal(K/F ) ⊂ G; note that these groups are isomorphic to the symmetric group S3 and the

alternating group A3 ⊂ S3, respectively. Let χ : H → C× be a non-trivial character of H

(sending a generator of H to a primitive third root of unity).
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(a) Show that the induced representation IndGH χ is isomorphic to the two-dimensional

representation ρ : G→ GL2(C) defined in Example 1.19.

(b) Let p be the unique place of F lying over 23. Compute the L-factors Lp(χ, s) and

Lp(ρ, s). (Hint: they should be equal.)

Exercise 3.38. (a) For each irreducible representation ρ of the group G = S3, find sub-

groups Hi ⊆ G, one-dimensional representations ψi of the groups Hi and integers ni
as in Brauer’s theorem 3.12.

(b) Same question for G = A4.

(c) Same question for G = S4.

(Hint: look up (or compute) the character tables of these groups, and use Frobenius

reciprocity.)

Elliptic curves

Exercise 3.39. The category of complex elliptic curves modulo isogeny Ell(C)⊗Q is the

category whose objects are the elliptic curves E over C and whose morphisms are given as

follows. Let E,E′ be two elliptic curves over C. The set of morphisms Hom(E,E′) taken

in the category of elliptic curves is an abelian group. We define

HomEll(C)⊗Q(E,E′)
def
= Q⊗Z HomEll(C)(E,E

′).

(a) Explain that Ell(C)⊗Q is indeed a category (i.e. morphisms can be composed, and

the axioms of a category are satisfied). Show that F : Ell(C) → Ell(C) ⊗ Q is a

functor.

(b) Let f : E → E′ be a morphism between two elliptic curves that respects the struc-

ture of group variety (i.e. a morphism of elliptic curves). Show that the following

statements are equivalent:

(i) f is an isogeny (i.e. f is a surjection and has finite kernel);

(ii) f is surjective;

(iii) f has finite kernel;

(iv) f is non-trivial;

(v) F (f) is an isomorphism.

(c) Show that the category Ell(C) ⊗ Q is equivalent to the category whose objects are

pairs (V, I), where V is a 2-dimensional Q-vector space and I ∈ EndR(V ⊗Q R) is a

complex structure on the real vector space V ⊗QR, i.e. an element such that I2 = −1.

(part of the exercise is to define the correct notion of morphisms (V, I)→ (V ′, I ′)).

(d) Show that there exist a functor Ell(C)⊗Q→ Q`-vsp sending an elliptic curve E up

to isogeny to the ‘rational’ Tate module Q` ⊗Z` lim←−E`n(C).

Exercise 3.40. Let E,E′ be two elliptic curves over a number field F .
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(a) Show that the following statements are all equivalent1

(a) V`(E)ss
∼= V`(E

′)ss for a single prime `.

(b) V`(E)ss
∼= V`(E

′)ss for all prime numbers `.

(c) for almost all finite places v of F where E and E′ have good reduction, we have

#E(κv) = #E′(κv)

(d) for all finite F -places v where E and E′ have good reduction, we have #E(κv) =

#E′(κv).

A famous theorem of Faltings states that the above properties are equivalent to E

and E′ being isogenous.

(b) Does the equivalence of the first two items hold over a finite field Fq?

Exercise 3.41. Let H± = P1(C)−P1(R) be the complex double half space; i.e. the set of

complex numbers z ∈ C whose imaginary part not zero. The group GL2(C) acts on P1(C)

via its natural action on C2 and its induced action on the space of lines through the origin.

The subgroup GL2(R) ⊂ GL2(C) fixes P1(R) and hence its complement P1(C)− P1(R) in

P1(C). Thus GL2(R) acts on the space H±.

(a) Show that the action on H± obtained in the above way is given by the formula(
a b
c d

)
· z = az+b

cz+d for all
(
a b
c d

)
∈ GL2(R) and all z ∈ H±.

(b) Show that the set of isomorphism classes of complex elliptic curves equals GL2(Z)\H±.

(c) Show that the set of isogeny classes of complex elliptic curves equals GL2(Q)\H±.

(d) Consider the group Γ of matrices X ∈ GL2(Z) such that X ≡ ( 1 0
0 1 ) mod 4. Show

that for each point x ∈ H± there exists an open neighborhood Ux ⊂ H± such that for

every γ ∈ Γ we have γUx ∩ Ux 6= ∅ ⇔ γ = ±1 ∈ GL2(Z). Deduce that the quotient

space Γ\H± has the natural structure of a complex manifold.

(e) Show that the space of isogeny classes of complex elliptic curves GL2(Q)\H± is not

Haussdorff and that it can’t have the structure of a manifold.

Exercise 3.42. This exercise is a continuation of Exercise 3.41. Let Γ be as in 3.41.(d).

(a) Define a 2-dimensional complex manifold E equipped with an action of GL2(Z) and a

GL2(Z)-equivariant map π : E→ H± such that the quotient space GL2(Z)\E has the

following property. For every τ ∈ H± the fibre π−1(τ) is isomorphic to the complex

elliptic curve C/(Z + τZ).

(b) Show, similar to Exercise 3.41.(d), that Γ\E is a complex manifold and that the map

Γ\E→ Γ\H± is a morphism of manifolds.

Exercise 3.43. Let K be quadratic imaginary field. Let I be a fractional OK-ideal. Show

that the complex elliptic curve EI = C/I is an elliptic curve that has extra multiplications

by OK .

1Here V`(E)ss denotes the semi-simplification of V`(E). In fact it is known that V`(E) is semi-simple,

but you do not need this fact to solve the exercise.
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(a) Show that for two such fractional ideals I, I ′ we have EI ∼= EI′ if and only if I and

I ′ differ by a principal R-ideal.

(b) Establish a bijection between the set of isomorphism classes of complex elliptic curves

E with End(E) = OK and the ideal class group of OK .

Exercise 3.44. Let E be an elliptic curve over a finite field Fq. In this exercise we will

show that #E(Fq) ≤ 2
√
q.

(a) Let A be an abelian group and let d : A → Z be a positive definite quadratic form,

which means

• d(x) = d(−x) for all x ∈ A, and A×A→ Z, (x, y) 7→ d(x+ y)− d(x)− d(y) is

bilinear. (i.e. d is a quadratic form).

• d(x) ≥ 0 for all x ∈ A, and d(x) = 0 if and only if x = 0 (i.e. d is positive

definite).

Show that for all a, b ∈ A we have |d(a− b)− d(a)− d(b)| ≤ 2
√
d(a)d(b).

(b) Show that the degree mapping d : EndFq(E) → Z is a positive definite quadratic

form.

(c) Deduce that #E(Fq) ≤ 2
√
q.

Exercise 3.45. Let E be an elliptic curve over Q given by the Weierstrass equation

y2 = x3 + 1. Compute the set of 2-torsion points E[2](Q) on E, and describe the Galois

action on this set.

Exercise 3.46. Let F be a p-adic local field and E/F an elliptic curve given by a Weier-

strass equation as in (3.6), with coefficients ai ∈ F . Show that if ai ∈ OF and v(∆) < 12,

then this equation is minimal.

Exercise 3.47. Let E be an elliptic curve over a number field F , and let r : Gal(Q/Q)→
AutQ`V`(E) ' GL2(Q`) be the Galois representation on the Tate module of E. Show that

as a representation of Gal(Q/Q), the Tate module of the n-fold product E ×E × · · · ×E
is isomorphic to the n-th tensor power of r.

Exercise 3.48. Let E be an elliptic curve over a number field F . Show that there exists

a finite solvable extension L/F such that the set of points (x, y, z) ∈ E(F ) of order 3 are

defined over L (i.e. for some λ ∈ F× we have (λx, λy, λz) ∈ F 3).

Exercise 3.49. This exercise is for those students who have some familiarity with abelian

varieties. Let A be an abelian variety of dimension 2 over Q, i.e. an abelian surface. Let

K be a totally real quadratic extension of Q, and assume that there exists a morphism

i : K → Q⊗EndQ(A). Assume that ` is split in K. Show that there exists a 2-dimensional

Galois representation V/Q` of Gal(Q/Q) such that for all prime numbers p where A has

good reduction V is unramified, and p 6= `, we have #A(Fp) = 1− Tr(Frobp, V ) + p.

Exercise 3.50. Let E/Fq be an elliptic curve. Show that there are two algebraic numbers

α, β ∈ Q such that for all integers j ≥ 1 we have #E(Fqj ) = 1 + qj − αj − βj .
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Exercise 3.51. Consider the elliptic curve E given by the equation y2 = x3− 4x over the

field F5.

(a) Compute the characteristic polynomial f ∈ Z[X] of the Frobenius acting on the

`-adic Tate module of E.

(b) Compute #E(F55).

Exercise 3.52. Let E be an elliptic curve over a number field F . Let aE ∈ R be the

naive density of the set of finite F -places v where E has good reduction and such that the

number of κ(v)-points #E(κ(v)) is even. Explain that this density exists and show that

either aE = 1/3, aE = 2/3 or aE = 1.

Exercise 3.53. (a) Let G be a topological group, which is Haussdorff. Show that the

space of connected components π0(G) is naturally a topological group as well.

Let F be a number field.

(b) Show that the surjection A×F /F
× → A×F

/
F×(F ⊗ R)×+ induces an isomorphism

π0(A×F /F
×)
∼→ A×F

/
F×(F ⊗ R)×+ .

(c) Explain that the abelianized absolute Galois group Gal(F/F )ab identifies naturally

with the component group π0(A×F /F
×) of A×F /F

×.

Exercise 3.54. Let F be a number field, and χ : A×F /F
× → C× be an algebraic Hecke

character.

(a) Show that there exists a number field E ⊂ C such that χ(A∞,×F ) ⊂ E×.

(b) Let λ be a finite E-place, and let ` be the rational prime number below λ. Show

that there exists a unique continuous morphism χλ : A×F /F
× → E×λ such that for all

finite E-places v not dividing ` where χ is unramified, we have that χλ is unramified

as well, χλ($v) ∈ E× and χλ($v) = χ($Fv) ∈ E× ⊂ E×λ .

Hodge–Tate numbers

Exercise 3.55. Let E/Q be an elliptic curve, and let (r, V )/Q`) be its associated Galois

representation on its Tate module. Show that Vss is not isomorphic to a direct sum of

two 1-dimensional representations given by algebraic characters χ1, χ2 (for algebraic, see

3.59).

Exercise 3.56. Let L/F be a (possibly infinite) Galois extension of fields with (profinite)

Galois group G. Let V be an L-vector space with a semi-linear action of G, i.e. V viewed

as an F -vector space is a G-representation, and for all σ ∈ G, all x ∈ L and all v ∈ V we

have σ(xv) = σ(x)v.

(a) Show that the natural mapping L⊗F V G → V is an isomorphism.

(b) Show that the mapping W 7→ L⊗FW is a bijection between F -subspaces of V G and

G-invariant L-subspaces of V .
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Exercise 3.57. Show that the transcendence degree of C` over Q` is infinite. (Hint:

Consider elements x ∈ C` on which the Galois group Gal(Q`/Q`) acts via a continuous

morphism χ : Gal(Q`/Q`)→ C×` with infinite image.)

Exercise 3.58. Let ` be a prime number.

(a) Show that Z×` is isomorphic to F×` × (1 + `Z`) if ` is odd, and isomorphic to µ4 ×
(1 + 4Z2) if ` = 2.

(b) Show that the multiplicative group (1 + `Z`) ⊂ Z×` is isomorphic to Z`, and has a

natural structure of a free Z`-module of rank 1.

(c) Let χ` be the `-adic cyclotomic character of Gal(Q/Q). Write t for the composition

Gal(Q/Q)→ Z×` � (1 + ` gcd(`, 2)Z`). Let χ : Gal(Q/Q)→ Q×` be a 1-dimensional

Galois representation. Show that χ is of the form ρ · taχ where ρ : Gal(Q/Q)→ Q×`
has finite image and aχ ∈ Z`.

Exercise 3.59. Choose an ι as in Exercise 3.20. Let χ : Gal(Q/Q)→ Q×` be a continuous

morphism, then we call χ algebraic if and only if the number aχ ∈ Z` from Exercise 3.58.(c)

is an integer aχ ∈ Z. We call a continuous morphism ρ : A×/Q× → C× algebraic if its

restriction to R× ⊂ A× is given by x 7→ xaρ for some integer aρ ∈ Z.

Show that the exist a unique bijection

Ψ: Homcts, alg(Gal(Q/Q),Q×` )→ Homcts, alg(A×/Q×,C×)

such that if χ maps to ρ = Ψ(χ), then

1. if χ is unramified at a prime number p 6= `, then ρ is unramified at p as well (i.e.

ρ(Iv) = 1, where Iv ⊂ A×/Q× is the subgroup 1×O×Fv ⊂ A×,vF × F×v = A×F );

2. if χ is unramified at p 6= `, then χ(Frobp) = ρ(p̂), where p̂ is the idèle (1, p) ∈
A×,p ×Q×p = A×;

3. and aχ = aρ.

Étale cohomology

Exercise 3.60. Let Fq be a finite field of q elements, and let n ≥ 0. Prove the identity

ζPnFq
=

1

(1− t)(1− qt) . . . (1− qnt)
.

Exercise 3.61. Let E and F be elliptic curves over a finite field Fq of q elements, and let

a, b ∈ Z be such that

ζE =
1− at+ qt2

(1− t)(1− qt)
, ζF =

1− bt+ qt2

(1− t)(1− qt)

Express the rational function ζE×F in terms of a and b.

Exercise 3.62. Let X be a smooth projective variety of dimension d over a finite field Fq
of q elements.
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(i) Prove that in the functional equation

ζX

(
1

qnt

)
= ηXt

eζX(t),

we have

e =

2n∑
i=0

(−1)ibi with bi = degPi

and

ηX = ±qne/2.

(ii) Prove that the polynomials Pi satisfy

Pi

(
1

qnt

)
= cit

−biP2n−i(t)

for some ci ∈ Q×, and determine ci in terms of Pi.

(You may use Theorem 3.28.)

Exercise 3.63. Let X, Y and Z be varieties over a field k, let f : X → Y and g : Y → Z

be morphisms, and let h = g ◦ f .

(a) Show that if f and g are étale, then h is étale.

(b) Show that if g and h are étale, then f is étale.

(c) Give an example where f and h are étale, but g is not.

Exercise 3.64. Let X be a variety over a field k, and let f : U → X and g : V → X be

étale morphisms. Show that the canonical morphism U ×X V −→ X is étale.

Exercise 3.65. Let k be a field, let Y = spec k be the one-point variety over k, and let

X be the closed subvariety of the affine line A1
k defined by a polynomial f ∈ k[x]. Show

that the canonical morphism X → Y is étale if and only if f is non-zero and separable.

Exercise 3.66. Let k be a field of characteristic different from 2, and let C be the nodal

cubic curve in the affine plane A2
k defined by the equation y2 = x2(x+1). Show that there

exists a finite étale covering C ′ → C of degree 2, where C ′ is connected.

Exercise 3.67. Let A be an Abelian group, and let X be a variety over a field k. For

every étale morphism U → X, let AX(U → X) be the set of functions U → A that are

continuous (i.e. locally constant) for the Zariski topology on U and the discrete topology

on A. Prove that AX is a sheaf on Xét.

(Hint: you may use without proof that étale morphisms are open for the Zariski topology.)

Exercise 3.68. Let k be a field, let k̄ be a separable closure of k, and let X be the

one-point variety spec k over k. Prove that the category Ab(Xét) of sheaves for the étale

topology on Xét is equivalent to the category of discrete Abelian groups with a continuous

action of Gal(k̄/k).
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Exercise 3.69. Let X be a variety over a field k. For every object U → X in Xét, a sieve

on U is a collection S of morphisms V → U in the category Xét (we omit the morphisms

to X from the notation) with the property that for every morphism V ′ → V in Xét and

every morphism V → U in S, the composed morphism V ′ → U is in S. A covering sieve

on U is a sieve S on U that is jointly surjective, i.e. for every point x ∈ U there exists a

morphism V → U in S whose image contains x. If S is a sieve on U and f : U ′ → U is

any morphism in Xét, we write f∗S for the collection of all morphisms V → U ′ for which

the composed morphism V → U ′
f−→ U is in S.

Prove the following statements, which together say that the collection of all covering

sieves on objects of Xét is a Grothendieck topology on Xét.

(i) For every object U in Xét, the collection of all morphisms V → U in Xét is a covering

sieve of U .

(ii) If f : U ′ → U is a morphism in Xét and S is a covering sieve of U , then f∗S is a

covering sieve of U ′.

(iii) Let S be a covering sieve of U , and let T be any sieve on U such that for every

morphism f : U ′ → U in S the sieve f∗T is a covering sieve on U ′. Then T is a

covering sieve on U .

(Hint: use fibre products.)

Exercise 3.70. Formulate and prove an analogue of the previous exercise for classical

topological spaces.

Weil–Deligne representations

Exercise 3.71. Prove the identity (3.11).

Exercise 3.72. Let (ρ, V,N) be a Weil–Deligne representation of F such that the smooth

representation (ρ, V ) is irreducible. Prove that N is the zero endomorphism.

Exercise 3.73. Let G be either the absolute Galois group or the Weil group of F , and

let I be the inertia subgroup. Let ` be a prime number different from p, let V be a finite-

dimensional Q`-vector space, and let ρ : G→ AutQ`V be a continuous representation.

(a) Suppose that the automorphism ρ(g) is unipotent for every g ∈ I. Prove that if V

is irreducible, then I acts trivially on V .

(b) Deduce that ρ(g) is unipotent for every g ∈ G if and only if I acts trivially on the

semi-simplification of V .

(Hint: use the structure of the maximal pro-`-primary part of the inertia group.)
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The global Langlands correspondence for the group GLn over Q is, roughly speaking,

a correspondence between compatible families of n-dimensional `-adic representations of

Gal(Q/Q) on the one hand, and automorphic representations of the adelic group GLn(AQ)

on the other hand. The latter representations are (in general infinite-dimensional) complex

representations of GLn(AQ), which are traditionally often denoted by π or σ.

Both sides of the Langlands correspondence are studied to a large extent using local

methods. On the Galois side, a representation of Gal(Q/Q) can be restricted to decompo-

sition groups at the finite places of Q, which can be identified with the local Galois groups

Gal(Qp/Qp). On the automorphic side, an automorphic representation π of GLn(AQ)

decomposes as an (infinite) tensor product of certain representations πp of the groups

GLn(Qp).

In this chapter, we will introduce the notions needed to understand these local com-

ponents πp. A useful reference for this chapter is [3, Chapter 1].

4.1 Haar measures and Hecke algebras

We begin with some general theory on locally profinite groups.

97
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Haar measures

Let G be a locally compact topological group. We define

Cc(G) = {f : G→ R continuous with compact support}

and we let Cc(G)∨ denote the R-linear dual of Cc(G). The canonical left action of G on

itself gives a right action
Cc(G)×G −→ Cc(G)

(f, g) 7−→ fg,

where fg ∈ Cc(G) is defined by (fg)(h) = f(gh). This in turn gives a left action

G× Cc(G)∨ −→ Cc(G)∨

(g, φ) 7−→ gφ

where (gφ)(f) = φ(fg). Similarly, the right action of G on itself gives a left action

G× Cc(G) −→ Cc(G)

(g, f) 7−→ gf,

where gf ∈ Cc(G) is defined by (gf)(h) = f(hg). This in turn gives a right action

Cc(G)∨ ×G −→ Cc(G)∨

(φ, g) 7−→ φg,

where (φg)(f) = φ(gf).

Definition 4.1. A measure on G is an element µ ∈ Cc(G)∨ such that if f is non-negative

everywhere and not identically zero, then µ(f) > 0. A left Haar measure on G is a measure

µ satisfying

gµ = µ for all g ∈ G.

A right Haar measure on G is a measure ν satisfying

νg = ν for all g ∈ G.

It is known (see Exercise 2.9) that there exists a unique left (resp. right) Haar measure

on G, up to scaling by a positive constant. However, they are not necessarily equal.

If µ is a measure on G and S is a compact open subset of G, we write

µ(S) = µ(1S),

where 1S is the characteristic function of S, defined by

1S : G −→ R

g 7−→

{
1 if g ∈ S,
0 if g 6∈ S.

For µ either a left or a right Haar measure and f ∈ Cc(G), we will use the following

notations interchangeably: ∫
G
f dµ =

∫
x∈G

f(x)dµ(x) = µ(f).
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One checks (Exercise 4.1) that the left invariance of µ and the right invariance of ν can

be expressed as ∫
x∈G

f(gx)dµ(x) =

∫
x∈G

f(x)dµ(x),∫
x∈G

f(xg)dν(x) =

∫
x∈G

f(x)dν(x).

Let G be a locally compact topological group. If µ is a left Haar measure on G, then

for every g ∈ G, the element µg ∈ Cc(G)∨ is again a left Haar measure on G. This means

that there exists δG(g) > 0 such that

δG(g) · µg = µ for all g ∈ G.

This gives a canonical group homomorphism

δG : G→ R>0.

One can show (Exercise 4.2) that δG satisfies a corresponding identity for left Haar mea-

sures: if ν is a right Haar measure on G, then

gν = δG(g) · ν for all g ∈ G.

The function δG is called the modular function of G (no relation to modular forms). We

say that G is unimodular if δG is identically 1.

Hecke algebras

We have seen that representations of a finite group G can be viewed as modules over the

group algebra C[G]. In this section we will introduce an appropriate analogue of this group

algebra for locally profinite groups.

Let G be a locally profinite group. We write

H(G) = {f : G→ C | f is locally constant and has compact support}.

(Note that “locally constant” is the same as continuous for the discrete topology on C.)

We fix a right Haar measure ν on G. On H(G), we define a C-bilinear multiplication

map by

(f ∗ g)(x) =

∫
y∈G

f(xy−1)g(y)dν(y).

Lemma 4.2. Let G be a locally profinite group, and let ν be a right Haar measure on G.

(i) The product defined above can also be written as

(f ∗ g)(x) =

∫
y∈G

f(y−1)g(yx)dν(y).

(ii) The product is associative, i.e.

(f ∗ g) ∗ h = f ∗ (g ∗ h) for all f, g, h ∈ H(G).

(iii) There exists a unit element for the product ∗ on H(G) if and only if G is discrete.
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Proof. See Exercise 4.4.

For any compact open subgroup K ⊆ G, we write

H(G,K) = {f ∈ H(G) | f is left and right K-invariant}.

Given two such subgroups K ′ ⊆ K, we have an injection H(G,K) ⊆ H(G,K ′). Since

every f ∈ H(G) is left and right K-invariant for suffiently small K, we can write H(G) as

a direct limit

H(G) = lim−→
K

H(G,K),

with K ranging over the set of compact open subgroups of G.

For any open compact subgroup K ⊆ G, we define an element eK ∈ H(G) as ν(K)−1

times the characteristic function of K. Then we have

eK ∗ eK = eK

and

H(G,K) = eK ∗ H(G) ∗ eK .

Note that each H(G,K) has eK as its unit element, but the maps between them do not

respect these.

4.2 Smooth and admissible representations

A locally profinite group has a huge number of complex representations. For our pur-

poses, the“well-behaved”representations are the ones satisfying certain conditions, namely

smoothness and the stronger notion of admissibility.

Definition 4.3. Let G be a locally profinite group, let V be a C-vector space (possibly

infinite-dimensional), and let π : G → AutC(V ) be a group homomorphism. We say that

(π, V ) is smooth if for every v ∈ V there exists an open subgroup K ⊆ G such that

Kv = {v}. We say that (π, V ) is admissible if it is smooth and for every open subgroup

K the space

V K = {v ∈ V | π(k)v = v for all k ∈ K}

is finite-dimensional.

Let (π, V ) and (π′, V ′) be smooth representations of G. A morphism from (π, V ) to

(π′, V ′) is a C-linear map t : V → V satisfying t(π(g)v) = π′(g)(t(v)) for all g ∈ G and

v ∈ V .

The smooth representations of G form an Abelian category, and the admissible repre-

sentations of G form a full subcategory. In particular, there is a notion of simple objects,

called irreducible (smooth) representations. However, we note that these categories are in

general not semi-simple. (They are if G is compact; see Exercise 4.10.)

We now introduce similar notions for Hecke algebras.
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Definition 4.4. A representation of H(G) is a homomorphism

π : H(G)→ EndC(V )

of (non-unital) C-algebras, where V is a C-vector space. We say that a representation

(π, V ) of H(G) is smooth if H(G)V is equal to V , i.e. if for every v ∈ V there exists

f ∈ H(G) such that π(f)v = v.

Like smooth representations of G, the smooth representations of H(G) form a category.

We will see below that the two categories are equivalent.

Remark 4.5. A (smooth) representation of H(G) is also called a (smooth) H(G)-module,

but one needs to be somewhat careful with this terminology because H(G) is not a unital

ring in general.

Theorem 4.6. Let G be a locally profinite group. Then every smooth representation of G

can be given the structure of a smooth representation of H(G) in a natural way. This gives

an equivalence of categories

{smooth representations of G} ∼−→ {smooth representations of H(G)}.

Proof. We just sketch the construction; the details are left as an exercise.

Given a smooth representation (π, V ) of G, a function f ∈ H(G) and a vector v ∈ V ,

we define

π(f)v =

∫
G
f(g)π(g)v dν(g) ∈ V.

This notation needs a definition. Because (π, V ) is smooth and f is locally constant with

compact support, we can choose a compact open subgroup K ⊆ G such that for all k ∈ K
and g ∈ G we have π(k)v = v and f(gk). Then we define the above integral as the finite

sum

π(f)v = ν(K)
∑

g∈G/K

f(g)π(g)v ∈ V.

One checks that this gives V the structure of a smooth representation of H(G).

Conversely, given a smooth representation (π, V ) of H(G), an element g ∈ G and a

vector v ∈ V , we define

π(g)v = π(fgK)v,

where K is an open compact subgroup of G such that π(eK)v = v and the function fgK
is ν(gK)−1 times the characteristic function of gK. Again, one checks that this gives V

the structure of a smooth representation of G.

Let (π, V ) be a smooth representation of G, and let K be a compact open subgroup

of G. Then the subspace V K of K-invariants is in a natural way a module over the (unital)

C-algebra H(G,K); see Exercise 4.13.

Induction

As for finite groups, a very useful way to construct representations is by induction and

coinduced (or compact) induction. In contrast to the case of finite groups, these construc-

tions are in general not isomorphic.
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Definition 4.7. Let G be a locally profinite group, let H be a closed subgroup of G, and

let (π, V ) be a smooth representation of H. The induced representation of G, notation

IndGH(π, V ) is the pair (π′, V ′) defined as follows. The C-vector space V ′ is defined as the

space of all functions

f : G→ V

satisfying the following conditions: we have

f(hg) = π(h)(f(g)) for all g ∈ G, h ∈ H

and there exists a compact open subgroup K ⊆ G such that

f(gk) = f(g) for all g ∈ G, k ∈ K.

This V ′ is equipped with the left G-action coming from the right action of G on itself, i.e.

the group homomorphism π′ : G→ AutC(V ′) is defined by

π′(g)(f) = (g′ 7→ f(g′g)) for all g ∈ G, f ∈ V ′.

The coinduced representation of G, notation cIndGH(π, V ), is defined in the same way,

but the space V ′ is replaced by the subspace of functions f ∈ V ′ such that in addition the

image of the support of f in H\G is compact.

Alternative names for the functors IndGH and cIndGH are smooth and compact induction,

respectively.

Proposition 4.8 (Frobenius reciprocity for smooth representations). Let G be a locally

profinite group, let H be a closed subgroup, let V be a smooth representation of H, and let

W be a smooth representation of G. Then there are canonical isomorphisms

GHom(cIndGH V,W ) ∼= HHom(V,ResGHW )

and

HHom(ResGHW,V ) ∼= GHom(W, IndGH V )

Example 4.9. Let G = GL2(Qp), let B be the closed subgroup of G consisting of upper

triangular matrices, and let N be the closed normal subgroup of B consisting of matrices

of the form
(

1
0
∗
1

)
. There is an isomorphism

B/N
∼−→ Q×p ×Q×p(

a
0
b
d

)
N 7−→ (a, d).

Given two continuous characters

χ1, χ2 : Q×p → C×,

we let χ be the character of B defined by

χ
(
a
0
b
d

)
= χ1(a)χ2(d).

We then define a smooth representation (π, V ) of G as the induced representation IndGB χ.

These representations are important building blocks in the construction and classification

of irreducible smooth representations of G.
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4.3 Unramified representations

The Langlands conjectures predict a relation between Galois representations on the one

side and automorphic representations on the other side. In the local case, representations of

the local Galois group should correspond to irreducible smooth admissible representations

of the local group GLn(Qp) (or over a finite extension of Qp). In particular, notions that

exist on the one side, should have a counterpart on the other side. In this section we will

look at the analogue of the ramification filtration Gal(Qp/Qp)i (where i ≥ −1) on the side

of smooth representations.

On the (local) Galois side, the simplest class of representations are the unramified

representations, which have no ramification at all. We have seen that their isomorphism

class is essentially given by a conjugacy class in GLn(Q`), or in GLn(C) if the representation

was complex. This conjugacy class is given by the image of the Frobenius element. After

discussing ramification of smooth representations in a general context, we will specialize

quickly to the case of unramified representations and make a detailed study of these since

they are the simplest local representations.

Ramification of local representations

Let F be a finite extension of Qp, and write G = GLn(F ). Let π be a smooth admissible

representation of G. Choose any vector v ∈ π such that v 6= 0. By assumption the

stabilizer K of v in G is open. Moreover, the subspace C[G · v] ⊂ π spanned by the

translates gv of v, is G-invariant and non-zero. By irreducibility of π, the above inclusion

is equality. Thus π is generated by its K-invariant vectors.

Consider the functor FK from the category of smooth admissible G-representations to

the category of complex vector spaces, given by FK(τ) = τK . Then FK has an endomor-

phism ring RK : If Ei : FK → FK are two endomorphisms, we can define (Ei + Ei)(τ) =

Ei(τ) + Ei(τ) and (Ei · Ei)(τ) = Ei(τ) ◦ Ei(τ) for any smooth admissible representation

τ . By general abstract non-sense, the ring RK acts on the space τK = FK(τ) for any τ .

Hence we have upgraded FK to a functor to finite-dimensional complex vector spaces with

a left RK-module structure. Recall the Hecke algebra H(G,K) of K-biinvariant functions

f : G → C such that f(k1 · g · k2) = f(g), with g ∈ G and k1, k2 ∈ K, where the product

is defined by the convolution product (f ∗ h)(g) =
∫
x∈G f(gx−1)h(x)dg, where the Haar

measure on G is normalized so that the volume of K is 1. Since H(G,K) acts on τK

for any smooth admissible G-representation, in a way that is functorial in τ , we get an

morphism H(G,K)→ RK . This morphism turns out to be an isomorphism, so the Hecke

algebra H(G,K) = RK plays a similar role to the group algebra in the context of complex

representations of a finite group.

To π we can try to attach the largest subgroup K such that πK is non-zero. This group

K is then a measure for “how ramified”π is. However, this group K is not well-defined (for

instance if v ∈ V is non-zero and has stabilizer K, then gv has stabilizer gKg−1). What

one can do is start with a compact open subgroup K and look at all representations π, all of

whose irreducible subquotients have K-invariant vectors. These representations are called

the K-spherical representations. The equivalence from Theorem 4.6 gives an equivalence

from the category of smooth admissible K-spherical representations to the category of

H(G,K)-modules of finite dimension (in fact it’s even an isomorphism of categories). The
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algebra H(G,K) is of finite type, associative and unital (but not commutative in general).

As explained above, attaching a compact open subgroup K ⊂ GLn(F ) to a smooth

admissible irreducible representation π of GLn(F ) is not really canonical but by looking

at the structure of the local general linear group a little bit further, it is possible to make

a well-defined definition of a conductor, as follows. Define for each integer N ≥ 1 the

following compact open subgroup K(N) of matrices g ∈ GLn(OF ) such that g reduces

to the identity matrix modulo N . The groups K(N) ⊂ GLn(OF ) form a basis of open

neighborhoods of the identity element. In particular for any compact open subgroup

K ⊂ GLn(F ), we can find a large N such that K(N) ⊂ K. The conductor of π is then

the largest N such that K(N) stabilizes a non-zero vector v in π.

Unramified representations

Let F be a p-adic local field, G = GLn(F ). The simplest class of irreducible representations

of G are the K = GLn(OF )-spherical representations. We call these irreducible represen-

tations, the unramified representations of G. These representations have conductor equal

to 1.

Remark 4.10. The interest of the group GLn(OF ) ⊂ GLn(F ) is that it is a so-called hy-

perspecial group, which means that it arises from the group of OF -points on of a connected

reductive model G/OF of the group GLn. These hyperspecial groups are all conjugated,

which means that these models G of GLn all arise from the choice of a lattice Λ in Fn.

The Cartan decomposition

We wish to make a careful study of the unramified representations. Let G = GLn(F ) and

K = GLn(OF ). As explained the unramified representations π of G correspond to simple

modules over the Hecke algebra H(G,K). The Hecke algebra H(G,K) is a convolution

algebra of functions on the double coset space

G//K := K\G/K = GLn(OF )\GLn(F )/GLn(OF ).

So to study the unramified representations, it is natural to first try to understand what

the above double coset space looks like. Note that the quotient GLn(F )/GLn(OF ) is

easily identified with the space XF of lattices Λ ⊂ Fn. However, from this perspective the

further quotient GLn(OF )\XF seems rather messy at first. To compute it, the relevant

theorem is called the Smith normal form, which can be thought of as an extension of

the Gaussian elimination process (row/column reduction) to the context of principal ideal

domains R.

Theorem 4.11. Let R be a principal ideal domain, and A an n×n matrix with coefficients

in R. Then there exist two invertible matrices S, T ∈ GLn(R), such that SAT is a diagonal

matrix diag(α1, α2, . . . , αn) with αi ∈ R and αi|αi+1, for all i = 1, 2, . . . , n − 1. The

elements αi ∈ R are unique up to units.

Sketch. By multiplying A on the left and on the right by suitable matrices in R, you see

that it is possible to perform the following operations on A: (R1) Add a multiple of a row

to another row, (R2) Add a multiple of a column to another column, and (R3) Multiply a
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row or a column by a unit in R. By doing a form of Gaussian elimination you realize that

the any matrix A can be brought down to the form stated in the theorem. Another way

to think about this result is to consider the R module Rn/A(Rn) where you view A as

an endomorphism Rn → Rn. The quotient of Rn by the image of A, Rn/A(Rn), is then,

since R is a PID, isomorphic to a direct sum of modules of the form R/Ii, with Ii ⊂ R

ideals. The generators of the ideals Ii, are then the elements αi. Since R/αiR ∼= R/αjR

if and only if αi and αj differ by a unit in R×, the uniqueness statement follows.

The elements αi are called the elementary divisors of the matrix A. If you are willing

to suffer, you can compute them by computing many determinants (see theorem below),

but in practice it is more convenient to do Gaussian elimination.

Theorem 4.12. Let i ∈ Z be an index 1 ≤ i ≤ n. The element α1α2 · · ·αi ∈ R is up to a

unit in R× equal to the greatest common divisor of the i× i minors of the matrix A.

Remark 4.13. In the above statement, with greatest common divisor of two elements

α, β ∈ R, we meant a generator γ of the ideal (α, β) ⊂ R (in particular this element γ is

only well-defined up to units).

If R = OF , we may take the αi to be of the form $ei
F , where $F ∈ OF is a uniformizer,

and we obtain the Cartan decomposition,

K\G/K =
∐

e1≤e2≤...≤en

K · diag($e1
F , $

e2
F , . . . , $

en
F ) ·K. (4.1)

Remark 4.14. The Cartan decomposition is actually a statement for any reductive group

over a local field; but in case of the group GLn, the result boils down to the Smith normal

form, which, as explained in the proof above, is basically a reflection of the classification

of R-modules of finite type where R is a principal ideal domain.

Proposition 4.15. The algebra H(G,K) is commutative.

Sketch. The commutativity of H(G,K) can be seen using the Cartan decomposition ex-

plained above, and the observation that by this decomposition, the double cosets are

invariant under taking transposes. Exercise 4.19.

The unramified Hecke algebra

A very good reference on the unramified Hecke algebra and the Satake transform is the

paper by Gross [7], which explains the theory for a general unramified reductive group.

Another useful reference is Kottwitz’s paper [8, Section 5], which explains the theory

for GLn.

It now becomes convenient to introduce some shorthand notation. Let’s write Zn,+

for the set of λ ∈ Zn, such that λi ≤ λi+1, 1 ≤ i < n. By Equation (4.1), we have

as a vector space that H(G,K) =
⊕

λ∈Zn,+ C. For λ ∈ C we write cλ ∈ H(G,K) for

the corresponding basis vector, so cλ is the function G → C, such that for all g ∈ G,

cλ(g) = 1 if and only if the exponents in the Smith normal form of g are given by λ. On

the algebra H(G,K) we have defined a multiplication operator ∗. It natural to express this

multiplication with respect to the basis cλ. We obtain structural constants nλ,µ(ν) ∈ Z
such that cλ ∗ cµ =

∑
µ,λ∈Zn,+ nλ,µ(ν) · cν holds for all λ, µ ∈ Zn,+.
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Let’s attempt to expand the convolution product (cλ ∗ cµ)(g) =
∫
x∈G cλ(x)cµ(x−1g)dx.

Write λ($F ) for the matrix diag($λ1
F , . . . , $

λn
F ). We can decompose double cosets into

right cosets Kλ($F )K =
∐
xiK and Kµ($F )K =

∐
yiK (because this is what you have

to do to compute the Haar measure of some subset). Then (see [7, p. 4–5]),

(cλ ∗ cµ)(g) = nλ,µ(ν) =

∫
G
cλ(x)cµ(x−1g)dx =

∑
i

∫
xiK

cµ(x−1g)dg

=
∑
i

∫
K
cµ(kx−1

i g)dk =
∑
i

cµ(x−1
i g) = #{(i, j) : ν($F ) ∈ xiyiK}. (4.2)

By taking xi = λ($F ) and yj = µ($F ) we see that nλ,µ(λ+µ) > 0. In fact, one can show

that nλ,µ(λ+ µ) = 1 and that nλ,µ(ν) is non zero only if ν ≤ λ+ µ.

The Satake transform

Write T ⊂ GLn for the diagonal torus. Thus T (F ) is the set of matrices of the form

diag(x1, x2, . . . , xn) ∈ GLn(F ) such that x ∈ F×,n. Similarly, T (OF ) is the group of

diagonal matrices with coefficients in O×F . We write B ⊂ GLn for the group of upper

triangular matrices. Inside B we have the subgroup N ⊂ B of upper triangular unipotent

matrices; these are the upper triangular matrices with 1 on every diagonal term. This

group N ⊂ B is normal with quotient T .

In Peter’s lectures we have seen parabolic induction of representations. In our current

context this means that you start with a smooth character χ : T (F )→ C× (so a morphism

of groups with open kernel), and first extend χ to the group B(F ) via the surjection

B(F )→ B(F )/N(F )
∼→ T (F ). Then we can form the (normalized) induced representation

πχ = IndGB(F )(χ⊗ δ
1/2
B(F )).

A basic property of this induced representation is that for any Hecke operator f ∈ H(G,K)

we have Trπχ(f) = Tr(f (B), χ). Here f (B) is the constant term

f (B) : T (F ) −→ C

t 7−→ δ
−1/2
B(F )(t) ·

∫
u∈N(F )

f(tu)du,
(4.3)

where we endow N(F ) with the (two-sided) Haar measure such that N(OF ) has measure 1.

The constant term induces a morphism of rings

H(G,K) −→ H(T (F ), T (OF ))

f 7−→ f (B),

where H(T (F ), T (OF )) is the convolution algebra of functions T (F ) → C with compact

support that are both left and right T (OF )-invariant. Since T (F ) is commutative, a

function T (F )→ C is left T (OF )-invariant if and only if it is right T (OF )-invariant, and

there is no difference between left and right cosets. By applying the valuation to each

coordinate in T (F ), we obtain an isomorphism

valn : T (F )/T (OF )
∼−→ Zn,

diag(x1, . . . , xn) 7−→ (val(x1), . . . val(xn)),
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and an isomorphism of C-algebras

C[Zn]
∼−→ H(T (F ), T (OF )),∑

λ∈Zn
aλ · λ 7−→ (t 7→ avaln(t)).

(4.4)

We identify the group algebra C[Zn] with the polynomial algebra C[X±1
1 , X±1

2 , . . . , X±1
n ].

The permutation group Sn on n letters acts on this algebra by permuting the variables Xi.

Satake’s main theorem states that composition of the constant term with (4.4) is injective

and has image equal to the subalgebra of Sn-invariants:

Theorem 4.16 (The Satake isomorphism). The constant term morphism f 7→ f (B) in-

duces an isomorphism

S : H(G,K)
∼−→ C[X±1

1 , X±1
2 , . . . , X±1

n ]Sn .

Consequently any unramified irreducible representation π of GLn(F ) corresponds to a

simple module V of the algebra C[X±1
1 , . . . , X±1

n ]Sn . Since this algebra is commutative,

such a module is 1-dimensional over C and corresponds to a maximal ideal

mπ ∈ spec max(C[X±1
1 , X±1

2 , . . . , X±1
n ]Sn),

which we will henceforward call the Satake parameter of π. Viewing the above space of

maximal ideals as a variety over C, it is nothing but C×,n/Sn. The upshot is that the

unramified irreducible representations π of GLn(F ) correspond to unordered sequences of

n non-zero complex numbers xi. Attaching to the sequence xi the unique semi-simple

conjugacy class γπ in GLn(C) whose eigenvalues are the xi, we obtain

Theorem 4.17 (Unramified local Langlands correspondence). The mapping π 7→ γπ sets

up a bijection between the isomorphism classes of unramified irreducible representations of

GLn(F) and semi-simple n-dimensional representations of the group FrobZ
F .

An informal introduction to the dual group

Although, strictly speaking, for the group GLn(F ) the above shows that one can get

around it, I believe it is instructive to review the construction from the previous section

from a somewhat higher and more abstract perspective. Moreover I think the dual group

is one of the crucial ideas of Langlands when he stated his conjecture. Since we have not

introduced reductive groups and their classification with root systems, and we do not want

to assume this to be known, the discussion that follows will necessarily be sketchy and

imprecise. The intention is that the reader will nevertheless get some “cultivation” out of

it, and if he or she is interested will read the more serious references on this topic, such as

the paper of Borel in PSPUM 33.

We begin with some preliminaries on algebraic tori. A torus T over a field F is a

commutative group variety that over a finite separable extension E of F is isomorphic to

a product of copies of Gm. In case E = F , so when T ∼= (Gm)n for some n, then we

call the torus split. A typical example of a non-split torus is the group U(1), obtained

from a quadratic extension E/F as the kernel of the norm character ResE/FGm → Gm,
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where ResE/F is restriction of scalars. Since in our context we only work with GLn, we

can mostly ignore the non-split tori. To a torus T we may attach two important Z-lattices

which compare T with Gm, namely the cocharacter lattice X∗(T ) = HomF (Gm, T ) and

the character lattice X∗(T ) = HomF (T,Gm).

Theorem 4.18. The category of split tori over a field is equivalent to the category of

finite free Z-modules, via the functor T 7→ X∗(T ). The category of split tori is also anti-

equivalent to the category of finite free Z-modules via the functor T 7→ X∗(T ).

In case of non-split tori, one can also make an equivalence to the category of finite

free Z-modules equipped with an action of Gal(F/F ). But, as explained above, we will

not need that. If Λ is a finite free Z-module, the functor R 7→ Λ⊗Z R
× is representatable

by an algebraic torus TΛ. Explicitly, Λ is isomorphic to Zr for some r, and via this

isomorphism, TΛ is nothing but Gr
m. The significance of the (co)character lattice is mostly

that it provides a very convenient way to describe the set of morphisms between two

tori. Moreover, Theorem 4.18 makes it clear that there exists a duality on the category

of tori. Namely, if T is torus, we know that there exists another torus T ′ such that the

character lattice of T ′ coincides with the cocharacter lattice of T . On the category of finite

free Z-modules, this dual is simply the duality that takes a lattice Λ to the dual lattice

Hom(Λ,Z). Even though on first sight it is a bit strange, we can furthermore vary the base

field. For instance we may take a split torus T over the field F , pass to its cocharacter

lattice Λ, take a field C that is unrelated to F , and consider the corresponding (dual if

you want) torus over C. Since we look at representations with complex coefficients, we

want to take the dual torus T̂ over C, even though the (split) torus T is defined over the

unrelated p-adic field Qp. Similarly, when looking at `-adic representations, it may be

natural to consider the dual torus T̂ over Q`.

Let T/F be a split torus, then

Homsmth, unr.(T (F ),C×) = Homsmth, unr.(T (F )/T (OF ),C×)

= Hom(X∗(T ),C×) = Hom(X∗(T ),Z)⊗ C× = X∗(T̂ )⊗ C× = T̂ .

Thus, stated in this way, points in the dual torus are the unramified representations of

T (F ). Moreover, from the last equality in the above equation, for us it is natural to have

T̂ over C (since we look at complex characters).

I believe it was Langlands who extended the above duality extends to the category of

reductive groups over a field. To any reductive group G over F , let’s say for simplicity that

G is split, we can attach a complex dual group Ĝ. Here are some examples of reductive

groups with their corresponding dual groups

Group Dual group

GLn GLn(C)

SO2n+1 Sp2n(C)

SO2n SO2n(C)

Sp2n SO2n+1(C)

GSp2n GSpin2n+1(C)

If T is a maximal torus in G, then T̂ can be viewed (up to conjugacy) as a maximal

torus in the dual group Ĝ. In the computation from the previous section we worked with
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the group GLn over F . The dual group of GLn is GLn(C) (the group is “self-dual”). At the

end of our computation we saw that the Satake parameter of an unramified representation

naturally lives in the space T̂ /Sn. The permutation group Sn should here be viewed

naturally as the Weyl group of T̂ in Ĝ, and the observation is that the space T̂ /Sn

coincides with the space of semi-simple conjugacy classes in Ĝ. In the case of GLn we

saw that our Satake parameter was an unordered tuple of n non-zero complex numbers

x1, x2, . . . , xn. The corresponding semi-simple conjugacy class in GLn(C) is precisely the

one whose eigenvalues are x1, x2, . . . , xn. Loosely speaking, the idea is that these conjugacy

classes arise from some morphism φ from the local Galois group1 to the dual group. Hence

the idea is that, similar to the case of tori, the representations of reductive groups should

correspond to Galois representations into the dual group.

4.4 Ramified representations

The goal of this section is to discuss a number of ramified representations. In a later

section, after having discussed Weil–Deligne representations, the goal is to come back to

these examples, and explain for these examples the corresponding representation on the

Galois side.

The Steinberg representation

Arguably the first and simplest example of a ramified representation is the Steinberg

representation. Every reductive group has such a representation.

Let’s first discuss the Steinberg representation for the group GL2(Qp). Let B = ( ∗ ∗0 ∗ ) ⊂
GL2 the Borel subgroup of upper triangular matrices. The quotient GL2 /B is naturally

isomorphic to the space of lines passing through the origin in A2 (since B is the stabilizer

of one such a line and GL2 acts transitively). Hence GL2 /B = P1, where GL2 acts on

P1 through its usual action. Consider the space C∞(P1(Qp)) of locally constant functions

f : P1(Qp) → C on which GL2(Qp) acts by translations on the right: gf(x) := f(xg−1)

for all g ∈ GL2(Qp) and f ∈ C∞(P1(Qp)). Then C∞(P1(Qp)) is a smooth and admissible

representation of GL2(Qp), but notice that it is not irreducible. Namely inside C∞(P1(Qp))

we have the subspace 1 ⊂ C∞(P1(Qp)) of constant functions, P1(Qp) 3 x 7→ c, for a fixed

constant c ∈ C. Any translation of a constant function is again constant, so 1 is indeed a

stable subspace of C∞(P1(Qp)). In particular the quotient C∞(P1(Qp))/1 is a GL2(Qp)-

representation as well. This representation is irreducible (Exercise 4.31), and it is the

Steinberg representation of GL2(Qp).

For n > 2 the definition of the Steinberg representation is similarly a space of locally

constant function on a Grassman variety attached to GLn, modulo all the subspaces that

are obviously invariant, but a bit more involved. We first need to discuss some background

information on parabolic subgroups of GLn. A parabolic subgroup P ⊂ GLn is by definition

a connected subgroup such that the quotient variety GLn/P is projective; the parabolic

subgroup P is called a Borel subgroup if it is minimal for this property; or, which turns

out to be equivalent, if P is a successive extension of Gm’s and Ga’s. In GLn the standard

1To make this statement correct, we actually have to replace the Galois group by the Weil group,

introduced in Section 3.6.
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example of a Borel subgroup is the group B of upper triangular matrices B+; another

Borel subgroup is the group of lower triangular matrices B−, and for any g ∈ GLn(Q),

the subgroup gB+g−1 ⊂ GLn is a Borel subgroup as well. In fact, all Borel subgroups

are conjugate, so they are all of this form. A connected subgroup of GLn is parabolic

if and only if it contains a Borel subgroup. From now on let us fix one Borel and work

henceforward with this fixed choice. We take B = B+ ⊂ GLn the group of upper triangular

matrices. By convention, we call a parabolic subgroup P of GLn standard if B ⊂ P . These

groups all turn out to be of the upper block triangular form

P =


A1 ∗ ∗ ∗

A2 ∗ ∗
. . . ∗

An


where r ∈ Z≥0 is some integer, where n1, . . . , nr are all positive integers with n = n1 +

. . . + nr, where Ai is a matrix in GLni , where the ∗’s indicate that those entries of the

matrix can be anything and where the entries on the left below the bocks Ai are all 0.

Thus, for every ordered partition n = n1 + n2 + . . . + nr with positive numbers ni the

group GLn has a standard parabolic subgroup as defined above, and these are all of them,

so you can also take this as a definition. For any such P ⊂ GLn(F ) the quotient GLn/P

is projective and the space GLn/P (F ) is compact, and we can consider the space CP
of locally constant functions f : GLn/P (F ) → C on it. This space CP again carries a

representation of GLn(F ), acting by translations on the right as before in the GL2 case.

If P, P ′ are two parabolic subgroups of GLn such that the partition corresponding to P

is a refinement of the partition corresponding to P ′, we have an inclusion P ⊂ P ′, a map

GLn/P (F ) → GLn/P
′(F ) and an induced map CP ′ → CP . In particular, the spaces

CP are not irreducible if P has a refinement. To define the Steinberg representation St

of GLn(F ), we consider the space CB and let U be the subspace of CB generated (as

a representation) by all the subspaces CP , where P ⊂ GLn runs over all the standard

parabolic groups with P 6= B. Then U ⊂ CB is a stable subspace, and the quotient CB/U

turns out to be irreducible. This is the Steinberg representation.

Remark 4.19. There is also a variant on the above construction, where instead of the

Borel subgroup B you consider another parabolic subgroup, say P0, which is not a Borel

subgroup; and run the above construction with P0 in place of B. Then you also get an

irreducible representation, call it VP0 of GLn(F ) which is smooth and admissible. Unless

the representation that you get is one-dimensional, VP0 is another example of a ramified

representation. However, VP0 is usually of less interest than the Steinberg representation,

since it does not occur as a local component of discrete automorphic representations.

Cuspidal representations

We have seen that one way to construct admissible representations of GLn(F ) is by

parabolic induction from characters of a Borel subgroup. In a similar way, one can con-

struct admissible representations of GLn(F ) starting from irreducible representations of

groups GLm(F ) with m < n. In the remainder of this section, we will study irreducible
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admissible representations that do not arise as irreducible constituents of any representa-

tion arising from parabolic induction. These representations are called cuspidal. We will

now give a precise definition of this notion.

Let P ⊂ GLn be a standard parabolic subgroup corresponding to the partition n =

n1 +n2 + . . .+nr (see the previous section). Attached to P , there is the Levi decomposition

P = MN , where M is the group GLn1 ×GLn2 × · · ·GLnr , embedded diagonally by blocks

in GLn, and N is the subgroup of P consisting of matrices that are the identity inside

these blocks. The subgroup N is called the unipotent radical of P ; it is normal in P , and

there is a natural isomorphism M
∼−→ P/N .

Definition 4.20. Let F be a p-adic field. The Jacquet module (πN , VN ) of an admissible

representation (π, V ) of GLn(F ) is the largest quotient of V on which N acts trivially. In

other words, VN is the quotient of V by the C-linear subspace generated by all elements

v − nv with v ∈ V and n ∈ N(F ).

If (π, V ) is an admissible representation of G = GLn(F ), then the Jacquet module

(πN , VN ) is an admissible representation of M = M(F ). Sending (π, V ) to (πN , VN ) is a

functor from the category of admissible representations of G to the category of admissible

representations of M . This functor is left adjoint to parabolic induction (Exercise 4.35):

for all admissible representations π of G and all admissible representations ρ of M , we

have a natural isomorphism

HomM (πN , ρ) ∼= HomG(π, IndGP (ρ)).

Definition 4.21. Let (π, V ) be an irreducible admissible representation of GLn(F ). We

say that (π, V ) is cuspidal if for all standard parabolic subgroups P = MN ⊂ GLn with

P 6= GLn, the representation (πN , VN ) of M is trivial.

Slightly more explicitly, (π, V ) is cuspidal if for every r-tuple (n1, . . . , nr) with ni ≥ 1

and r ≥ 2 the representation (πN , VN ) of M is trivial, where P is the standard parabolic

subgroup corresponding to the partition (n1, . . . , nr), N is the unipotent radical of P and

M ' P/N is the diagonally embedded product GLn1(F )× · · · ×GLnr(F ).

Remark 4.22. In the literature, cuspidal representations are often called supercuspidal.

In Exercise 4.27, you will show that for GL2(Qp), the Jacquet module of the Steinberg

representation is one-dimensional. In fact this is true for all groups GLn(F ), and is not very

difficult to prove. In particular, the Steinberg representation is not cuspidal. Similarly, by

Exercise 4.29 the unramified representations are not cuspidal either.

Remark 4.23. In light of the local Langlands correspondence, the cuspidal representations

correspond to the irreducible representations on the Galois side. Since any reducible

representation can be decomposed into irreducible ones of lower dimension, one may try,

when proving the local Langlands conjecture, to reduce the statement to the “cuspidal ↔
irreducible”case. In fact, this is how all the known proofs of the local Langlands conjecture

for GLn(F ) work.

The cuspidal representations of GLn(F ) are harder to construct than the non-cuspidal

ones. In the remainder of this subsection, we will describe how to construct a family of

examples for GL2(F ).
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First, we consider a finite field k of q elements, and we consider complex representations

of the finite group G = GL2(k). We consider the subgroups

B =

(
∗
0

∗
∗

)
, N =

(
1

0

∗
1

)
, Z =

{(
a

0

0

a

) ∣∣∣∣ a ∈ k×}.
Just as in the case of local fields, one way to obtain representations of G is by induction

from characters of B. In this way, one always gets representations that have non-trivial

N -invariant subspaces. The representations that do not have this property are slightly

more subtle to define.

Definition 4.24. A finite-dimensional representation ρ of G is cuspidal if the restriction

of ρ to N does not contain the trivial representation of N .

(In other words, ρ is cuspidal if and only if the subspace of N -invariants vanishes.)

Let k′ be a quadratic extension of k (unique up to isomorphism). By choosing a k-basis

of k′, we obtain embeddings k′ ↪→ Mat2(k) and k′× ↪→ GL2(k). We write E for the image

of k′× in G; then E contains Z as a subgroup of index q + 1.

We choose characters

θ : E → C×

and

ψ : k → C×

such that ψ is non-trivial and θ satisfies θq 6= θ. We define a character

θ ∗ ψ : ZN −→ C×(
a

0

0

a

)(
1

0

b

1

)
7−→ θ(a)ψ(b).

We consider the representations IndGE θ of dimension (G : E) = q(q− 1) and IndGZN (θ ∗ψ)

of dimension (G : ZN) = (q + 1)(q − 1).

Theorem 4.25. 1. There is a decomposition

IndGZN (θ ∗ ψ) ∼= IndGE θ ⊕ πθ

where πθ is an irreducible cuspidal representation of G of dimension q − 1.

2. If θ′ is another character of E with θ′q 6= θ′, then πθ and πθ′ are isomorphic if and

only if θ′ = θ or θ′ = θq.

3. Up to isomorphism, all irreducible cuspidal representations of G arise as πθ for some

character θ of E with θq 6= θ.

We now shift our attention to the p-adic field F . Let F ′ be an unramified quadratic

extension of F (unique up to isomorphism). Similarly to the above construction, we choose

an F -basis of F ′, giving embeddings F ′ → Mat2(F ) and F ′× → GL2(F ). We write E for

the image of F ′ in GL2(F ).

We consider a character

χ : F ′× → C×
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that is trivial on the group {x ∈ O×F ′ | x ≡ 1 (mod p)F ′}, where pF ′ is the maximal ideal

of O×F ′ . (Such characters are said to be of “level 0”.) Let σ be the non-trivial element of

Gal(F ′/F ), and let χσ = χ ◦ σ. Suppose that χ 6= χσ. Since χ has level 0, it induces a

character

χ̃ : (OF ′/pF ′)× → C×.

One can show that χ̃ satisfies χ̃q 6= χ̃. Therefore the above construction gives an irreducible

cuspidal representation

λ̃χ̃ : GL2(OF /pF )→ GLq−1(C).

We inflate this to a representation

λχ̃ : GL2(OF )→ GLq−1(C).

It follows from the construction that χ and λχ̃ are compatible in the sense that they

agree on the intersection of GL2(OF ) and E in GL2(F ). Hence there exists a unique

representation
Λχ : EGL2(OF ) −→ GLq−1(C)

xy 7−→ χ(x)λχ̃(y).

Finally, we define

πF ′,χ = cInd
GL2(F )
EGL2(OF ) Λχ.

It turns out that this is an irreducible cuspidal representation of GL2(F ).

4.5 (g, K)-modules

The Archimedean version of the concept of admissible representations turns out to be more

complicated than for locally profinite groups. The main complication is that one either

needs to consider representations on Hilbert spaces or Banach spaces, or alternatively (to

avoid using functional analysis, which is what we will do) consider actions of Lie algebras

and their universal enveloping algebras.

In this section, we write

G = GLn(R).

We define

g = Lie(G) = Matn(R)

and

K = On(R).

Then K is a maximal compact subgroup of G. There is a natural representation

G× g −→ g

(g, x) 7−→ (Ad g)x,

where Ad: g → AutRg is the adjoint representation; since G = GLn(R), we can identify

(Ad g)x with gxg−1 in Matn(R).

There is an exponential map

exp: g→ G;
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since G = GLn(R), this is given by

exp(x) =
∞∑
m=0

1

m!
xm.

Note that this is not a group homomorphism unless n ≤ 1. The complexification of g is

the complex Lie algebra

gC = g⊗R C.

A representation of gC is a C-vector space V together with an C-linear map

π : gC → EndCV

satisfying

π([x, y]) = π(x) ◦ π(y)− π(y) ◦ π(x) for all x, y ∈ gC.

A fundamental example of such a representation (which is also how the Lie algebra gC will

show up in the theory of automorphic forms) is the action of gC on the space C∞(G) of

smooth functions G → C by (first-order) differential operators. This action is given on g

by

(π(x)φ)(g) =
d

dt
φ(g exp(tx))

= lim
t→0

t−1(φ(g exp(tx)− φ(g)) for all x ∈ g, φ ∈ C∞(G), g ∈ G

and extended to gC by

π(x+ iy)φ = π(x)φ+ i(π(y)φ) for all x, y ∈ g, φ ∈ C∞(G).

The following definition is an Archimedean replacement for the notion of a smooth

representation of a locally profinite group.

Definition 4.26. A (g,K)-module is a complex vector space V equipped with represen-

tations of the group K and of the Lie algebra g, both denoted by π, such that

• V , viewed as a representation of K, is a direct sum of irreducible continuous finite-

dimensional representations of K;

• for all x in the Lie algebra Lie(K) ⊆ g, the limit

d

dt
(π(exp(tx))v)|t=0 = lim

t→0

1

t

(
π(exp(tx))v − v

)
(where exp: g→ G is the exponential map) exists and is equal to π(x)v;

• for all k ∈ K and x ∈ g, we have

π(k) ◦ π(x) ◦ π(k−1) = π((Ad k)x).

The first condition above is a replacement for the representation of K being continuous;

note we have not fixed a topology on V . The other two conditions state in that the actions

should be compatible to the largest meaningful extent.

We note that the representation of g on a (g,K)-module V can be extended in a

canonical way to a representation of the complexified Lie algebra gC.
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Definition 4.27. A (g,K)-module (π, V ) is admissible if every irreducible continuous

finite-dimensional representation of K occurs only finitely many times in V (up to isomor-

phism).

Theorem 4.28. There exists an associative (but in general non-commutative and non-

unital) C-algebra H(G) such that every (g,K)-module is in a natural way a smooth rep-

resentation of H(G), and this induces an equivalence of categories

{(g,K)-modules} ∼−→ {smooth representations of H(G)}.

In the next chapter, we will need the universal enveloping algebra of gC. This is an

associative unital C-algebra U(gC) together with a homomorphism

ι : gC → U(gC)

of complex Lie algebras (i.e. a C-linear map satisfying ι([x, y]) = ι(x)ι(y) − ι(y)ι(x))

such that for every associative unital C-algebra A and every Lie algebra homomorphism

f : gC → A there is a unique extension of f to a homomorphism U(gC)→ A of associative

unital C-algebras. In particular, every representation of g on a C-vector space V extends

uniquely to a U(gC)-module structure on V .

Example 4.29. For n = 2, and without complexification for simplicity, we have

g = Rz ⊕ Rĥ⊕ Râ+ ⊕ Râ−

where

z =

(
1

0

0

1

)
, ĥ =

(
1

0

0

−1

)
, â+ =

(
0

0

1

0

)
, â− =

(
0

1

0

0

)
.

The algebra U(g) is generated by these elements. They satisfy

[ĥ, â+] = 2â+, [ĥ, â−] = −2â−, [â+, â−] = ĥ.

We define an element ∆ ∈ U(g) by

∆ = −1

4
(ĥ2 + 2â+â− + 2â−â+),

where we view ĥ, â+ and â− as elements in U(g) via ι, and where the multiplication takes

place in U(g); note that this is not the same as multiplying the matrices defining these

elements!

Theorem 4.30. For G = GL2(R), the centre Z(U(gC)) of the C-algebra U(gC) is a

polynomial ring in two variables generated by z and ∆.

The above theorem follows from the Harish-Chandra isomorphism. We omit the proof,

but see Exercise 4.14.

Remark 4.31. One can develop a very similar theory for GLn(C) (and also for other Lie

groups); in the interest of brevity, we will not do this here.
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4.6 The local Langlands correspondence for GLn

Some useful references for this section are Cogdell’s notes [1, Chapters 9 and 10] and

Bushnell and Henniart’s book [3, Chapters 2–7].

Throughout this section, let F be a p-adic field, and let q be the cardinality of the

residue field of F . The local Langlands correspondence will link admissible representations

of GLn(F ) with n-dimensional Weil–Deligne representations of F . Rather than stating

directly how to construct an object on one side from an object on the other side, the

correspondence identifies objects by means of their L-functions and ε-factors.

L-functions and ε-factors of admissible representations

For an admissible representation π of GLn(F ), one can define an L-function

L(π, s) ∈ C(q−s)

and an ε-factor

ε(π, s) ∈ C[qs, q−s]×.

This was first done by Godement and Jacquet, and later in various other ways by Jacquet,

Piatetski-Shapiro, Shalika and other authors. Explaining how these L-functions and ε-

factors are defined is unfortunately beyond the scope of this course; we just give the most

important examples to convey an idea of what these quantities look like.

If the admissible representation π is one-dimensional, then it is given by a character

χ : F× → C×. If χ is unramified and $ ∈ F× is a uniformiser, we have (for a suitable

choice of the fixed additive character ψ : F → C×)

L(χ, s) = (1− χ($)q−s)−1,

ε(χ, s) = qs−1/2χ($)−1.

If χ is ramified, then we have

L(χ, s) = 1,

and the formula for ε(χ, s) is more complicated (involving a certain Gauss sum). If π is

obtained by parabolic induction from a character χ of the Borel subgroup B ⊂ GLn(F ),

and if π is irreducible (so we exclude twists of the Steinberg representation), then we have

L(π, s) = L(χ1, s) . . . L(χn, s),

ε(π, s) = L(χ1, s) . . . L(χn, s).

Finally, if the representation π is cuspidal, then we have

L(π, s) = 1,

so only the ε-factor encodes non-trivial information about π.

More generally, one also needs to define, given a pair of two admissible representations

π of GLn(F ) and π′ of GLn′(F ), an L-function L(π × π′, s) and an ε-factor ε(π × π′, s).
In this notation, the product π × π′ has a priori no meaning of its own; once the Lang-

lands correspondence has been established, it becomes a consequence that there exists an
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admissible representation of GLnn′(F ) that deserves the notation π× π′. Here we content

ourselves with explaining what these mean for n′ = 1, in which case π′ is a character χ

of F×. We then define
L(π × χ, s) = L(χπ, s),

ε(π × χ, s) = ε(χπ, s),

where χπ (= π × χ) is the admissible representation of GLn(F ) defined by

(χπ)(g) = χ(det g)π(g).

L-functions and ε-factors of Weil–Deligne representations

Let (ρ, V,N) be a Weil–Deligne representation of F . Like for admissible representations,

one can associate to (ρ, V,N) two fundamental quantities: a L-function

L((ρ, V,N), s) ∈ C(q−s)

and an ε-factor

ε((ρ, V,N), s) ∈ C[qs, q−s]−1.

The latter implicitly also depends on the choice of an additive character ψ : F → C×.

We first regard (ρ, V ) simply as a smooth representation of WF . We choose a geometric

Frobenius element φ ∈WF , and we define the L-function by the usual formula

L(ρ, s) = det(1− ρ(φ)q−s)−1 ∈ C(q−s).

The ε-factor is more complicated and cannot be expressed in a simple formula in general.

The fact that there is a “consistent” definition of ε-factors at all is already quite deep; this

is the content of the following theorem.

Theorem 4.32 (Dwork, Langlands, Deligne). Let F be a p-adic field, and let ψ : F → C×

be a smooth additive character. There exists a unique family of functions

ε(ρ, s) ∈ C[qs, q−s]×

where E is a finite extension of F inside F̄ and ρ is a semi-simple finite-dimensional

smooth representation of WF , such that the following properties are satisfied:

1. If ρ is one-dimensional and χ : E× → C× is the character corresponding to ρ via the

reciprocity isomorphism, then one has

ε(ρ, s) = ε(χ, s)

where the right-hand side is the ε-factor occurring in the functional equation for χ.

2. For all ρ1 and ρ2 in G(E), we have

ε(ρ1 ⊕ ρ2, s) = ε(ρ1, s)ε(ρ2, s).

3. For all finite extensions K/E/F inside F̄ and ρ ∈ G(E), we have

ε(IndWE
WK

ρ, s)

ε(ρ, s)
=

(
ε(IndWE

WK
1K , s)

ε(1K , s)

)dim ρ

.
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Remark 4.33. The ε-factors depend on the choice of the additive character ψ : F → C×.

For a finite extension E/F , we fix a non-trivial additive character ψE as the composition

of ψ with the trace map E → F .

We now take the operator N into account, and make the following definitions (with

V N the kernel of N):

L((ρ, V,N), s) = L(ρ|V N , s),

ε((ρ, V,N), s) = ε(ρ, s)
L(ρ∨, 1− s)
L(ρ, s)

L(ρ|V N , 1− s)
L(ρ∨|(V ∨)N∨ , s)

Here (ρ∨, V ∨, N∨) is defined as follows: V ∨ is the dual vector space of V , ρ∨ is the dual

representation (inverse transpose on matrices), and N∨ is the negative of the transpose

of N .

The local Langlands correspondence

The local Langlands correspondence states that there is a canonical bijection between two

sets: on the“automorphic”side we have the set An(F ) of isomorphism classes of irreducible

admissible representations of GLn(F ), and on the “Galois” side we have the set WDn(F )

of isomorphism classes of n-dimensional Weil–Deligne representations of F .

Theorem 4.34 (Local Langlands correspondence). There exist unique bijections

An(F )→WDn(F )

π 7→ ρπ

with the following properties:

1. For all π ∈ An(F ), π′ ∈ An′(F ) we have

L(π × π′, s) = L(ρπ ⊗ ρπ′ , s),
ε(π × π′, s) = ε(ρπ ⊗ ρπ′ , s).

2. The determinant of ρπ corresponds to the central character of π via the reciprocity

isomorphism recF from local class field theory. In particular, for χ ∈ A1(F ), the

smooth character ρχ : WF → C× corresponds to the smooth character χ : F× → C×

via this isomorphism.

3. The correspondence is compatible with taking duals: ρπ∨ = ρ∨π .

4. For every character χ : F× → C×, we have ρχπ = ρχ⊗ρπ, where ρχπ(g) = χ(det g)π(g).

The following theorem says that the local Langlands correspondence holds when re-

stricting to suitable cuspidal representations on the automorphic side and to irreducible

Weil–Deligne representations (which are just irreducible representations of the Weil group)

on the Galois side.

Let A0
n(F ) be the subset of An(F ) consisting of isomorphism classes of cuspidal ir-

reducible admissible representations. We denote by G(F ) the set of isomorphism classes

of semi-simple finite-dimensional smooth representations of WF , by Gn(F ) the set of such

representations of dimension n, and by G0
n(F ) the subset of irreducible ones.
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Theorem 4.35 (Harris, Taylor; Henniart). There exist unique bijections

A0
n(F )f → G0

n(F )

π 7→ ρπ

(where the subscript f denotes irreducible admissible representations of GLn(F ) with cen-

tral character of finite order) satisfying the properties of the local Langlands correspon-

dence.

In fact, the full local Langlands correspondence can be deduced from this.

4.7 Exercises

Haar measures and Hecke algebras

Exercise 4.1. Let G be locally compact topological group, let µ be a left Haar measure

on G, and let ν be a right Haar measure on G. Using the notation introduced in the text,

show that the left invariance of µ and the right invariance of ν can be expressed as∫
x∈G

f(gx)dµ(x) =

∫
x∈G

f(x)dµ(x),∫
x∈G

f(xg)dν(x) =

∫
x∈G

f(x)dν(x)

for all continuous functions f : G→ R with compact support.

Exercise 4.2. Let G be a locally compact topological group, and let µ and ν be left and

right Haar measure on G, respectively. Let δG : G → R>0 be the modular function as

defined via µ by the equation

δG(g) · µg = µ for all g ∈ G.

(a) Show that δG also satisfies

gν = δG(g) · ν for all g ∈ G.

(b) Show that the elements δ−1
G µ and δGν in Cc(G)∨ defined by

(δ−1
G µ)(f) =

∫
x∈X

f(x)δG(x)−1dµ(x) and (δGν)(f) =

∫
x∈X

f(x)δG(x)dν(x)

for f ∈ Cc(G) are right and left Haar measures, respectively.

Exercise 4.3. Let G be a compact topological group.

(a) Show that the group G is unimodular.

(b) Show that G has finite total volume for its Haar measure.

Exercise 4.4. Prove Lemma 4.2.

Exercise 4.5. Let G be a finite group (equipped with the discrete topology).
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(a) Prove that the map µ sending a function f : G → R to 1
#G

∑
x∈G f(x) is a Haar

measure on G.

(b) Prove that the Hecke algebra H(G) (with respect to the above Haar measure) is

canonically isomorphic to the group algebra C[G].

Exercise 4.6. Consider the group G = GLn(R) with coordinates xi,j for 1 ≤ i, j ≤ n.

Show that
∣∣det(xi,j)

n
i,j=1

∣∣−n∏n
i,j=1 dxi,j is a (two-sided) Haar measure on G.

Exercise 4.7. Let B be the group of upper triangular matrices
(
a b
0 d

)
in GL2(Qp), and

let B0 = B ∩GL2(Zp) =
(Z×p

0
Zp
Z×p

)
.

(a) Let µ be the unique left Haar measure on B such that µ(B0) = 1. For all r, s, t ∈ Z,

compute µ(Br,s,t), where Br,s,t is the compact open subset of B defined by

Br,s,t =

(
prZ×p

0

psZp
ptZ×p

)
.

(b) Prove that the modular function δB of B is given by

δB

(
a

0

b

d

)
=
|d|p
|a|p

.

Smooth and admissible representations

Exercise 4.8. Let G be a locally profinite group, and let π : G→ AutC(V ) be a complex

representation of G. Show that (π, V ) is smooth if and only if the map

G× V → V

(g, v) 7→ π(g)v

is continuous for the discrete topology on V .

Exercise 4.9. Let p be a prime number, and let G = GLn(Qp).

(a) Let K be a compact open subgroup of G. Show that the set G/K is countable.

(b) Let (π, V ) be an irreducible smooth representation of G. Show that the dimension

of V is countable.

Exercise 4.10. Let G be a profinite group. Let (π, V ) be a smooth representation of G.

Prove the following statements:

(i) If π is irreducible, then the homomorphism G → AutC(V ) factors through a finite

quotient of G.

(ii) If π is irreducible, then V has finite dimension.

(iii) The representation V is unitary, i.e. there exists a positive definite Hermitean prod-

uct 〈·, ·〉 on V such that 〈gv, gw〉 = 〈v, w〉 for all v, w ∈ V and all g ∈ G.

(iv) π is semi-simple.
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Exercise 4.11. Let G be a locally profinite group. Let C(G) be the C-vector space of all

locally constant functions G → C, viewed as a representation of G via the right action

of G on itself. Is the representation C(G) smooth? If so, is it admissible?

Exercise 4.12. Let G be a locally profinite group, and let π be an admissible representa-

tion of G. Let f ∈ H(G) be a locally constant compactly supported function. Show that

the C-linear map
V → V

v 7→ π(f)v

defined in Theorem 4.6 has finite rank.

Exercise 4.13. Let G be a locally profinite group, and let (π, V ) be a smooth represen-

tation of G.

(a) Show that for every compact open subgroup K ⊆ G, the space of invariants V K is

a module for the (unital) C-algebra H(G,K).

(b) Show that the following conditions are equivalent:

(i) (π, V ) is irreducible;

(ii) V is non-zero, and for every compact open subgroup K ⊆ G, the H(G,K)-

module V K is either zero or simple.

(g, K)-modules

Exercise 4.14. Verify that the elements z and ∆ of U(gC) defined in Example 4.29 lie in

the centre of U(gC).

Exercise 4.15. Let g = Lie(GL1(R)) = R and K = O1(R) = {±1}. Give an elementary

classification of (g,K)-modules and of admissible (g,K)-modules.

In the exercises below, we take G = GL2(R), so K = O2(R) = SO2(R)t
(

1
0

0
−1

)
SO2(R)

and g = Lie(G) = Mat2(R). For θ ∈ R, we write rθ =
(

cos θ
sin θ

− sin θ
cos θ

)
∈ SO2(R). We

write P =
(

1
i

1
−i
)
∈ GL2(C), so that rθ = P

(
exp(−iθ)

0
0

exp(iθ)

)
P−1, and we define elements

z, a+, a−, h ∈ gC as the images of the elements considered in Example 4.29 under the map

x 7→ PxP−1, so that

z =

(
1

0

0

1

)
, a± =

1

2

(
1

±i
±i
−1

)
, h = [a+, a−] = i

(
0

1

−1

0

)
.

Exercise 4.16. Let k be a non-negative integer, and let Vk be the k-th symmetric power

of the standard two-dimensional representation of G, i.e. Vk is the C-vector space of

homogeneous polynomials of degree k in C[x, y] and the action of G is given by(
a

c

b

d

)
xmyn = (ax+ cy)m(bx+ dy)n for all

(
a

c

b

d

)
∈ G.

Show that there is a natural way to view Vk as a (g,K)-module (πk, Vk) and that there

exists a C-basis (v−k, v−k+2, . . . , vk−2, vk) of Vk such that the action of K is given by

πk(rθ)vl = exp(−ilθ)vl and πk

(
1

0

0

−1

)
vl = v−l
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and the action of g is given by

πk(a±)vl =
k ∓ l

2
vl±2 and πk(h)vl = lvl.

Exercise 4.17. Let k be an integer with k ≥ 2, and let Vk be a C-vector space with basis

{vl}l∈Sk indexed by the countable set Sk = {l ∈ Z : |l| ≥ k, l ≡ k (mod 2)}.

(a) Show that there is a representation πk of K on Vk given by

πk(rθ)vl = exp(−ilθ)vl and πk

(
1

0

0

−1

)
vl = v−l.

(b) Show that this representation can be extended to a (g,K)-module structure on Vk
satisfying

πk(a±)vl =
k ± l

2
vl±2 and πk(h)vl = lvl.

(The (g,K)-module (πk, Vk) corresponds to the discrete series representation of weight k

of GL2(R).)

Exercise 4.18. Let χ1, χ2 : R× → C× be two continuous group homomorphisms, and let

ε = χ1(−1)χ2(−1).

(a) Show that for every l ∈ Z with (−1)l = ε, there exists a unique continuous function

φl : G→ C×

satisfying

φl

((
a

0

b

d

)
rθ

)
= exp(−ilθ)χ1(a)χ2(d) for all a, d ∈ R×, b, θ ∈ R.

(b) Show that the C-vector space Vχ1,χ2 spanned by the functions φl for all l ∈ Z with

(−1)l = ε is in a natural way a representation of K.

(c) Show that Vχ1,χ2 also has a natural (g,K)-module structure, and determine the

action of the operators a± and h on Vχ1,χ2 with respect to the basis {φl}.

(The (g,K)-module Vχ1,χ2 corresponds to the principal series representation attached to

the pair (χ1, χ2); this representation is induced from the character χ :
(∗

0
∗
∗
)
→ C× sending(

a
0
b
d

)
to χ1(a)χ2(b).)

Unramified representations

In the exercises below F is a p-adic local field.

Exercise 4.19. Show that the algebra H(GLn(F ),GLn(OF )) is commutative.

Exercise 4.20. Show that the constant term mapping f 7→ f (B(F )) is indeed a morphism

of rings.
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Exercise 4.21. Show that if you remove the normalizing factor δ
−1/2
B(F )(t) from Equation

(4.3), then you also get a ring homomorphism

H(G,K)→ C[X±1
1 , X±1

2 , . . . , X±1
n ],

but this map (the ‘unnormalized Satake transform’) does not have image in the subalgebra

of Sn-invariants.

Exercise 4.22. Compute the Satake transform of the characteristic function of the double

coset GL2(Zp) ·
(
p 0
0 1

)
·GL2(Zp) ⊂ GL2(Qp).

Exercise 4.23. Compute the function f ∈ H(GLn(Qp),GLn(Zp)) whose Satake transform

is equal to X1X2 · · ·Xn ∈ C[X±1
1 , X±1

2 , . . . , X±1
n ]Sn .

Exercise 4.24. Compute the GL2(Zp)-biinvariant function f on GL2(Qp) whose Satake

transform is equal to X + Y ∈ C[X±1, Y ±1]S2 .

Exercise 4.25. Let χ : (Q×p )2 → C× be a smooth character. Compute the Jacquet module

Ind
GL2(Qp)
B(Qp) (χ)N where B = ( ∗ ∗0 ∗ ) ⊂ GL2 and N = ( 1 ∗

0 1 ) ⊂ GL2.

Exercise 4.26. In this exercise we make the Satake isomorphismH(GL2(F ),GL2(OF ))
∼→

C[X±1
1 , X±1

2 ]S2 explicit for GL2.

(a) Show the two families of polynomials fj = Xj
1+Xj

2 and gj = Xj
1X

j
2 in C[X±1

1 , X±1
2 ]S2

for j ∈ Z generate the algebra C[X±1
1 , X±1

2 ]S2 as a complex vector space, and that

f0 − 2g0 = 0 is the only non-trivial linear relation between these functions.

(b) Consider on H(GL2(F ),GL2(OF )) the basis consisting of the indicator functors of

double cosets. Express the functions fj and gj with respect to this basis.

Ramified representations

In the exercises below F is a p-adic local field.

Exercise 4.27. Compute the Jacquet module StN of the Steinberg representation where

N ⊂ GL2(Qp) is the group of upper triangular matrices in GL2(Qp), i.e. the matrices of

the form ( 1 x
0 1 ) ∈ GL2(Qp) with x ∈ Qp.

Exercise 4.28. Let V be a smooth representation of G = GLn(F ) which is finitely

generated (i.e. there exists some finite-dimensional subspace W ⊂ V such that G · W
generates V as a complex vector space). Show that there exists a quotient V �W where

W is irreducible and smooth.

Exercise 4.29. Let (π, V ) be a smooth admissible representation of G = GLn. Let

K = GLn(OF ) and P ⊂ GLn a standard parabolic subgroup with Levi decomposition

P = MN . Show that the mapping V → VN(F ) maps V K surjectively onto (VN(F ))
M(OF ).

Exercise 4.30. Let (V, π) be a finite-dimensional smooth irreducible representation of

G = GLn(F ). Show that V is 1-dimensional.

Exercise 4.31. Show that the Steinberg representation of GL2(F ) defined by C∞(P1(F ))/1

is an irreducible smooth and admissible representation of GL2(F ).
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Exercise 4.32. Let V be a smooth irreducible representation of G = GLn(F ), and

A : V → V be a non-trivial morphism. In this exercise we show that A = µ · id, where µ

is some scalar in C.

(a) Show that V is of countable dimension.

(b) Assume that A 6= µ · id for all µ ∈ C. Show that the operator A−µ · id is invertible.

(c) Let v ∈ V be non-zero. Show that the collection of vectors (A − µ · id)−1(v) ∈ V
where µ ranges over C is linearly independent and derive a contradiction.

Exercise 4.33. Let V be a smooth irreducible representation of G = GL2(F ), which is

not cuspidal. Show that V is admissible. 2

Exercise 4.34. Let π be an irreducible smooth admissible representation of G = GLn(F ).

Show that there exists a partition n = n1 + n2 + . . . + nr cuspidal representations

σ1, σ2, . . . , σr of GLn1(F ), GLn2(F ), . . ., GLnr(F ), such that π appears as a subrepre-

sentation of the parabolic induction Ind
G(F )
P (F )(σ1 ⊗ σ2 ⊗ · · · ⊗ σr), where P ⊂ GLn is the

standard parabolic subgroup corresponding to the partition (ni) of n.

Exercise 4.35. Let G = GLn and P ⊂ G a standard parabolic subgroup with Levi de-

composition P = MN . Show that the Jacquet module is left adjoint to the parabolic

induction: HomM(F )(πN(F ), ρ) ∼= HomG(F )(π, Ind
G(F )
P (F )(ρ)) for all smooth admissible repre-

sentations π of G(F ) and all smooth admissible representations ρ of M(F ).

Exercise 4.36. Let G = GLn and P ⊂ GLn a standard parabolic subgroup with Levi

decomposition P = MN . Show that the Jacquet functor V 7→ VN(F ) maps smooth

admissible representations of G(F ) to smooth admissible representations of M(F ).

Exercise 4.37. Let f ∈ H0(GL2(Qp)) be the characteristic function of the double coset

GL2(Zp) ·
(
p 0
0 1

)
· GL2(Zp) ⊂ GL2(Qp). Normalize the Haar measure on GL2(Qp) so that

the volume of GL2(Zp) is 1. Compute the trace Trπ(f) when

(a) π = 1 is the trivial representation.

(b) π = St is the Steinberg representation.

Exercise 4.38. Consider the Iwahori subgroup I ⊂ GL2(Zp) of matrices
(
a b
c d

)
with

c ≡ 0 mod p. Answer questions (a) and (b) of Exercise 4.37, but now with f equal to

the characteristic function of I
(
p 0
0 1

)
I. Assume that the Haar measure on GL2(Qp) is

normalized so that vol(I) = 1.

Exercise 4.39. Let F9 be a field of 9 elements, and let θ be a complex character of F×9 with

θ3 6= θ. Give an explicit description of the 2-dimensional representation πθ of GL2(F3)

defined in Theorem 4.25.

2In fact, this result is also true without the assumption ”not cuspidal”, but then the proof is more

difficult. Moreover, the result also holds for GLn(F ) in place of GL2(F ).
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The local Langlands correspondence

Exercise 4.40. Let j ≥ 1 be an integer. Inside its algebraic closure Qp the field Qp

has a unique extension of degree j that is unramified, we write Qpj for it. We can re-

strict any Weil–Deligne representation r = (φ,N) of W (Qp/Qp) to the representation

r|W (Qp/Qp) = (φ|W (Qp/Qpj ), N) of W (Qp/Qpj ). We write Unr(GLn(Qp)) for the set of

isomorphism classes of unramified smooth irreducible representations of GLn(Qp), and

WD(Qp) (resp. WD(Qpj )) for the set of isomorphism classes of unramified representations

of W (Qp/Qp) (resp. W (Qp/Qpj )).

(a) Use the local Langlands correspondence to show that there exists a unique mapping

Unr(GLn(Qp))→ Unr(GLn(Qpj )) making the diagram below commute:

WD(Qp)

recQp ∼=
��

3 r_

��

� // r|W (Qp/Qpj )
_

��

∈ WD(Qpj )

recQ
pj

∼=
��

Unr(GLn(Qp)) 3 π � //____ B(π) ∈ Unr(GLn(Qpj ))

(b) Show that if r is unramified, then r|W (Qp/Qpj ) is unramified as well. Use the Satake

transform to show that r 7→ r|W (Qp/Qpj ) induces a morphism

spec max(C[X±1
1 , X±1

2 , . . . , X±1
n ]Sn)→ spec max(C[X±1

1 , X±1
2 , . . . , X±1

n ]Sn)

and hence an endomorphism of the ring C[X±1
1 , X±1

2 , . . . , X±1
n ]Sn . Describe this

endomorphism with an explicit formula.
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Some useful references for this chapter are the exposition by Kudla [1, Chapter 7] and

the books of Gelbart [5, Sections 3 and 5] and Bump [2, Chapter 3].

5.1 Modular forms as functions on GL2(R)

We begin by recalling the classical definition of modular forms. The group SL2(Z) acts on

the complex upper half-plane H by(
a

c

b

d

)
z =

az + b

cz + d
.

For n ≥ 1, we define

Γ1(n) =

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1

0

∗
1

)
(mod n)

}
.

Definition 5.1. Let n and k be positive integers. A modular form of weight k for Γ1(n)

is a holomorphic function

f : H → C

such that

f

((
a

c

b

d

)
z

)
= (cz + d)kf(z) for all

(
a

c

b

d

)
∈ Γ1(n)

and such that f is “holomorphic at infinity”.

126
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The space of modular forms of weight k for Γ1(n) is a finite-dimensional C-vector space

denoted by Mk(Γ1(n)).

There is a smooth map

p : GL2(R)+ −→ H(
a

c

b

d

)
7−→

(
a

c

b

d

)
i =

ai+ b

ci+ d
.

Given f ∈ Mk(Γ1(n)), we would like to construct a smooth function

f̃ : GL2(R)+ → C

that is invariant under the action of Γ1(n). We therefore define

f̃(g) = j(g)f(gi)

where j : GL2(R)+ → C is a function satisfying

j(γg)f(γgi) = j(g)f(gi) for all γ ∈ Γ1(n), g ∈ GL2(R)+,

which by the transformation property of f translates to

j(γg)(cgi+ d)k = j(g) for all γ =

(
a

c

b

d

)
∈ Γ1(n), g ∈ GL2(R)+.

The simplest choice is

j

(
a

c

b

d

)
= (ci+ d)−k,

so we take as our definition

f̃

(
a

c

b

d

)
= (ci+ d)−kf

((
a

c

b

d

)
i

)
for all

(
a

c

b

d

)
∈ GL2(R)+.

One then checks that f̃ satisfies the following transformation properties for all g ∈ G:

• f̃(γg) = f̃(g) for all γ ∈ Γ1(n);

• f̃(zg) = f̃(gz) = t−kf(g) for all z =
(
t
0

0
t

)
with t ∈ R×;

• f̃(grθ) = exp(−ikθ)f̃(g) for all θ ∈ R, where rθ =
(

cos θ
sin θ

− sin θ
cos θ

)
∈ SO2(R).

Remark 5.2. Other choices for j are possible, for example

j

(
a

c

b

d

)
=

(ad− bc)k/2

(ci+ d)k
.

5.2 Adelic modular forms

Let n and k be positive integers, and let Mk(Γ1(n)) be the C-vector space of modular

forms of weight k for Γ1(n).

Now let K1(n) be the compact open subgroup of GL2(Ẑ) ⊂ GL2(Af ) defined by

K1(n) =

{(
a

c

b

d

)
∈ GL2(Ẑ)

∣∣∣∣ c ≡ 0, d ≡ 1 (mod n)

}
.
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Let us write

G = GL2, K = K1(n).

Then we clearly have

K1(n) ∩ SL2(Z) = Γ1(n) in GL2(Ẑ).

Furthermore, the determinant map

det : K → Ẑ×

is surjective. Thanks to strong approximation for SL2, this implies (see Exercise 5.1) that

the continuous map

G(R)+ ×K −→ G(Q)\G(A)

is surjective. Taking the quotient by the right action of K (viewed as a subgroup of

G(A∞) ⊂ G(A)), we obtain a surjective continuous map

G(R)+ −→ G(Q)\
(
G(R)×G(A∞)/K

)
,

where G(A∞)/K is viewed as a discrete left G(Q)-set.

Lemma 5.3. The above map induces a homeomorphism

Γ1(n)\G(R)+ ∼−→ G(Q)\
(
G(R)×G(A∞)/K

)
.

Proof. For g ∈ G(R)+, let [g] denote the image of g on the right-hand side. We claim that

two elements g, h ∈ G(R)+ satisfy [g] = [h] if and only if there exists γ ∈ Γ1(n) such that

γg = h. By definition, the identity [g] = [h] is equivalent to the existence of g0 ∈ G(Q)

and k ∈ K such that

(g, 1) = g0(h, k) = (g0h, g0k) in G(R)×G(A∞).

If such g0 and k exist, we have

g0 = gh−1 ∈ G(Q) ∩G(R)+ = G(Q)+

and

g0 = k−1 ∈ G(Q) ∩K = G(Z) ∩K

and hence

g0 ∈ SL2(Z) ∩K = Γ1(n).

Thus we can take γ = g0. Conversely, if γ ∈ Γ1(n) satisfies γg = h, then taking g0 =

k−1 = γ above shows that [g] = [h].

By the definition of the quotient topology, there exists a bijective continuous map as in

the lemma. The proof that the inverse of this map is also continuous is left to the reader

(Exercise 5.2).
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Given a continuous function

f̃ : G(R)+ → C

satisfying

f̃(γg) = f̃(g) for all g ∈ G(R)+, γ ∈ Γ1(n)

we can transfer f̃ to a continuous function

φ : G(Q)\G(A)→ C

satisfying

φ(g(1, k)) = φ(g) for all g ∈ G(A), k ∈ K.

The space G(Q)\G(A) has a continuous right G(A)-action, and hence the space of conti-

nous functions G(Q)\G(A)→ C has a left G(A)-action.

Morally speaking, an automorphic representation of G is a subrepresentation of G(A)

on a suitable space of smooth functions on G(Q)\G(A). Unfortunately, due to the action of

G(R), these spaces are “too big” to be handled in a convenient algebraic way. Therefore,

instead of a representation of the full group G(A), we will consider representations of

G(A∞) that are additionally equipped not with the structure of a representation of G(R),

but with the structure of a (g,K)-module.

Remark 5.4. The spaces G(Q)\
(
G(R)×G(A∞)/K

)
are examples of Shimura varieties.

5.3 Global representations

Let F be a number field. For simplicity, it is probably best to restrict oneself (at first) to

the case

F = Q.

There are no essential difficulties in generalising everything to the case where F is an

arbitrary number field.

We will write

G = GLn,F

viewed as an algebraic group over F . In particular, we will be interested in the topological

groups G(F ) (with the discrete topology), G(Fv) for completions of V (with the natural

topology) and G(AF ) (with the restricted product topology).

For every Archimedean place v, we define

gv = Lie(G(Fv)) = Matn(Fv)

and we let Kv be the standard maximal compact subgroup of G(Fv), given by

Kv =

{
On(Fv) if v is real,

Un(Fv) if v is complex.

We put

gC =
∏

v infinite

gv ⊗R C

and

K∞ =
∏

v infinite

Kv.
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Definition 5.5. A function φ : G(AF )→ C is smooth if it satisfies the following properties:

(i) There exists a compact open subgroup K ⊂ G(A∞F ) such that φ(gk) = φ(g) for all

g ∈ G(AF ) and k ∈ K.

(ii) For every g∞ ∈ G(A∞F ), the function

G(F ⊗Q R)→ C
g∞ 7→ φ(g∞, g

∞)

is smooth (i.e. infinitely continuously differentiable).

Definition 5.6. An automorphic form for G is a smooth function

φ : G(F )\G(AF )→ C

(or equivalently a smooth function φ : G(AF ) → C satisfying φ(g0g) = φ(g) for all g0 ∈
G(F ) and g ∈ G(AF )) with the following properties:

(i) φ is K∞-finite, i.e. the C-vector space spanned by the smooth functions G(AF )→ C,

g 7→ φ(gk) for k ∈ K∞ is finite-dimensional.

(ii) φ is Z(U(gC))-finite, i.e. the C-vector space Z(U(gC))φ is finite-dimensional, where

the action of gC, and hence of U(gC) and Z(U(gC)), on the space of smooth functions

G(AF )→ C is defined through the right action of G(F ⊗Q R) on G(AF ).

(iii) φ is of moderate growth.

The C-vector space of automorphic forms for G is denoted by A(G).

The condition of moderate growth requires some explanation. We consider the embed-

ding

GLn(AF ) −→ An
2+1
F

A = (ai,j)
n
i,j=1 7−→ (a1,1, a1,2, . . . , an,n, (detA)−1).

The norm ‖g‖ of an element g ∈ GLn(AF ) is defined as
∏
v maxi |xi|v, where (x1, . . . , xn2+1)

is the image of g under the above embedding and v runs over all places of F . Then φ is said

to be of moderate growth if there exist real numbers B,C > 0 such that |φ(g)| ≤ C‖g‖B

for all g ∈ G(AF ).

Remark 5.7. Although there is a left action of the group G(AF ) on the space of all con-

tinuous functions G(AF ) → C, this action does not induce an action of G(AF ) on A(G).

The reason is that the condition of K∞-finiteness is not preserved.

Definition 5.8. An admissible representation of G(AF ) is a pair (π, V ) where V is a C-

vector space equipped with the structure of both a smooth representation of G(A∞F ) and a

(g,K∞)-module, both of which are denoted by π, such that the two actions commute and

such that every irreducible continuous finite-dimensional representation of the compact

group K = K∞ ×G(OF ) occurs only finitely many times in V (up to isomorphism). We

say that (π, V ) is irreducible if (π, V ) has exactly two subrepresentations (namely the zero

subspace and V itself).

Definition 5.9. An automorphic representation of G(AF ) is an irreducible admissible

representation of G(AF ) (in the above sense) that is isomorphic to a subquotient of A(G).
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5.3.1 The space of cuspforms

Definition 5.10. We call an automorphic form f ∈ A(G) a cuspform, if for every strict

standard parabolic subgroup P = MN ⊂ G, and all g ∈ G(AF ), we have∫
n∈N(AF )

f(gn) = 0.

We write A0(G) ⊂ A(G) for the subspace of cuspforms.

The (algebraic) cuspforms should correspond to those Galois representations that are

irreducible. Since any semi-simple representation is a sum of irreducible representations,

the cuspforms should form the building blocks of all automorphic representations.

Definition 5.11. We call an automorphic representation π of G(AF ) cuspidal if it appears

in the space of cusp forms on G.

5.4 Decomposing automorphic representations into local com-

ponents

The goal of this section is to explain Flath’s tensor product decomposition. We begin with

a proposition that can be found in Bourbaki chapter 2 on algebra:

Proposition 5.12. Let A,B be unitary, associative algebras over C that are of finite type.

If M is an A-module and N is a B-module, we equip M ⊗CN with the following structure

of A⊗C B-module:

(a⊗ b) · (x⊗ y) := (ax)⊗ (by)

for all a ∈ A, b ∈ B, x ∈M and y ∈ N .

(i) If M,N are simple modules, then M ⊗C N is a simple A⊗C B-module.

(ii) Any simple A⊗CB-module X is isomorphic to a module of the form M ⊗CN , where

M,N are determined uniquely up to isomorphism of A (resp. B)-modules.

For simplicity, we will focus mostly on the finite part of the automorphic representa-

tions. Hence representations of the group G(A∞F ). Let K ⊂ G(A∞F ) be a compact open

subgroup, of the form

K =
∏

finite F -places v

Kv ⊂ G(A∞F ), Kv ⊂ G(Fv) compact open subgroup.

Furthermore, we assume that Kv = GLn(OFv) for all v /∈ S, where S is some finite subset

of finite F -places that we fix from now on. For what we are about to do, making these

assumptions on K impose no restrictions on generality (they can always be achieved by

conjugating are shrinking an arbitrary compact open K ⊂ G(A∞F )). The group G(A∞F ) is

locally profinite. We consider the Haar measure on this group giving K measure 1. Then

we can consider the Hecke algebra H(G(A∞F )//K) of compactly supported and locally

constant functions, where the product is defined by the usual convolution integral with

respect to our fixed Haar measure. It is not hard to see that in fact

H(G(A∞F )//K) ∼=
⊗

finite F -places v

H(G(Fv)//Kv),
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and moreover, as before, to give a smooth admissible irreducible representation π of G(A∞F )

is to give a simple module M over the Hecke algebra H(G(A∞F )//K).

Let us focus our attention on the simple modules M of H(G(A∞F )//K). We have our

set of finite F -places S outside which we have Kv = GLn(OFv). Write KS =
∏
v∈SKv

and KS =
∏
v/∈SKv = GLn(ÔSF ). Then we have G(A∞F ) = G(A∞F,S) × G(A∞,SF ) and the

algebra H(G(A∞F )//K) decomposes into H(G(A∞F,S)//KS) ⊗C H(G(AS,×F )//KS). Conse-

quently, by Proposition 5.12 there is a corresponding decomposition of the module M into

a tensor product MS ⊗MS , where MS and MS are modules over H(G(A∞F,S)//KS) and

H(G(A∞,SF )//KS). Note that the algebra

H(G(A∞,SF )//KS) =
⊗
v/∈S

H(G(Fv)//Kv),

is a tensor product of commutative algebras, and hence commutative. Therefore the simple

module MS is one dimensional over C. By considering the restrictions

H(G(Fv)//Kv) ⊂ H(G(A∞,SF )//KS)

�

MS ∼= C

we obtain for every finite F -places v /∈ S a one dimensional moduleMv overH(G(Fv)//Kv).

We then have M ∼=
⊗

vMv, as H(G(A∞,SF )//KS)-modules. To study the places v in S,

notice first that the tensor product

H(G(A∞F,S)//KS) ∼=
⊗
v∈S
H(G(Fv)//Kv),

ranges over a finite set. Hence by applying Proposition 5.12 multiple times to break up

the module MS , we also obtain modules Mv for the places v ∈ S. In conclusion, we have

decomposed M ∼=
⊗

vMv as H(G(A∞F,S)//KS) ∼=
⊗

vH(G(Fv)//Kv)-module. Finally,

the module M corresponds to the representation π. The local modules Mv correspond to

certain local representations πv of GLn(Fv), which are smooth admissible and irreducible,

and uniquely determined up to isomorphism. We will write formally,

π ∼=
⊗
v

′
πv. (5.1)

Beware: The dash in the exponent indicates that the above is a restricted tensor product

and not a tensor product in the usual sense. It is also possible to obtain π from the πv
directly (so without going through the Hecke algebra’s). To do this, choose for almost

all F -places v a non-zero element ξv ∈ πKvv . Then the restricted tensor product can be

viewed as the subspace of the full infinite tensor product
⊗

v πv generated by all elementary

tensors ⊗vtv with tv = ξv for almost all places v.

By including further arguments to separate out the modules at infinity (note that there

are only finitely many infinite places), one can prove Flath’s tensor product decomposition:

Theorem 5.13 (Flath, 1979). Let (π, V ) be an irreducible admissible representation of

G(AF ). Then there exist

• an irreducible admissible (g,K∞)-module (π∞, V∞),

• an irreducible admissible representation (πv, Vv) for every finite place v of F ,
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• a non-zero element ξv ∈ Kv, for all but finitely many v

such that π is isomorphic to the restricted tensor product of the Vv with respect to the ξv.

Furthermore, each (πv, Vv) is unique up to isomorphism.

We are now ready to define the partial L-function of a irreducible smooth admissible

G(A∞F ) representation π. There exists, as stated above, a finite set of finite F -places S,

outside which π is unramified, i.e. the local representations πv from (5.1) are unramified

for v /∈ S. From the Satake isomorphism, we get for each v /∈ S a corresponding Satake

parameter φv ∈ GLn(C)/∼. Then, we define as usual

Lv(π, s) =
1

det(1− φvX)

∣∣∣∣
X=q−sv

∈ C(p−s),

where qv is the cardinality of the residue field of F at v. The partial L-function is then

defined as a formal product

LS(π, s) =
∏
v/∈S

Lv(π, s).

It is possible to define local factors Lv(π, s) for the finite v ∈ S, and also the infinite

places v. Then, the completed L-function is the product over all the F -places. A first

major question one would like to show is, if π is automorphic, that L(π, s) converges to

meromorphic function on the complex plane C, and understand its poles. To do this, the

first step is to get the partial L-function LS(π, s) under control.

Strong multiplicity one theorem

Let π ∼=
⊗′

vπv be a cuspidal automorphic representation of G(AF ). Let S be a finite set

of finite F -places such that for the finite F -places away from S the representation πv is

unramified. In particular, we can attach to π the collection of Satake parameter {φv}v/∈S ,

where φv ∈ GLn(C)/∼ is a semi-simple conjugacy class.

Theorem 5.14 (Strong multiplicity one). Let S′ be any finite set of finite F -places v

containing S. The (isomorphism class of) the automorphic representation π is uniquely

determined by the collection of Satake parameters {φv}v/∈S′

Remark 5.15. For groups different from GLn the above theorem fails (in fact, for several

reasons).

Conversely, when given a collection of conjugacy classes {φv}v/∈S , one may wonder if

there exists an automorphic representation giving rise to these φv. A priori, there are

uncountably many choices for these φv, but there exist only countably many automorphic

representations. So, most of these collections {φv} do not correspond to automorphic

representations. Moreover, if you make random choices for these φv, there is no reason for

the partial L-function LS(π, s) to converge.

Algebraic automorphic representations

Unfortunately, we do not have time to discuss this topic in depth; we only give a sketch.

We refer to [19, Section 3] for more details.
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When studying (g,K∞)-modules, we came across the algebra Z = Z(U(gC)), where

gC is the Lie algebra of GLn(C). By the Harish-Chandra isomorphism, the algebra Z

is isomorphic to the algebra of Sn-invariants of the polynomial algebra C[X1, . . . , Xn].

Any irreducible (g,K∞)-module M∞ has a central character, and this central character

corresponds through Harish-Chandra’s isomorphism to sequence of n complex numbers.

The module M∞ is called algebraic if these complex numbers are integers.

Definition 5.16. Let F be a number field. An automorphic representation π of GLn(AF )

is algebraic if its component at infinity is an algebraic (g,K∞)-module.

The global Langlands conjecture

We can now state the global Langlands conjecture.

Conjecture 5.17. Let F be a number field, and consider the group G = GLn,F over

F . Let ` be a prime number and choose an isomorphism ι : C ∼→ Q`. Then, for any

algebraic cuspidal automorphic representation π of GLn(AF ) there exists a semi-simple

Galois representation ρπ = ρπ,ι : Gal(F/F )→ GLn(Q`) such that for all finite F -places v

where π is unramified and v - `, the Galois representation ρπ is unramified as well, and

ρπ(Frobv)ss is conjugate to ιφπv ∈ GLn(Q`), where φπv is the Satake parameter of πv.

At the ramified places the correspondence should be compatible with the local Lang-

lands correspondence, but note that the above already pins down both the automorphic

representation (by strong multiplicity one) and the Galois representation (by the Cheb-

otarev density theorem).

The above conjecture can be combined with further conjectures. Fontaine-Mazur’s

conjecture states that any irreducible Galois representation ρπ appearing in the cohomol-

ogy of a smooth projective variety X over F , should arize from an automorphic form.

Hence this conjecture describes the image of π 7→ ρπ in Langland’s conjecture.

5.5 Exercises

Exercise 5.1. Let K be a compact open subgroup of GL2(Ẑ). Prove that the map

GL2(R)+ ×K −→ GL2(Q)\GL2(A)

is surjective if and only if the determinant map det : K → Ẑ× is surjective.

(Hint: you may use without proof that SL2 satisfies strong approximation outside {∞}.)

Exercise 5.2. Prove that the map from Lemma 5.3 is a homeomorphism.

Exercise 5.3. Consider the elements a+, a− of the complexified Lie algebra gC ∼= Mat2(C)

of GL2(R) defined before Exercise 4.16. Let f : H → C be a smooth function, let k be an

integer, and define

f̃ : GL2(R)+ → C

by

f̃

(
a

c

b

d

)
= (ci+ d)−kf

(
ai+ b

ci+ d

)
.
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(a) Prove formulae expressing the effect of a± on f̃ in terms of the partial derivatives

of f with respect to the coordinates x and y on H (with z = x+ iy).

(b) Show that a−f̃ = 0 if and only if f is holomorphic.

(c) Is it true that a+f̃ = 0 if and only if f is antiholomorphic?

Exercise 5.4. (a) Let F be a number field, and let V be a direct sum of finitely

many continuous one-dimensional representations of A×F (corresponding to continu-

ous group homomorphisms A×F → C×). Show that V is an admissible representation

of Gm,F = GL1,F .

(b) (Bonus question.) Is every finite-dimensional admissible representation of Gm,F of

the above form?

Exercise 5.5. Show that an automorphic representation of Gm = GL1 over a number

field F is the same as a Hecke character of F .

Let F be a number field, let ω : A×F → C× be a Hecke character of F , and let G = GLn,F
with n ≥ 1. An automorphic form with central character ω is an automorphic form

φ ∈ A(G) satisfying the additional property

φ(g diag(x)) = ω(x)φ(g) for all g ∈ G(AF ),

where diag(x) is x viewed as a scalar matrix. The C-vector space of automorphic forms

with central character ω is denoted by A(G,ω).

Exercise 5.6. Show that as an admissible representation of G(AF ), the space A(G) of

automorphic forms for G is the direct sum of its subspaces A(G,ω).

Exercise 5.7. Let f ∈ Mk(Γ1(n)) be a modular form, and suppose that f is an eigenform

for the diamond operators 〈d〉 for d ∈ (Z/nZ)×. This means that there exists a Dirichlet

character

χ : (Z/nZ)× −→ C×

such that for all z ∈ H and all matrices
(
a
c
b
d

)
∈ SL2(Z) with n | c, we have

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z).

Let φf ∈ A(GL2,Q) be the automorphic form attached to f . For s ∈ C, let ωχ,s : A×Q → C×

be the Hecke character defined in Section 2.6. Show that φf lies in A(GL2,Q, ω
−1
χ,s) for

some s ∈ C, and determine s.
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