A general theory of Wilf-equivalence for Catalan structures

Mathilde Bouvel (Universität Zürich)

joint work with Michael Albert (University of Otago)

arXiv:1407.8261

73rd Séminaire Lotharingien de Combinatoire, Strobl, Sept. 2014
Let \mathcal{C} be any combinatorial class, i.e.
- \mathcal{C} is equipped with a notion of size
- such that for any n there are finitely many objects of size n in \mathcal{C}.
- The number of objects of size n in \mathcal{C} is denoted c_n.

To \mathcal{C}, we associate:
- its enumeration sequence (c_n),
- its generating function $\sum c_n t^n$.

Wilf-equivalences of Catalan structures
Enumeration sequences and Wilf-equivalence

Let \mathcal{C} be any combinatorial class, i.e.

- \mathcal{C} is equipped with a notion of size
- such that for any n there are finitely many objects of size n in \mathcal{C}.
- The number of objects of size n in \mathcal{C} is denoted c_n.

To \mathcal{C}, we associate:

- its enumeration sequence (c_n),
- its generating function $\sum c_n t^n$.

Sometimes (or very often!), two classes have the same enumeration sequences (or equivalently generating function).

Such enumeration coincidences are called Wilf-equivalences (terminology from the *Permutation Patterns* literature).

Our work: Wilf-equivalences among classes of restricted Catalan objects.
Motivation: from pattern-avoiding permutations

\(\pi \in \mathcal{S}_k \) is a pattern of \(\sigma \in \mathcal{S}_n \) if
\[\exists \ 1 \leq i_1 < \ldots < i_k \leq n \text{ such that the sequence } \sigma(i_1) \ldots \sigma(i_k) \text{ is in the same relative order as } \pi. \]
Motivation: from pattern-avoiding permutations

\[\pi \in S_k \] is a pattern of \[\sigma \in S_n \] if

\[\exists \ 1 \leq i_1 < \ldots < i_k \leq n \] such that

the sequence \[\sigma(i_1) \ldots \sigma(i_k) \] is

in the same relative order as \(\pi \).

Example: 2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6.
Motivation: from pattern-avoiding permutations

$\pi \in \mathcal{S}_k$ is a pattern of $\sigma \in \mathcal{S}_n$ if
$\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that
the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is
in the same relative order as π.

Example: 2 1 3 4 is a pattern of
3 1 2 8 5 4 7 9 6.
Motivation: from pattern-avoiding permutations

\(\pi \in \mathcal{S}_k \) is a pattern of \(\sigma \in \mathcal{S}_n \) if
\[\exists 1 \leq i_1 < \ldots < i_k \leq n \text{ such that the sequence } \sigma(i_1) \ldots \sigma(i_k) \text{ is in the same relative order as } \pi. \]

Example: 2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6.
Motivation: from pattern-avoiding permutations

\(\pi \in \mathcal{S}_k \) is a **pattern** of \(\sigma \in \mathcal{S}_n \) if
\[\exists 1 \leq i_1 < \ldots < i_k \leq n \text{ such that} \]
the sequence \(\sigma(i_1) \ldots \sigma(i_k) \) is
in the same relative order as \(\pi \).

Example: 2 1 3 4 is a pattern of
\[3 1 2 8 5 4 7 9 6. \]

Notation: \(\text{Av}(\pi_1, \pi_2, \ldots) \) is the class of all permutations that do not contain \(\pi_1 \), nor \(\pi_2 \), \ldots as a pattern.
Motivation: from pattern-avoiding permutations

\[\pi \in S_k \text{ is a pattern of } \sigma \in S_n \text{ if } \exists \ 1 \leq i_1 < \ldots < i_k \leq n \text{ such that } \sigma(i_1) \ldots \sigma(i_k) \text{ is in the same relative order as } \pi. \]

Example: 2 1 3 4 is a pattern of \[3 1 2 8 5 4 7 9 6\].

Notation: \(Av(\pi_1, \pi_2, \ldots) \) is the class of all permutations that do not contain \(\pi_1 \), nor \(\pi_2 \), \ldots as a pattern.

\(\pi \) and \(\tau \) (or \(Av(\pi) \) and \(Av(\tau) \)) are Wilf-equivalent if \(Av(\pi) \) and \(Av(\tau) \) have the same enumeration.
\[\pi \in \mathcal{S}_k \text{ is a pattern of } \sigma \in \mathcal{S}_n \text{ if} \]
\[\exists \ 1 \leq i_1 < \ldots < i_k \leq n \text{ such that} \]
\[\text{the sequence } \sigma(i_1) \ldots \sigma(i_k) \text{ is} \]
\[\text{in the same relative order as } \pi. \]

Example: 2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6.

Notation: \(\text{Av}(\pi_1, \pi_2, \ldots) \) is the class of all permutations that do not contain \(\pi_1 \), nor \(\pi_2 \), \ldots as a pattern.

\(\pi \) and \(\tau \) (or \(\text{Av}(\pi) \) and \(\text{Av}(\tau) \)) are Wilf-equivalent if \(\text{Av}(\pi) \) and \(\text{Av}(\tau) \) have the same enumeration.

For \(R \) and \(S \) sets of permutations, \(R \) and \(S \) (or \(\text{Av}(R) \) and \(\text{Av}(S) \)) are Wilf-equivalent if \(\text{Av}(R) \) and \(\text{Av}(S) \) have the same enumeration.
Some Wilf-equivalences for pattern-avoiding permutations

Small excluded patterns:
- $\text{Av}(123)$ and $\text{Av}(231)$ are Wilf-equivalent, and enumerated by the Catalan numbers Cat_n.
- There are three Wilf-equivalence classes for permutation classes $\text{Av}(\pi)$ with π of size 4, the enumeration of $\text{Av}(1324)$ being open.
- Check all Wilf-equivalences between $\text{Av}(\pi, \tau)$ when π and τ have size 3 or 4 on Wikipedia.

Some results for arbitrary long patterns:
- $\text{Av}(231 \oplus \pi)$ and $\text{Av}(312 \oplus \pi)$ [West & Stankova 02]

First unbalanced Wilf-equivalences:
- $\text{Av}(1324, 3416725)$ and $\text{Av}(1234)$;
- $\text{Av}(2143, 3142, 246135)$ and $\text{Av}(2413, 3142)$ [Burstein & Pantone 14+]
Old Wilf-equivalences of permutation classes $\text{Av}(231, \pi)$

Harmless assumption: In $\text{Av}(231, \pi)$, throughout the talk, π avoids 231.
(or we are just studying $\text{Av}(231)$...)*
Old Wilf-equivalences of permutation classes $\mathsf{Av}(231, \pi)$

Harmless assumption: In $\mathsf{Av}(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying $\mathsf{Av}(231)$. . .)

Define $C_0 = 1$ and $C_n = \frac{1}{1-t C_{n-1}}$ for $n \geq 1$.

Known Wilf-equivalences: Three families of patterns π such that the generating function of $\mathsf{Av}(231, \pi)$ is C_n, where $n = |\pi|$,

[Mansour & Vainshtein 01+02; Albert & Bouvel 13]

Remark: The generating functions C_n are truncations at level n of the continued fraction defining the generating function of Catalan numbers:

$$C = \frac{1}{1 - \frac{t}{1 - \frac{t}{1 - \frac{t}{\ddots}}}}.$$
Our results: Unification, Generalization, Bijections

- Description of all patterns π of size n such that the generating function of $\text{Av}(231, \pi)$ is C_n.

- There are exactly $\text{Motz}_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \text{Cat}_k$ such patterns.

- Bijections between $\text{Av}(231, \pi)$ and $\text{Av}(231, \pi')$ for any such patterns.

- For τ of size n, the generating function of $\text{Av}(231, \tau)$ either is C_n or C_n dominates it term by term (and eventually strictly).
New Wilf-equivalences of permutation classes $\text{Av}(231, \pi)$

Our results: Unification, Generalization, Bijections

- Description of all patterns π of size n such that the generating function of $\text{Av}(231, \pi)$ is C_n.
- There are exactly $\text{Motz}_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \text{Cat}_k$ such patterns.
- Bijections between $\text{Av}(231, \pi)$ and $\text{Av}(231, \pi')$ for any such patterns.
- For τ of size n, the generating function of $\text{Av}(231, \tau)$ either is C_n or C_n dominates it term by term (and eventually strictly).

Most important remark: Classes $\text{Av}(231, \pi)$ are families of Catalan objects ($\text{Av}(231)$) with an additional avoidance restriction.

Main objective: Find all Wilf-equivalences between classes $\text{Av}(231, \pi)$.

Equivalently (but somehow more generally), find all Wilf-equivalences between pattern-avoiding Catalan objects.
Substructures in Catalan objects
Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths
- Plane forests
- Arch systems
- Complete binary trees
Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths
- Plane forests
- Arch systems
- Complete binary trees

\[41327658 = \]
Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths
- Plane forests
- Arch systems
- Complete binary trees
Catalan structures, and their substructures

- 231-avoiding permutations

\[31254 = \]

- Plane forests

- Complete binary trees

- Dyck paths

- Arch systems
Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths
- Plane forests
- Arch systems
- Complete binary trees

31254 =

M. H. Albert, M. Bouvel
Wilf-equivalences of Catalan structures
Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths
- Plane forests
- Arch systems
- Complete binary trees

$31254 = \begin{array}{|c|c|c|c|}
\hline
\bullet & \bullet & \bullet & \bullet \\
\hline
\end{array}$
Catalan structures, and their substructures

- 231-avoiding permutations
- Plane forests
- Complete binary trees
- Dyck paths
- Arch systems

31254 =
Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths
- Plane forests
- Arch systems

Fact: The usual bijections relating our quartet of Catalan structures preserve the substructure relation.
Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths
- Plane forests
- Arch systems

Fact: The usual bijections relating our quartet of Catalan structures preserve the substructure relation.

We will study classes $\text{Av}(A)$ of arch systems avoiding some subsystem A, but all results can be translated to other structures via these bijections.
Questions addressed in this talk

- Which arch systems A are Wilf-equivalent? i.e. which classes $Av(A)$ have the same enumeration?

- **Bijections** between $Av(A)$ and $Av(B)$ for Wilf-equivalent arch systems A and B?

- How many Wilf-equivalence classes of arch systems are there?
Questions addressed in this talk

- Which arch systems A are Wilf-equivalent?
 i.e. which classes $A\nu(A)$ have the same enumeration?

- **Bijections** between $A\nu(A)$ and $A\nu(B)$ for Wilf-equivalent arch systems A and B?

- How many Wilf-equivalence classes of arch systems are there?

Observation and terminology:
An arch system is a concatenation of **atoms**, i.e. (non-empty) arch systems having a single outermost arch.
An equivalence relation strongly related to Wilf-equivalence
The binary relation, \(\sim \), is the finest equivalence relation that satisfies:

\[
\begin{align*}
(0) & \quad A \sim A \\
(1) & \quad A \sim B \implies \overline{A} \sim \overline{B} \\
(2) & \quad a \sim b \implies PaQ \sim PbQ \\
(3) & \quad PabQ \sim PbaQ \\
(4) & \quad a\overline{bc} \sim \overline{ab}c
\end{align*}
\]

where \(A, B, P \) and \(Q \) denote arbitrary arch systems and \(a, b \) and \(c \) denote atoms or empty arch systems.
An equivalence relation refining Wilf-equivalence

The binary relation, \sim, is the finest equivalence relation that satisfies:

1. $A \sim A$
2. $A \sim B \implies \overline{A} \sim \overline{B}$
3. $a \sim b \implies PaQ \sim PbQ$
4. $PabQ \sim PbaQ$
5. $a\overline{bc} \sim \overline{ab}c$

where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems.

Main theorem: If A and B are arch systems such that $A \sim B$ then $\overline{A\vee(A)}$ and $\overline{A\vee(B)}$ have the same enumeration, i.e. are Wilf-equivalent.
Could \sim be exactly Wilf-equivalence?

In other words, \sim refines Wilf-equivalence.

Conjecture: \sim coincides with Wilf-equivalence.

Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $Cat_{15} = 9,694,845$ arch systems).

M. H. Albert, M. Bouvel
Wilf-equivalences of Catalan structures
Could \sim be exactly Wilf-equivalence?

In other words, \sim refines Wilf-equivalence.

Conjecture: \sim coincides with Wilf-equivalence.

Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $\text{Cat}_{15} = 9,694,845$ arch systems).

Additional results:
- Asymptotic enumeration of the number of \sim-equivalence classes.
- \sim-equivalence class of arch systems of size n contains Motz_n arch systems, and for A in this \sim-class $\text{Av}(A)$ is enumerated by C_n.
- Comparison of the enumeration sequences of $\text{Av}(A)$ and $\text{Av}(B)$.
Idea of the proof
Overview of the proof

Main theorem: If A and B are arch systems such that $A \sim B$ then $A_v(A)$ and $A_v(B)$ have the same enumeration, i.e. are Wilf-equivalent.
Main theorem: If A and B are arch systems such that $A \sim B$ then $\mathcal{A}_v(A)$ and $\mathcal{A}_v(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A = B$ then $\mathcal{A}_v(A)$ and $\mathcal{A}_v(B)$ are Wilf-equivalent.

Inductive case: One case for each rule defining \sim.

<table>
<thead>
<tr>
<th>Rule</th>
<th>$A \sim B \implies [A] \sim [B]$</th>
<th>bijective proof</th>
<th>analytic proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$a \sim b \implies PaQ \sim PbQ$</td>
<td>yes</td>
<td>_</td>
</tr>
<tr>
<td>(2)</td>
<td>$PabQ \sim PbaQ$</td>
<td>yes</td>
<td>_</td>
</tr>
<tr>
<td>(3)</td>
<td>$a(bc) \sim (ab)c$</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Overview of the proof... by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $A_V(A)$ and $A_V(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A = B$ then $A_V(A)$ and $A_V(B)$ are Wilf-equivalent...

Inductive case: One case for each rule defining \sim.

<table>
<thead>
<tr>
<th>Rule</th>
<th>bijective proof</th>
<th>analytic proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>yes</td>
<td>_</td>
</tr>
<tr>
<td>(2)</td>
<td>yes</td>
<td>_</td>
</tr>
<tr>
<td>(3)</td>
<td>yes</td>
<td>_</td>
</tr>
<tr>
<td>(4)</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>(4 weak)</td>
<td>yes</td>
<td>_</td>
</tr>
</tbody>
</table>
Overview of the proof... by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $A \triangledown(A)$ and $A \triangledown(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A = B$ then $A \triangledown(A)$ and $A \triangledown(B)$ are Wilf-equivalent...

Inductive case: One case for each rule defining \sim.

<table>
<thead>
<tr>
<th>Rule</th>
<th>$A \sim B \implies [A] \sim [B]$</th>
<th>bijective proof</th>
<th>analytic proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$A \sim B \implies [A] \sim [B]$</td>
<td>yes</td>
<td>_</td>
</tr>
<tr>
<td>(2)</td>
<td>$a \sim b \implies PaQ \sim PbQ$</td>
<td>yes</td>
<td>_</td>
</tr>
<tr>
<td>(3)</td>
<td>$PabQ \sim PbaQ$</td>
<td>yes</td>
<td>_</td>
</tr>
<tr>
<td>(4)</td>
<td>$a{bc} \sim {ab}c$</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>(4 weak)</td>
<td>$a{b} \sim {ba}$</td>
<td>yes</td>
<td>_</td>
</tr>
</tbody>
</table>

Having only bijective proofs would allow to “unfold” the induction into a bijective proof that $A \triangledown(A)$ and $A \triangledown(B)$ are Wilf-equivalent, for all $A \sim B$.
(2) \(a \sim b \implies PaQ \sim PbQ \)

Take \(a \sim b \) and suppose that \(Av(a) \) and \(Av(b) \) are Wilf-equivalent.

Take a size-preserving bijection \(\sigma : X \mapsto X^\sigma \) from \(Av(a) \) to \(Av(b) \).

Build a size-preserving bijection \(\tau \) from \(Av(PaQ) \) to \(Av(PbQ) \) as follows:
Bijective proof in case (2)

$$ (2) \quad a \sim b \implies PaQ \sim PbQ $$

Take $a \sim b$ and suppose that $\Av(a)$ and $\Av(b)$ are Wilf-equivalent.

Take a size-preserving bijection $\sigma : X \mapsto X^\sigma$ from $\Av(a)$ to $\Av(b)$.

Build a size-preserving bijection τ from $\Av(PaQ)$ to $\Av(PbQ)$ as follows:

- If X avoids PQ, then take $X^\tau = X$.
- Otherwise, apply σ to all intervals determined by the arches having one extremity between the leftmost P and the rightmost Q:

 $X = P_L l_1 l_2 \cdots l_k Q_R \mapsto X^\tau = P_L l_1^\sigma l_2^\sigma \cdots l_k^\sigma Q_R$

- X^τ avoids PbQ if and only if X avoids PaQ.

M. H. Albert, M. Bouvel
Wilf-equivalences of Catalan structures
Analytic proof in case (4)

\[(4) \quad a\overline{bc} \sim \overline{ab}c\]

Notations: $a = \overline{A}$, $b = \overline{B}$ and $c = \overline{C}$.
F_X = the generating function of $A\nu(X)$.

We want that $F_{a\overline{bc}} = F_{\overline{ab}c}$.
Analytic proof in case (4)

(4) $a \, bc \sim ab \, c$

Notations: $a = \overline{A}$, $b = \overline{B}$ and $c = \overline{C}$.
F_X = the generating function of $Av(X)$.

We want that $F_{a\, bc} = F_{ab\, c}$.

- Compute a system for $F_{a\, bc}$:

$$F_{a\, bc} = 1 + tF_AF_{a\, bc} + t(F_{a\, bc} - F_A)F_{bc}$$

$Av(a\, bc) = \varepsilon + \overline{X}\, Y + \overline{Z}\, T$

- X avoids A
- Z contains A
Analytic proof in case (4)

(4) \[a \overline{bc} \sim \overline{ab} c \]

Notations: \(a = \overline{A}, \ b = \overline{B} \) and \(c = \overline{C}\).
\(F_X = \) the generating function of \(\Lambda v(X)\).

We want that \(F_{a(bc)} = F_{(ab)c}\).

- Compute a system for \(F_{a(bc)}:\)

\[
\begin{align*}
F_{a(bc)} &= 1 + tF_A F_{a(bc)} + t(F_{a(bc)} - F_A)F_{bc} \\
F_{(bc)} &= 1 + tF_{bc} F_{(bc)} \\
F_{bc} &= 1 + tF_B F_{bc} + t(F_{bc} - F_B)F_c \\
F_c &= 1 + tF_C F_c
\end{align*}
\]
Analytic proof in case (4)

\[a \overline{bc} \sim \overline{ab}c \]

Notations: \(a = \overline{A} \), \(b = \overline{B} \) and \(c = \overline{C} \).

\(F_X \) = the generating function of \(\text{Av}(X) \).

We want that \(F_{a(\overline{bc})} = F_{\overline{ab}c} \).

- Compute a system for \(F_{a(\overline{bc})} \):
- The solution \(F_{a(\overline{bc})} \) is a terrible mess depending in \(F_A, F_B \) and \(F_C \)
Analytic proof in case (4)

\[(4) \quad a \overline{bc} \sim \overline{ab} c\]

Notations: \(a = \overline{A}\), \(b = \overline{B}\) and \(c = \overline{C}\).

\(F_X\) = the generating function of \(Av(X)\).

We want that \(F_{a \overline{bc}} = F_{\overline{ab} c}\).

- Compute a system for \(F_{a \overline{bc}}\):
- The solution \(F_{a \overline{bc}}\) is a terrible mess depending in \(F_A\), \(F_B\) and \(F_C\) . . . but symmetric in \(F_A\), \(F_B\) and \(F_C\)!
- Consequently, \(F_{a \overline{bc}} = F_{c \overline{ab}} = F_{\overline{ab} c}\).
Analytic proof in case (4)

\[a \text{bc} \sim \text{ab}c \] (4)

Notations: \(a = \overline{A}, \) \(b = \overline{B} \) and \(c = \overline{C}. \)

\(F_X \) = the generating function of \(Av(X) \).

We want that \(F_{a \text{bc}} = F_{\text{ab}c}. \)

- Compute a system for \(F_{a \text{bc}}: \)
- The solution \(F_{a \text{bc}} \) is a terrible mess depending in \(F_A, F_B \) and \(F_C \)

 \[\ldots \text{but symmetric in } F_A, F_B \text{ and } F_C! \]
- Consequently, \(F_{a \text{bc}} = F_{c \text{ab}} = F_{\text{ab}c}. \)
- Using \(F_X = 1/(1 - tF_X) \), we can write:

\[
F_{a \text{bc}} = \frac{1 - t(F_aF_b + F_bF_c + F_cF_a - F_aF_bF_c)}{1 - t(F_a + F_b + F_c - F_aF_bF_c)}
\]
How many \sim-equivalence classes?
How many Wilf-equivalence classes?
Enumeration of \sim-equivalence classes

Up to size 15, there are as many Wilf-equivalence as \sim-equivalence classes: 1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1 478, 3 290, 7 390, 16 709...
Enumeration of \sim-equivalence classes

Up to size 15, there are as many Wilf-equivalence as \sim-equivalence classes: $1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709 \ldots$

For any size n, upper bounds on the number of Wilf-equivalence classes of classes $Av(A)$, where A is an arch system with n arches are:

- $Cat_n =$ number of plane forests of size n: $\sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$
Enumeration of \(\sim\)-equivalence classes

Up to size 15, there are as many Wilf-equivalence as \(\sim\)-equivalence classes: 1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709\ldots

For any size \(n\), upper bounds on the number of Wilf-equivalence classes of classes \(Av(A)\), where \(A\) is an arch system with \(n\) arches are:

- \(Cat_n =\) number of plane forests of size \(n\): \(\sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}\)
- Number of non-plane forests of size \(n\): \(\sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}\)

\(\hookrightarrow\) because rules (1), (2) and (3) encode non-plane isomorphism.

- (1) \(A \sim B \implies \overline{A} \sim \overline{B}\)
- (2) \(a \sim b \implies PaQ \sim PbQ\)
- (3) \(PabQ \sim PbaQ\)
Enumeration of \sim-equivalence classes

Up to size 15, there are as many Wilf-equivalence as \sim-equivalence classes:
1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1 478, 3 290, 7 390, 16 709…

For any size n, upper bounds on the number of Wilf-equivalence classes of classes $A \forall (A)$, where A is an arch system with n arches are:

- $Cat_n =$ number of plane forests of size n: $\sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$
- Number of non-plane forests of size n: $\sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$
- Number of \sim-equivalence classes for excluded arch systems of size n: $\sim 0.455 \cdot 2.4975^n \cdot n^{-3/2}$

\hookrightarrow take rule (4) into account, and use [Harary, Robinson & Schwenk 75] to study the asymptotics of the coefficients of $A(t)$ defined by

$$A = t + tA + \frac{1}{t}MSet_{\geq 2}(t^2MSet_{\geq 3}(A)) + tMSet_{\geq 3}(A)$$
Enumeration of \sim-equivalence classes

Up to size 15, there are as many Wilf-equivalence as \sim-equivalence classes:

$1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709 \ldots$

For any size n, upper bounds on the number of Wilf-equivalence classes of classes $Av(A)$, where A is an arch system with n arches are:

- $Cat_n =$ number of plane forests of size n: $\sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$
- Number of non-plane forests of size n: $\sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$
- Number of \sim-equivalence classes for excluded arch systems of size n:
 $\sim 0.455 \cdot 2.4975^n \cdot n^{-3/2}$

Moral of the story:
Many Wilf-equivalences between classes $Av(A)$ avoiding an arch system A
(or equivalently permutation classes $Av(231, \pi)$)!
Summary of results and open questions

- **Main theorem**: \(\sim \) refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.

- **Open**: Find a completely bijective proof of main theorem.
Summary of results and open questions

- **Main theorem**: \sim refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.

- **Open**: Find a completely bijective proof of main theorem.

- **From the proof**: Comparison between the enumeration of $\text{Av}(A)$ and $\text{Av}(B)$. More comparisons to be found from more bijective proofs.
Summary of results and open questions

- **Main theorem:** \sim refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.

- **Open:** Find a completely bijective proof of main theorem.

- **From the proof:** Comparison between the enumeration of $Av(A)$ and $Av(B)$. More comparisons to be found from more bijective proofs.

- **Conjecture:** \sim and Wilf-equivalence coincide.

- **Stronger conjecture:** Given two arch systems A and B both with n arches, either $A \sim B$ or $|Av_{2n-2}(A)| \neq |Av_{2n-2}(B)|$.
Summary of results and open questions

- **Main theorem:** \sim refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.

- **Open:** Find a completely bijective proof of main theorem.

- **From the proof:** Comparison between the enumeration of $\text{Av}(A)$ and $\text{Av}(B)$. More comparisons to be found from more bijective proofs.

- **Conjecture:** \sim and Wilf-equivalence coincide.

- **Stronger conjecture:** Given two arch systems A and B both with n arches, either $A \sim B$ or $|\text{Av}_{2n-2}(A)| \neq |\text{Av}_{2n-2}(B)|$.

- **Further result:** Asymptotic enumeration of \sim-equivalence classes. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
Summary of results and open questions

- **Main theorem:** \sim refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.

- **Open:** Find a completely bijective proof of main theorem.

- **From the proof:** Comparison between the enumeration of $A_{\mathcal{V}}(A)$ and $A_{\mathcal{V}}(B)$. More comparisons to be found from more bijective proofs.

- **Conjecture:** \sim and Wilf-equivalence coincide.

- **Stronger conjecture:** Given two arch systems A and B both with n arches, either $A \sim B$ or $|A_{\mathcal{V}2n-2}(A)| \neq |A_{\mathcal{V}2n-2}(B)|$.

- **Further result:** Asymptotic enumeration of \sim-equivalence classes. It is an upper bound (conjecturally tight) on the number of Wilf-classes.

- **Extension to other contexts** (e.g. Schröder objects and separable permutations [Albert, Homberger, Pantone], ...).