Tri bulle et classes de permutations

Mathilde Bouvel

LaBRI, CNRS

Travail en collaboration avec
M.H. Albert, M.D. Atkinson, A. Claesson et M. Dukes

GT Combinatoire du Liafa, décembre 2010
The Bubble Sort Operator \(B \)

\(B = \) one pass of \textbf{bubble sort}.

On sequences that are \textbf{permutations}.

\textbf{Definition(s):}

- Algorithmically:
 \[B \text{ processes a permutation } \sigma \text{ from left to right, and modifies } \sigma \text{ dynamically exchanging } \sigma(i) \text{ and } \sigma(i+1) \text{ when } \sigma(i) > \sigma(i+1). \]

- Recursively:
 \[
 \begin{align*}
 B(\sigma_1 n \sigma_2) &= B(\sigma_1)\sigma_2 n \text{ if } \sigma = \sigma_1 n \sigma_2 \in S_n \\
 B(\varepsilon) &= \varepsilon
 \end{align*}
 \]

- Explicitely:
 If \(\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k \) where \(n_1, \ldots, n_k \) are the left to right maxima of \(\sigma \) then \(B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k \).

\textbf{NB Stack-sorting operator} \(S \)

\[
S(\sigma_1 n \sigma_2) = S(\sigma_1)S(\sigma_2)n
\]
The Bubble Sort Operator B

$B = \text{one pass of bubble sort.}$

On sequences that are permutations.

Definition(s):

- Algorithmically:
 - B processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i + 1)$ when $\sigma(i) > \sigma(i + 1)$.

- Recursively:
 - $B(\sigma_1 n \sigma_2) = B(\sigma_1) \sigma_2 n$ if $\sigma = \sigma_1 n \sigma_2 \in S_n$
 - $B(\varepsilon) = \varepsilon$

- Explicitely:
 - If $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

NB Stack-sorting operator S

$S(\sigma_1 n \sigma_2) = S(\sigma_1) S(\sigma_2) n$
The Bubble Sort Operator B

$B = \text{one pass of bubble sort.}$
On sequences that are \text{permutations}.

\textbf{Definition(s):}

- Algorithmically:

 B processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i) > \sigma(i+1)$.

- Recursively:

 \[
 B(\sigma_1 n \sigma_2) = B(\sigma_1)\sigma_2 n \quad \text{if} \quad \sigma = \sigma_1 n \sigma_2 \in S_n \\
 B(\varepsilon) = \varepsilon
 \]

- Explicitely:

 If $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

\textit{NB Stack-sorting operator S}

\[
S(\sigma_1 n \sigma_2) = S(\sigma_1)S(\sigma_2)n
\]
The Bubble Sort Operator B

$B =$ one pass of \textbf{bubble sort}.
On sequences that are \textbf{permutations}.

\textbf{Definition(s):}

- Algorithmically:
 \[B \text{ processes a permutation } \sigma \text{ from left to right, and modifies } \sigma \text{ dynamically exchanging } \sigma(i) \text{ and } \sigma(i+1) \text{ when } \sigma(i) > \sigma(i+1). \]

- Recursively:
 \[
 \begin{cases}
 B(\sigma_1 n \sigma_2) = B(\sigma_1) \sigma_2 n & \text{if } \sigma = \sigma_1 n \sigma_2 \in S_n \\
 B(\varepsilon) = \varepsilon
 \end{cases}
 \]

- Explicitely:
 \[B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k \text{ if } \sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k \text{ where } n_1, \ldots, n_k \text{ are the left to right maxima of } \sigma. \]

\textbf{NB} Stack-sorting operator S

\[S(\sigma_1 n \sigma_2) = S(\sigma_1) S(\sigma_2) n \]
The Bubble Sort Operator B

$B = $ one pass of bubble sort.
On sequences that are permutations.

Definition(s):
- Algorithmically:
 B processes a permutation σ from left to right, and modifies σ dynamically exchanging $\sigma(i)$ and $\sigma(i+1)$ when $\sigma(i) > \sigma(i+1)$.
- Recursively:
 \[
 \begin{cases}
 B(\sigma_1 \sigma_2) = B(\sigma_1)\sigma_2 \text{ if } \sigma = \sigma_1 \sigma_2 \in S_n \\
 B(\varepsilon) = \varepsilon
 \end{cases}
 \]
- Explicitely:
 If $\sigma = n_1 \lambda_1 n_2 \lambda_2 \cdots n_k \lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

NB Stack-sorting operator S

$S(\sigma_1 \sigma_2) = S(\sigma_1)S(\sigma_2)n$
Permutation Classes

Permutations

- \(S_n = \) permutations \(\sigma \) of \(\{1, 2, \ldots, n\} \)
- Representation by a word: \(\sigma(1)\sigma(2) \cdots \sigma(n) \), by its diagram, . . .

Patterns

- Subpermutation of \(\sigma \)
- Subword or subset of points of the diagram that is normalized

Example: \(2134 \preccurlyeq 312854796 \) since \(3279 \equiv 2134 \)

\[
\begin{array}{cccccccc}
\sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) & \sigma(5) & \sigma(6) & \sigma(7) & \sigma(8) \\
\end{array}
\]

\(\sigma = 312854796 \)
Permutation Classes

Permutations

- $S_n = \text{permutations } \sigma \text{ of } \{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2) \cdots \sigma(n)$, by its diagram, \ldots

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2 1 3 4 \preceq 3 1 2 8 5 4 7 9 6$ since $3 2 7 9 \equiv 2 1 3 4$

$$\sigma = 3 1 2 8 5 4 7 9 6$$
Permutation Classes

Permutations
- $S_n = \text{permutations } \sigma \text{ of } \{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2) \cdots \sigma(n)$, by its diagram, . . .

Patterns
- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized
Example: $2 \ 1 \ 3 \ 4 \preceq \ 3 \ 1 \ 2 \ 8 \ 5 \ 4 \ 7 \ 9 \ 6$ since $3 \ 2 \ 7 \ 9 \equiv 2 \ 1 \ 3 \ 4$

\[\sigma = 3 \ 1 \ 2 \ 8 \ 5 \ 4 \ 7 \ 9 \ 6\]
Permutation Classes

Permutations
- $S_n = \text{permutations } \sigma \text{ of } \{1, 2, \ldots, n\}
- \text{Representation by a word: } \sigma(1)\sigma(2)\cdots\sigma(n), \text{ by its diagram, } \ldots$

Patterns
- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized
Example: $2\ 1\ 3\ 4 \preccurlyeq 3\ 1\ 2\ 8\ 5\ 4\ 7\ 9\ 6$ since $3\ 2\ 7\ 9 \equiv 2\ 1\ 3\ 4$
Permutation Classes

Permutations

- S_n = permutations σ of \{1, 2, …, n\}
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, …

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: 2 1 3 4 \preceq 3 1 2 8 5 4 7 9 6 since 3 2 7 9 \equiv 2 1 3 4
Permutation Classes

Permutations
- $S_n = \text{permutations } \sigma \text{ of } \{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2) \cdots \sigma(n)$, by its diagram, . . .

Patterns
- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2 \ 1 \ 3 \ 4 \ < \ 3 \ 1 \ 2 \ 8 \ 5 \ 4 \ 7 \ 9 \ 6$ since $3 \ 2 \ 7 \ 9 \ \equiv \ 2 \ 1 \ 3 \ 4$

![Diagram showing patterns and permutations](image-url)
Permutation Classes

Permutations

- $S_n =$ permutations σ of $\{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots \sigma(n)$, by its diagram, ...

Patterns

- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized

Example: $2134 \preceq 312854796$ since $3279 \equiv 2134$

Occurrence of a pattern

- Occurrence = subpermutation without normalization

Example: $3279 \subseteq 312854796$

Classes

- Subset of $\mathbb{S} = \cup_n S_n$ downward closed for \preceq
- Characterization by a basis of excluded patterns: $C = \text{Av}(B)$
- Principal classes: $C = \text{Av}(\pi)$
Permutation Classes

Permutations
- $S_n = \text{permutations } \sigma \text{ of } \{1, 2, \ldots, n\}$
- Representation by a word: $\sigma(1)\sigma(2)\cdots\sigma(n)$, by its diagram, . . .

Patterns
- Subpermutation of σ
- Subword or subset of points of the diagram that is normalized
Example: $2134 \preccurlyeq 312854796$ since $3279 \equiv 2134$

Occurrence of a pattern
- Occurrence $= \text{subpermutation without normalization}$
Example: $3279 \subseteq 312854796$

Classes
- Subset of $S = \bigcup_n S_n$ downward closed for \preccurlyeq
- Characterization by a basis of excluded patterns: $C = Av(B)$
- Principal classes: $C = Av(\pi)$
Proposition

The permutations that are sorted by B are a class.
Namely: $B(\sigma) = \text{Id}$ iff $\sigma \in \text{Av}(231, 321)$.

Proof: by induction.

Decompose $\sigma = \sigma_1 n \sigma_2$ around its maximum n.

Recall that $B(\sigma) = B(\sigma_1)\sigma_2 n$.

- σ is sorted by B

 $\iff \sigma_1$ is sorted by B, σ_2 is increasing, and $\sigma_1 < \sigma_2$

 $\iff \sigma_1 \in \text{Av}(231, 321)$, σ_2 is increasing, and $\sigma_1 < \sigma_2$

 $\iff \sigma \in \text{Av}(231, 321)$
Proposition

The permutations that are sorted by B are a class. Namely: $B(\sigma) = Id$ iff $\sigma \in Av(231, 321)$.

Proof: by induction.

Decompose $\sigma = \sigma_1 n \sigma_2$ around its maximum n.

Recall that $B(\sigma) = B(\sigma_1)\sigma_2 n$.

- σ is sorted by B if and only if
 - σ_1 is sorted by B, σ_2 is increasing, and $\sigma_1 < \sigma_2$
 - $\sigma_1 \in Av(231, 321)$, σ_2 is increasing, and $\sigma_1 < \sigma_2$
 - $\sigma \in Av(231, 321)$
Motivation and main result

- B-sortable permutations

$\leftarrow B^{-1}(Av(21)) = Av(231, 321)$

- SB-sortable permutations?

$\leftarrow (SB)^{-1}(Av(21)) = B^{-1}(Av(231))$

- B^2-sortable permutations?

$\leftarrow (BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321))$

- In general, what can we say about $B^{-1}(C)$?

For $C = Av(\pi)$ a principal permutation class, we can determine

- when $B^{-1}(Av(\pi))$ is a class,

- and in this case give its basis.

This result is proved by considering the LtoR-maxima of π.
Motivation and main result

- \(B \)-sortable permutations
 \[B^{-1}(Av(21)) = Av(231, 321) \]
- \(SB \)-sortable permutations?
 \[(SB)^{-1}(Av(21)) = B^{-1}(Av(231)) \]
- \(B^2 \)-sortable permutations?
 \[(BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321)) \]
- In general, what can we say about \(B^{-1}(C) \)?

For \(C = Av(\pi) \) a principal permutation class, we can determine
- when \(B^{-1}(Av(\pi)) \) is a class,
- and in this case give its basis.

This result is proved by considering the LtoR-maxima of \(\pi \).
Motivation and main result

- \(B\)-sortable permutations
 \[B^{-1}(\text{Av}(21)) = \text{Av}(231, 321) \]
- \(SB\)-sortable permutations?
 \[(SB)^{-1}(\text{Av}(21)) = B^{-1}(\text{Av}(231)) \]
- \(B^2\)-sortable permutations?
 \[(BB)^{-1}(\text{Av}(21)) = B^{-1}(\text{Av}(231, 321)) \]
- In general, what can we say about \(B^{-1}(C)\)?

For \(C = \text{Av}(\pi)\) a principal permutation class, we can determine
- when \(B^{-1}(\text{Av}(\pi))\) is a class,
- and in this case give its basis.

This result is proved by considering the LtoR-maxima of \(\pi\).
Motivation and main result

- B-sortable permutations
 \[B^{-1}(Av(21)) = Av(231, 321) \]
- SB-sortable permutations?
 \[(SB)^{-1}(Av(21)) = B^{-1}(Av(231)) \]
- B^2-sortable permutations?
 \[(BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321)) \]
- In general, what can we say about $B^{-1}(C)$?

For $C = Av(\pi)$ a principal permutation class, we can determine
 - when $B^{-1}(Av(\pi))$ is a class,
 - and in this case give its basis.

This result is proved by considering the LtoR-maxima of π.
Motivation and main result

- B-sortable permutations
 $\iff B^{-1}(\text{Av}(21)) = \text{Av}(231, 321)$
 - SB-sortable permutations?
 $\iff (SB)^{-1}(\text{Av}(21)) = B^{-1}(\text{Av}(231))$
 - B^2-sortable permutations?
 $\iff (BB)^{-1}(\text{Av}(21)) = B^{-1}(\text{Av}(231, 321))$
 - In general, what can we say about $B^{-1}(C)$?

For $C = \text{Av}(\pi)$ a principal permutation class, we can determine
- when $B^{-1}(\text{Av}(\pi))$ is a class,
 - and in this case give its basis.

This result is proved by considering the LtoR-maxima of π.
Summary of results

<table>
<thead>
<tr>
<th>π</th>
<th>$B^{-1}(Av(\pi))$</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is a class</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>is a class</td>
<td>12, 21</td>
</tr>
<tr>
<td>21</td>
<td>is a class</td>
<td>231, 321</td>
</tr>
<tr>
<td>$n\alpha$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$n(n + 1)\alpha, (n + 1)n\alpha$</td>
</tr>
<tr>
<td>$(n - 1)\alpha n$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$(n - 1)n\alpha, n(n - 1)\alpha$</td>
</tr>
<tr>
<td>$a\alpha b\beta$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(\pi)$</td>
</tr>
<tr>
<td>$a\alpha b\beta n$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(a\alpha b\beta)$</td>
</tr>
<tr>
<td>$(n - 2)\alpha(n - 1)n$</td>
<td>is a class</td>
<td>$(n - 2)(n - 1)\alpha \ n, (n - 1)(n - 2)\alpha n,$ $\ $ $(n - 2)n \alpha(n - 1), n(n - 2)\alpha \ (n - 1)$</td>
</tr>
<tr>
<td>$a\alpha b\beta c\gamma$, $\gamma \neq \varepsilon$</td>
<td>is not a class</td>
<td></td>
</tr>
</tbody>
</table>

Remarks: $n, (n - 1), (n - 2), a, b$ and c are LtoR-maxima.

If $\pi = [\alpha \beta]$, then $R(\pi)$ is the set of permutations $[\alpha \beta]$.
Proposition

There are no permutations σ of length $n \geq 1$ such that $B(\sigma)$ avoids 1. Hence $B^{-1}(Av(1)) = \{\varepsilon\} = Av(1)$.

Proposition

The only permutations σ such that $B(\sigma)$ avoids 12 are ε and 1. Hence $B^{-1}(Av(12)) = \{\varepsilon, 1\} = Av(12, 21)$.

Proof: $B(\sigma)$ always ends with its maximum.

Proposition

The permutations σ such that $B(\sigma)$ avoids 21 are the B-sortable permutations. Hence $B^{-1}(Av(21)) = Av(231, 321)$.
Proposition

There are no permutations σ of length $n \geq 1$ such that $B(\sigma)$ avoids 1. Hence $B^{-1}(Av(1)) = \{\varepsilon\} = Av(1)$.

Proposition

The only permutations σ such that $B(\sigma)$ avoids 12 are ε and 1. Hence $B^{-1}(Av(12)) = \{\varepsilon, 1\} = Av(12, 21)$.

Proof: $B(\sigma)$ always ends with its maximum.

Proposition

The permutations σ such that $B(\sigma)$ avoids 21 are the B-sortable permutations. Hence $B^{-1}(Av(21)) = Av(231, 321)$.

Mathilde Bouvel (LaBRI, CNRS)
Proposition

There are no permutations σ of length $n \geq 1$ such that $B(\sigma)$ avoids 1.
Hence $B^{-1}(Av(1)) = \{\varepsilon\} = Av(1)$.

Proposition

The only permutations σ such that $B(\sigma)$ avoids 12 are ε and 1.
Hence $B^{-1}(Av(12)) = \{\varepsilon, 1\} = Av(12, 21)$.

Proof: $B(\sigma)$ always ends with its maximum.

Proposition

The permutations σ such that $B(\sigma)$ avoids 21 are the B-sortable permutations.
Hence $B^{-1}(Av(21)) = Av(231, 321)$.
Summary of results

<table>
<thead>
<tr>
<th>π</th>
<th>$B^{-1}(Av(\pi))$</th>
<th>Basis</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is a class</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>is a class</td>
<td>12, 21</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>is a class</td>
<td>231, 321</td>
<td>✓</td>
</tr>
<tr>
<td>$n\alpha$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$n(n + 1)\alpha, (n + 1)n\alpha$</td>
<td></td>
</tr>
<tr>
<td>$(n - 1)\alpha n$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$(n - 1)n\alpha, n(n - 1)\alpha$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(\pi)$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta n$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(\alpha b\beta)$</td>
<td></td>
</tr>
<tr>
<td>$(n - 2)\alpha(n - 1)n$</td>
<td>is a class</td>
<td>$(n - 2)(n - 1)\alpha n$, $(n - 1)(n - 2)\alpha n$, $(n - 2)n \alpha(n - 1)$, $n(n - 2)\alpha (n - 1)$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta c\gamma$, $\gamma \neq \varepsilon$</td>
<td>is not a class</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patterns \(\pi \in S_n \) ending with \(n \) but not with \((n-1)n\)

Lemma

If \(\pi \in S_n \) with \(n \geq 3 \) is such that \(\pi(n) = n \) but \(\pi(n-1) \neq n-1 \), then setting \(\pi' = \pi(1)\pi(2)\ldots\pi(n-1) \) we have \(B^{-1}(Av(\pi)) = B^{-1}(Av(\pi')) \).

Proof:

- \(\sigma \in B^{-1}(Av(\pi')) \Rightarrow B(\sigma) \) avoids \(\pi' \)
 - \(\Rightarrow B(\sigma) \) avoids \(\pi \Rightarrow \sigma \in B^{-1}(Av(\pi)) \)

- \(\sigma \in B^{-1}(Av(\pi)) \Rightarrow B(\sigma) \) avoids \(\pi = \pi'n \)
 - But \(B(\sigma) = B(\sigma_1)\sigma_2m \) ends with its maximum \(m \).
 - Hence \(B(\sigma_1)\sigma_2 \) avoids \(\pi' \).
 - But \(\pi' \) does not end with its maximum.
 - Hence \(B(\sigma) = B(\sigma_1)\sigma_2m \) avoids \(\pi' \) and \(\sigma \in B^{-1}(Av(\pi')) \).

This lemmas applies in particular for \(\pi = (n-1)\alpha n \) with \(\alpha \neq \varepsilon \) and \(\pi = a\alpha b\beta n \) with \(\beta \neq \varepsilon \).
Lemma

If $\pi \in S_n$ with $n \geq 3$ is such that $\pi(n) = n$ but $\pi(n-1) \neq n-1$, then setting $\pi' = \pi(1)\pi(2)\ldots\pi(n-1)$ we have $B^{-1}(\mathrm{Av}(\pi)) = B^{-1}(\mathrm{Av}(\pi'))$.

Proof:

- $\sigma \in B^{-1}(\mathrm{Av}(\pi')) \Rightarrow B(\sigma)$ avoids π'
 $\Rightarrow B(\sigma)$ avoids π $\Rightarrow \sigma \in B^{-1}(\mathrm{Av}(\pi))$

- $\sigma \in B^{-1}(\mathrm{Av}(\pi)) \Rightarrow B(\sigma)$ avoids $\pi = \pi'n$
 But $B(\sigma) = B(\sigma_1)\sigma_2m$ ends with its maximum m.
 Hence $B(\sigma_1)\sigma_2$ avoids π'.
 But π' does not end with its maximum.
 Hence $B(\sigma) = B(\sigma_1)\sigma_2m$ avoids π' and $\sigma \in B^{-1}(\mathrm{Av}(\pi'))$.

This lemmas applies in particular for $\pi = (n-1)\alpha n$ with $\alpha \neq \varepsilon$ and $\pi = a\alpha b\beta n$ with $\beta \neq \varepsilon$.

Mathilde Bouvel (LaBRI, CNRS)
Bubble Sort and Permutation Classes
9 / 28
Patterns $\pi \in S_n$ ending with n but not with $(n - 1)n$

Lemma

If $\pi \in S_n$ with $n \geq 3$ is such that $\pi(n) = n$ but $\pi(n - 1) \neq n - 1$, then setting $\pi' = \pi(1)\pi(2)\ldots\pi(n - 1)$ we have $B^{-1}(Av(\pi)) = B^{-1}(Av(\pi'))$.

Proof:

- $\sigma \in B^{-1}(Av(\pi')) \Rightarrow B(\sigma)$ avoids π'
 $\Rightarrow B(\sigma)$ avoids $\pi \Rightarrow \sigma \in B^{-1}(Av(\pi))$

- $\sigma \in B^{-1}(Av(\pi')) \Rightarrow B(\sigma)$ avoids $\pi = \pi'n$
 But $B(\sigma) = B(\sigma_1)\sigma_2m$ ends with its maximum m.
 Hence $B(\sigma_1)\sigma_2$ avoids π'.
 But π' does not end with its maximum.
 Hence $B(\sigma) = B(\sigma_1)\sigma_2m$ avoids π' and $\sigma \in B^{-1}(Av(\pi'))$.

This lemmas applies in particular for $\pi = (n - 1)\alpha n$ with $\alpha \neq \varepsilon$ and $\pi = a\alpha b\beta n$ with $\beta \neq \varepsilon$.
Patterns $\pi \in S_n$ ending with n but not with $(n-1)n$.

Lemma

If $\pi \in S_n$ with $n \geq 3$ is such that $\pi(n) = n$ but $\pi(n-1) \neq n-1$, then setting $\pi' = \pi(1)\pi(2)\ldots\pi(n-1)$ we have $B^{-1}(\text{Av}(\pi)) = B^{-1}(\text{Av}(\pi'))$.

Proof:

- $\sigma \in B^{-1}(\text{Av}(\pi')) \Rightarrow B(\sigma)$ avoids π'
 $\Rightarrow B(\sigma)$ avoids $\pi \Rightarrow \sigma \in B^{-1}(\text{Av}(\pi))$

- $\sigma \in B^{-1}(\text{Av}(\pi)) \Rightarrow B(\sigma)$ avoids $\pi = \pi'n$
 But $B(\sigma) = B(\sigma_1)\sigma_2m$ ends with its maximum m.
 Hence $B(\sigma_1)\sigma_2$ avoids π'.

- But π' does not end with its maximum.
 Hence $B(\sigma) = B(\sigma_1)\sigma_2m$ avoids π' and $\sigma \in B^{-1}(\text{Av}(\pi'))$.

This lemmas applies in particular for $\pi = (n-1)\alpha n$ with $\alpha \neq \varepsilon$ and $\pi = a\alpha b\beta n$ with $\beta \neq \varepsilon$.
Summary of results

<table>
<thead>
<tr>
<th>π</th>
<th>$B^{-1}(A\nu(\pi))$</th>
<th>Basis</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is a class</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>is a class</td>
<td>12, 21</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>is a class</td>
<td>231, 321</td>
<td>✓</td>
</tr>
<tr>
<td>$n\alpha$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$n(n + 1)\alpha, (n + 1)n\alpha$</td>
<td></td>
</tr>
<tr>
<td>$(n - 1)\alpha n$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$(n - 1)n\alpha, n(n - 1)\alpha$</td>
<td>✓</td>
</tr>
<tr>
<td>$a\alpha b\beta$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(\pi)$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta n$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(a\alpha b\beta)$</td>
<td>✓</td>
</tr>
<tr>
<td>$(n - 2)\alpha(n - 1)n$</td>
<td>is a class</td>
<td>$(n - 2)(n - 1)\alpha n, (n - 1)(n - 2)\alpha n, (n - 2)n \alpha(n - 1)$, $n(n - 2)\alpha (n - 1)$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta c\gamma$, $\gamma \neq \varepsilon$</td>
<td>is not a class</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patterns $\pi \in S_n$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n+1)\theta_1$. Notice that $\theta_1 \preceq \theta_2$.

- Clearly, $B(\theta_1) = \pi$ and $\theta_1 \notin B^{-1}(Av(\pi))$.
- $B(\theta_2) = ba\alpha n\beta c\gamma(n+1)$

 Since $B(\theta_2)$ is only one term longer than π, we easily check that $B(\theta_2)$ avoids π. Hence $\theta_2 \in B^{-1}(Av(\pi))$.

We have $B^{-1}(Av(\pi)) \not\ni \theta_1 \preceq \theta_2 \in B^{-1}(Av(\pi))$. Consequently, $B^{-1}(Av(\pi))$ is not a class.
Patterns $\pi \in S_n$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(\text{Av}(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n+1)\theta_1$. Notice that $\theta_1 \preceq \theta_2$.

- Clearly, $B(\theta_1) = \pi$ and $\theta_1 \not\in B^{-1}(\text{Av}(\pi))$.
- $B(\theta_2) = ba\alpha n\beta c\gamma(n+1)$

 Since $B(\theta_2)$ is only one term longer than π, we easily check that $B(\theta_2)$ avoids π. Hence $\theta_2 \in B^{-1}(\text{Av}(\pi))$.

We have $B^{-1}(\text{Av}(\pi)) \not\ni \theta_1 \preceq \theta_2 \in B^{-1}(\text{Av}(\pi))$. Consequently, $B^{-1}(\text{Av}(\pi))$ is not a class.
Patterns $\pi \in S_n$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n + 1)\theta_1$. Notice that $\theta_1 \preceq \theta_2$.

- Clearly, $B(\theta_1) = \pi$ and $\theta_1 \not\in B^{-1}(Av(\pi))$.

- $B(\theta_2) = ba\alpha n\beta c\gamma(n + 1)$

 Since $B(\theta_2)$ is only one term longer than π, we easily check that $B(\theta_2)$ avoids π. Hence $\theta_2 \in B^{-1}(Av(\pi))$.

We have $B^{-1}(Av(\pi)) \not
\theta_1 \preceq \theta_2 \in B^{-1}(Av(\pi))$. Consequently, $B^{-1}(Av(\pi))$ is not a class.
Patterns $\pi \in S_n$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n + 1)\theta_1$. Notice that $\theta_1 \preceq \theta_2$.

- Clearly, $B(\theta_1) = \pi$ and $\theta_1 \not\in B^{-1}(Av(\pi))$.
- $B(\theta_2) = ba\alpha n\beta c\gamma(n + 1)$
 Since $B(\theta_2)$ is only one term longer than π, we easily check that $B(\theta_2)$ avoids π. Hence $\theta_2 \in B^{-1}(Av(\pi))$.

We have $B^{-1}(Av(\pi)) \ni \theta_1 \preceq \theta_2 \in B^{-1}(Av(\pi))$. Consequently, $B^{-1}(Av(\pi))$ is not a class.
Patterns $\pi \in S_n$ with at least three LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi = a\alpha b\beta c\gamma$, with a, b and c the first three LtoR-maxima of π and $\gamma \neq \varepsilon$, then $B^{-1}(\text{Av}(\pi))$ is not a class.

Proof:

By the previous lemma, we may assume that $\pi = a\alpha b\beta c\gamma n$.

Set $\theta_1 = ba\alpha n\beta c\gamma$ and $\theta_2 = (n + 1)\theta_1$. Notice that $\theta_1 \preceq \theta_2$.

- Clearly, $B(\theta_1) = \pi$ and $\theta_1 \not\in B^{-1}(\text{Av}(\pi))$.
- $B(\theta_2) = ba\alpha n\beta c\gamma(n + 1)$

 Since $B(\theta_2)$ is only one term longer than π, we easily check that $B(\theta_2)$ avoids π. Hence $\theta_2 \in B^{-1}(\text{Av}(\pi))$.

We have $B^{-1}(\text{Av}(\pi)) \not\ni \theta_1 \preceq \theta_2 \in B^{-1}(\text{Av}(\pi))$. Consequently, $B^{-1}(\text{Av}(\pi))$ is not a class.
Summary of results

<table>
<thead>
<tr>
<th>π</th>
<th>$B^{-1}(Av(\pi))$</th>
<th>Basis</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is a class</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>is a class</td>
<td>12, 21</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>is a class</td>
<td>231, 321</td>
<td>✓</td>
</tr>
<tr>
<td>$n\alpha, \alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$n(n+1)\alpha, (n+1)n\alpha$</td>
<td></td>
</tr>
<tr>
<td>$(n-1)\alpha n, \alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$(n-1)n\alpha, n(n-1)\alpha$</td>
<td>✓</td>
</tr>
<tr>
<td>$a\alpha b\beta, \beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(\pi)$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta n, \beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(a\alpha b\beta)$</td>
<td>✓</td>
</tr>
<tr>
<td>$(n-2)\alpha(n-1)n$</td>
<td>is a class</td>
<td>$(n-2)(n-1)\alpha n$, $(n-1)(n-2)\alpha n$, $(n-2)n \alpha(n-1)$, $n(n-2)\alpha(n-1)$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta c\gamma, \gamma \neq \varepsilon$</td>
<td>is not a class</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Common framework for the remaining cases

Lemma
For any pattern π, if there exists a set \mathcal{R} of permutations such that
\[\forall \sigma, \pi \preceq B(\sigma) \iff \rho \preceq \sigma \text{ for some } \rho \in \mathcal{R}, \text{ then } B^{-1}(\text{Av}(\pi)) \text{ is a class}. \]
Furthermore, if \mathcal{R} is minimal, it is the basis of $B^{-1}(\text{Av}(\pi))$.

Proof: Show that $B^{-1}(\text{Av}(\pi))$ is downward closed for \preceq.

\[
\begin{align*}
\sigma &\not\in B^{-1}(\text{Av}(\pi)) \\
\iff &\ B(\sigma) \not\in \text{Av}(\pi) \\
\iff &\ \pi \preceq B(\sigma) \\
\iff &\ \exists \rho \in \mathcal{R}, \rho \preceq \sigma
\end{align*}
\]
so that $\sigma \in B^{-1}(\text{Av}(\pi)) \iff \forall \rho \in \mathcal{R}, \rho \not\preceq \sigma$.
This shows that $B^{-1}(\text{Av}(\pi))$ is a downset, hence a class.
This also shows that the minimal \mathcal{R} is its basis.
Common framework for the remaining cases

Lemma

For any pattern π, if there exists a set \mathcal{R} of permutations such that

$$\forall \sigma, \pi \preceq B(\sigma) \iff \rho \preceq \sigma \text{ for some } \rho \in \mathcal{R},$$

then $B^{-1}(\text{Av}(\pi))$ is a class. Furthermore, if \mathcal{R} is minimal, it is the basis of $B^{-1}(\text{Av}(\pi))$.

Proof: Show that $B^{-1}(\text{Av}(\pi))$ is downward closed for \preceq.

$$\sigma \notin B^{-1}(\text{Av}(\pi))$$

$$\iff B(\sigma) \notin \text{Av}(\pi)$$

$$\iff \pi \preceq B(\sigma)$$

$$\iff \exists \rho \in \mathcal{R}, \rho \preceq \sigma$$

so that $\sigma \in B^{-1}(\text{Av}(\pi)) \iff \forall \rho \in \mathcal{R}, \rho \not\preceq \sigma$.

This shows that $B^{-1}(\text{Av}(\pi))$ is a downset, hence a class.

This also shows that the minimal \mathcal{R} is its basis.
Patterns $\pi \in S_n$ starting with n

Proposition

If $\pi \in S_n$ is such that $\pi = n\alpha$ for $\alpha \neq \varepsilon$, then $B^{-1}(\text{Av}(\pi))$ is a class whose basis is $\{n(n + 1)\alpha, (n + 1)n\alpha\}$.

Lemma

If $\pi \preceq B(\sigma)$, consider an occurrence $p\lambda \subseteq B(\sigma)$. Then there exists $q > p > \lambda$ such that $pq\lambda \subseteq \sigma$ or $qp\lambda \subseteq \sigma$. Hence $n(n + 1)\alpha$ or $(n + 1)n\alpha \preceq \sigma$.

Lemma

If $n(n + 1)\alpha$ or $(n + 1)n\alpha \preceq \sigma$, consider an occurrence $pq\lambda$ or $qp\lambda \subseteq \sigma$. Then $p\lambda \subseteq B(\sigma)$. Hence $\pi \preceq B(\sigma)$.
Patterns $\pi \in S_n$ starting with n

Proposition

If $\pi \in S_n$ is such that $\pi = n\alpha$ for $\alpha \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is a class whose basis is $\{n(n+1)\alpha, (n+1)n\alpha\}$.

Lemma

If $\pi \preceq B(\sigma)$, consider an occurrence $p\lambda \subseteq B(\sigma)$.
Then there exists $q > p > \lambda$ such that $pq\lambda \subseteq \sigma$ or $qp\lambda \subseteq \sigma$.
Hence $n(n+1)\alpha$ or $(n+1)n\alpha \preceq \sigma$.

Lemma

If $n(n+1)\alpha$ or $(n+1)n\alpha \preceq \sigma$, consider an occurrence $pq\lambda$ or $qp\lambda \subseteq \sigma$.
Then $p\lambda \subseteq B(\sigma)$.
Hence $\pi \preceq B(\sigma)$.
Proof of the first lemma for $\pi = n\alpha$ with $\alpha \neq \varepsilon$

Lemma

If $\pi \preceq B(\sigma)$, consider an occurrence $p\lambda \subseteq B(\sigma)$.

Then there exists $q > p > \lambda$ such that $pq\lambda \subseteq \sigma$ or $qp\lambda \subseteq \sigma$.

Hence $n(n + 1)\alpha$ or $(n + 1)n\alpha \preceq \sigma$.

Proof: by induction on $|\sigma|$.

- If $|\sigma| \leq 2$, result vacuously true (since $B(\sigma)$ ends with its maximum).
- If $\sigma = \sigma_1m\sigma_2$ with $m = |\sigma| > 2$, then $p\lambda \subseteq B(\sigma_1)\sigma_2m$.
 Because $p\lambda$ does not end with its maximum, $p\lambda \subseteq B(\sigma_1)\sigma_2$.
 - If $\lambda = \lambda_1\lambda_2$ with $\lambda_1 \neq \varepsilon$, $p\lambda_1 \subseteq B(\sigma_1)$ and $\lambda_2 \subseteq \sigma_2$, then by induction $p\lambda_1 \subseteq B(\sigma_1)$ implies that $\exists q > p$ such that $pq\lambda_1 \subseteq \sigma_1$ or $qp\lambda_1 \subseteq \sigma_1$.
 Hence $\sigma = \sigma_1m\sigma_2$ contains an occurrence of $pq\lambda_1\lambda_2$ or of $qp\lambda_1\lambda_2$.
 - If $p \subseteq B(\sigma_1)$ and $\lambda \subseteq \sigma_2$, then $p \subseteq \sigma_1$ and $pm\lambda \subseteq \sigma_1m\sigma_2 = \sigma$.
 - If $p\lambda \subseteq \sigma_2$, then $mp\lambda \subseteq m\sigma_2 \subseteq \sigma$.

Mathilde Bouvel (LaBRI, CNRS)
Proof of the second lemma for $\pi = n\alpha$ with $\alpha \neq \varepsilon$

Lemma

If $n(n + 1)\alpha$ or $(n + 1)n\alpha \preceq \sigma$, consider an occurrence $pq\lambda$ or $qp\lambda \subseteq \sigma$. Then $p\lambda \subseteq B(\sigma)$. Hence $\pi \preceq B(\sigma)$.

Proof:

Recall that if $\sigma = n_1\lambda_1 n_2\lambda_2 \cdots n_k\lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1\lambda_2 n_2 \cdots \lambda_k n_k$. Hence, the order of the elements not LtoR-maxima is preserved by B.

- If $qp\lambda \subseteq \sigma$, $p\lambda$ are not LtoR-maxima. Hence $p\lambda \subseteq B(\sigma)$.
- This also holds when $pq\lambda \subseteq \sigma$ and p is not a LtoR-maximum.
- If $pq\lambda \subseteq \sigma$ and p is a LtoR-maximum, then there exists some r between p and q (possibly $r = q$) in σ that is a LtoR-maximum. This implies that p still precedes λ in $B(\sigma)$, hence $p\lambda \subseteq B(\sigma)$.
Summary of results

<table>
<thead>
<tr>
<th>π</th>
<th>$B^{-1}(Av(\pi))$</th>
<th>Basis</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is a class</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>is a class</td>
<td>12, 21</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>is a class</td>
<td>231, 321</td>
<td>✓</td>
</tr>
<tr>
<td>$n\alpha$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$n(n+1)\alpha, (n+1)n\alpha$</td>
<td>✓</td>
</tr>
<tr>
<td>$(n-1)\alpha n$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$(n-1)n\alpha, n(n-1)\alpha$</td>
<td>✓</td>
</tr>
<tr>
<td>$a\alpha b\beta$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(\pi)$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta n$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(a\alpha b\beta)$</td>
<td>✓</td>
</tr>
<tr>
<td>$(n-2)\alpha(n-1)n$</td>
<td>is a class</td>
<td>$(n-2)(n-1)\alpha n$, $(n-1)(n-2)\alpha n$, $(n-2)n \alpha(n-1)$, $n(n-2)\alpha (n-1)$</td>
<td></td>
</tr>
<tr>
<td>$a\alpha b\beta c\gamma$, $\gamma \neq \varepsilon$</td>
<td>is not a class</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
A set of points in the plane that are pairwise neither horizontally nor vertically aligned represents a permutation.

When some points are horizontally or vertically aligned, sets of permutations are represented (considering all possible disambiguations).

Example:

\{a, b, c, d\} represents 3142.

\{a, b, c, d, x, y\} represents the set \{241563, 241653, 341562, 341652\}.
Introducing ambiguity in diagram representations

- A set of points in the plane that are pairwise neither horizontally nor vertically aligned represents a permutation.

- When some points are horizontally or vertically aligned, **sets of permutations** are represented (considering all possible disambiguations).

Example:

\[
\begin{array}{c}
\bullet \quad c \\
\bullet \quad x \\
\bullet \quad d \\
\end{array}
\begin{array}{c}
a \\
y \\
b \\
\end{array}
\]

- \{a, b, c, d\} represents 3142.
- \{a, b, c, d, x, y\} represents the set \{241563, 241653, 341562, 341652\}.
Definition of $R(\pi)$ for $\pi = a\alpha b\beta$ with $\beta \neq \varepsilon$

$R(\pi)$ is the set of \textbf{minimal} permutations in the set $\alpha a \beta b$.

When x is above β and y is to the left of α, x and y coalesce into a unique point.

\textbf{Remark}

$R(\pi)$ contains exactly

- 4 one-point extensions of π
- $4|\alpha|(n - a - 1)$ two-points extensions of π
Definition of $R(\pi)$ for $\pi = a\alpha b\beta$ with $\beta \neq \varepsilon$

$R(\pi)$ is the set of **minimal** permutations in the set

When x is above β and y is to the left of α, x and y coalesce into a unique point.

Remark

$R(\pi)$ contains exactly

- 4 one-point extensions of π
- $4|\alpha|(n - a - 1)$ two-points extensions of π
Definition of $R(\pi)$ for $\pi = a\alpha b\beta$ with $\beta \neq \varepsilon$

$R(\pi)$ is the set of minimal permutations in the set

When x is above β and y is to the left of α, x and y coalesce into a unique point.

Remark

$R(\pi)$ contains exactly
- 4 one-point extensions of π
- $4|\alpha|(n - a - 1)$ two-points extensions of π
Patterns $\pi \in S_n$ with two LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi \in S_n$ is such that $\pi = a\alpha b\beta$ for $\beta \neq \varepsilon$, then $B^{-1}(Av(\pi))$ is a class whose basis is $R(\pi)$.

Lemma

If $\pi \preceq B(\sigma)$, consider an occurrence $p\lambda q\mu \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Lemma

If σ contains an occurrence of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.
Patterns $\pi \in S_n$ with two LtoR-maxima $\neq \pi(n)$

Proposition

If $\pi \in S_n$ is such that $\pi = a\alpha b\beta$ for $\beta \neq \varepsilon$, then $B^{-1}(\text{Av}(\pi))$ is a class whose basis is $R(\pi)$.

Lemma

If $\pi \prec B(\sigma)$, consider an occurrence $p\lambda q\mu \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Lemma

If σ contains an occurrence of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.
Lemma

If $\pi \not\preceq B(\sigma)$, consider an occurrence $p\lambda q\mu \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern in $R(\pi)$.

Proof: We prove that $px\lambda_1 y\lambda_2 z\mu$ or $xp\lambda_1 y\lambda_2 z\mu \subseteq \sigma$ with

\[
\begin{aligned}
\lambda &= \lambda_1 \lambda_2, \quad p < x \\
y \text{ and } z \text{ are the two largest terms of this sequence} \\
\text{if } \lambda_1 = \varepsilon \text{ and } x > \mu, \text{ then } x \text{ and } y \text{ coalesce}
\end{aligned}
\]

Such a sequence is a permutation in $R(\pi)$.

The proof follows by induction on $|\sigma|$.

- If $|\sigma| \leq 3$, result vacuously true (since $B(\sigma)$ ends with its maximum).
- If $\sigma = \sigma_1 m \sigma_2$ with $m = |\sigma| > 3$, then $p\lambda q\mu \subseteq B(\sigma_1)\sigma_2 m$.
 Because $p\lambda q\mu$ does not end with its maximum, $p\lambda q\mu \subseteq B(\sigma_1)\sigma_2$.
Proof of the first lemma

Lemma

If \(\pi \preceq B(\sigma) \), consider an occurrence \(p\lambda q\mu \subseteq B(\sigma) \).
Then there exists a subsequence of \(\sigma \) which is an occurrence of some pattern in \(R(\pi) \).

Proof: We prove that \(px_1y_1z_1 \mu \) or \(xp_1y_1z_1 \mu \subseteq \sigma \) with

\[
\begin{cases}
\lambda = \lambda_1\lambda_2, & p < x \\
y \text{ and } z \text{ are the two largest terms of this sequence} \\
\text{if } \lambda_1 = \varepsilon \text{ and } x > \mu, \text{ then } x \text{ and } y \text{ coalesce}
\end{cases}
\]

Such a sequence is a permutation in \(R(\pi) \).

The proof follows by induction on \(|\sigma| \).

- If \(|\sigma| \leq 3 \), result vacuously true (since \(B(\sigma) \) ends with its maximum).
- If \(\sigma = \sigma_1m\sigma_2 \) with \(m = |\sigma| > 3 \), then \(p\lambda q\mu \subseteq B(\sigma_1)\sigma_2m \).
 Because \(p\lambda q\mu \) does not end with its maximum, \(p\lambda q\mu \subseteq B(\sigma_1)\sigma_2 \).
Proof of the first lemma, continued

As before, distinguish how $p\lambda q\mu$ can lie across $B(\sigma_1)\sigma_2$.

* If $\mu = \mu_1\mu_2$ with $\mu_1 \neq \varepsilon$, $p\lambda q\mu_1 \subseteq B(\sigma_1)$ and $\mu_2 \subseteq \sigma_2$ then by induction σ_1 contains a subsequence of the form $px\lambda_1y\lambda_2z\mu_1$ or $xp\lambda_1y\lambda_2z\mu_1$ to which μ_2 can be appended.

* If $p\lambda q \subseteq B(\sigma_1)$ and $\mu \subseteq \sigma_2$, then by a previous lemma $\exists t > p$ such that $tp\lambda$ or $pt\lambda \subseteq \sigma_1$. If q is to the left of λ in σ, then $pq\lambda m\mu$ or $qp\lambda m\mu \subseteq \sigma$ is of the required form. Otherwise, q and t can play the rôle of y and x, and appending $m\mu$ gives the desired subsequence.

* If $\lambda = \lambda_1\lambda_2$ with $\lambda_1 \neq \varepsilon$, $p\lambda_1 \subseteq B(\sigma_1)$ and $\lambda_2 q\mu \subseteq \sigma_2$, then as before $\exists x > p$ such that $xp\lambda_1$ or $px\lambda_1 \subseteq \sigma_1$. Appending $m\lambda_2 q\mu$ gives the desired subsequence.

* If $p \subseteq B(\sigma_1)$ and $\lambda q\mu \subseteq \sigma_2$, then $pm\lambda q\mu \subseteq \sigma_1 m\sigma_2 = \sigma$ is of the desired form, with x and y coalescing in m.

* If $p\lambda q\mu \subseteq \sigma_2$, then $mp\lambda q\mu \subseteq \sigma$. Again, x and y coalesce in m.
Proof of the second lemma

Lemma

If \(\sigma \) contains an occurrence \(px\lambda_1y\lambda_2q\mu \) or \(xp\lambda_1y\lambda_2q\mu \) of some pattern in \(R(\pi) \), then there exists a subsequence of \(B(\sigma) \) which is an occurrence of \(\pi \).

Proof: Recall that if \(\sigma = n_1\lambda_1n_2\lambda_2 \cdots n_k\lambda_k \) where \(n_1, \ldots, n_k \) are the left to right maxima of \(\sigma \) then \(B(\sigma) = \lambda_1n_1\lambda_2n_2 \cdots \lambda_kn_k \).

Hence \(\lambda\mu \subseteq B(\sigma) \). Notice also that \(p\lambda q\mu \) is an occurrence of \(\pi \) in \(\sigma \).

1. We show that \(p \) is to the left of \(\lambda \) in \(B(\sigma) \).
 - If \(p \) is not a LtoR-maximum, this is true.
 - If \(p \) is a LtoR-maximum, then \(px\lambda_1y\lambda_2q\mu \subseteq \sigma \) and there exists some \(t \) between \(p \) and \(x \) (possibly \(t = x \)) in \(\sigma \) that is a LtoR-maximum.
 This implies that \(p \) still precedes \(\lambda \) in \(B(\sigma) \).

2. We show that there exists \(r \) in \(B(\sigma) \) between \(\lambda \) and \(\mu \) with \(r > p\lambda\mu \) (to be continued).
Proof of the second lemma

Lemma

If σ contains an occurrence $px\lambda_1y\lambda_2q\mu$ or $xp\lambda_1y\lambda_2q\mu$ of some pattern in $R(\pi)$, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.

Proof: Recall that if $\sigma = n_1\lambda_1 n_2\lambda_2 \cdots n_k\lambda_k$ where n_1, \ldots, n_k are the left to right maxima of σ then $B(\sigma) = \lambda_1 n_1 \lambda_2 n_2 \cdots \lambda_k n_k$.

Hence $\lambda\mu \subseteq B(\sigma)$. Notice also that $p\lambda q\mu$ is an occurrence of π in σ.

1. We show that p is to the left of λ in $B(\sigma)$. ✓

2. We show that there exists r in $B(\sigma)$ between λ and μ with $r > p\lambda\mu$.

- If q is not a LtoR-maximum, choose $r = q$.
- If q is a LtoR-maximum, choose $r =$ the LtoR-maximum of σ immediately to the left of q. Then $p\lambda r\mu \subseteq B(\sigma)$.

By contradiction, assume that $r < y$ then in σ we have

★ either $\cdots y \cdots r \cdots q \cdots$, and r is not a LtoR-maximum,

★ or $\cdots r \cdots y \cdots q \cdots$, and there is a LtoR-maximum between r and q.

Hence $r \geq y$, and $r > p\lambda\mu$ as desired.
Summary of results

<table>
<thead>
<tr>
<th>π</th>
<th>$B^{-1}(Av(\pi))$</th>
<th>Basis</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is a class</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>is a class</td>
<td>12, 21</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>is a class</td>
<td>231, 321</td>
<td>✓</td>
</tr>
<tr>
<td>$n\alpha$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$n(n+1)\alpha, (n+1)n\alpha$</td>
<td>✓</td>
</tr>
<tr>
<td>$(n-1)\alpha n$, $\alpha \neq \varepsilon$</td>
<td>is a class</td>
<td>$(n-1)n\alpha, n(n-1)\alpha$</td>
<td>✓</td>
</tr>
<tr>
<td>$a\alpha b\beta$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(\pi)$</td>
<td>✓</td>
</tr>
<tr>
<td>$a\alpha b\beta n$, $\beta \neq \varepsilon$</td>
<td>is a class</td>
<td>$R(a\alpha b\beta)$</td>
<td>✓</td>
</tr>
<tr>
<td>$(n-2)\alpha(n-1)n$</td>
<td>is a class</td>
<td>$(n-2)(n-1)\alpha n, (n-1)(n-2)\alpha n, (n-2)n\alpha(n-1), n(n-2)\alpha(n-1)$</td>
<td>✓</td>
</tr>
<tr>
<td>$a\alpha b\beta c\gamma$, $\gamma \neq \varepsilon$</td>
<td>is not a class</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Patterns $\pi \in S_n$ with 3 LtoR-max. $\pi(1)$, $\pi(n-1)$ and $\pi(n)$

Proposition

If $\pi \in S_n$ is such that $\pi = (n-2)\alpha(n-1)n$, then $B^{-1}(\text{Av}(\pi))$ is a class whose basis is

$$\{(n-2)(n-1)\alpha n, (n-1)(n-2)\alpha n, (n-2)n\alpha(n-1), n(n-2)\alpha(n-1)\}.$$

Lemma

If $\pi \not\preceq B(\sigma)$, consider an occurrence $p\lambda qr \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern among the four above.

Lemma

If σ contains an occurrence of some pattern among the four above, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.
Patterns $\pi \in S_n$ with 3 LtoR-max. $\pi(1)$, $\pi(n-1)$ and $\pi(n)$

Proposition

If $\pi \in S_n$ is such that $\pi = (n-2)\alpha(n-1)n$, then $B^{-1}(Av(\pi))$ is a class whose basis is
\[(n-2)(n-1)\alpha n, (n-1)(n-2)\alpha n, (n-2)n\alpha(n-1), n(n-2)\alpha(n-1)\].

Lemma

If $\pi \preceq B(\sigma)$, consider an occurrence $p\lambda qr \subseteq B(\sigma)$. Then there exists a subsequence of σ which is an occurrence of some pattern among the four above.

Lemma

If σ contains an occurrence of some pattern among the four above, then there exists a subsequence of $B(\sigma)$ which is an occurrence of π.
Summary of results

<table>
<thead>
<tr>
<th>(\pi)</th>
<th>(B^{-1}(Av(\pi)))</th>
<th>Basis</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is a class</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>is a class</td>
<td>12, 21</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>is a class</td>
<td>231, 321</td>
<td>✓</td>
</tr>
<tr>
<td>(n\alpha, \alpha \neq \varepsilon)</td>
<td>is a class</td>
<td>(n(n + 1)\alpha, (n + 1)n\alpha)</td>
<td>✓</td>
</tr>
<tr>
<td>((n - 1)\alpha n, \alpha \neq \varepsilon)</td>
<td>is a class</td>
<td>((n - 1)n\alpha, n(n - 1)\alpha)</td>
<td>✓</td>
</tr>
<tr>
<td>(a\alpha b\beta, \beta \neq \varepsilon)</td>
<td>is a class</td>
<td>(R(\pi))</td>
<td>✓</td>
</tr>
<tr>
<td>(a\alpha b\beta n, \beta \neq \varepsilon)</td>
<td>is a class</td>
<td>(R(a\alpha b\beta))</td>
<td>✓</td>
</tr>
<tr>
<td>((n - 2)\alpha(n - 1)n)</td>
<td>is a class</td>
<td>((n - 2)(n - 1)\alpha n, (n - 1)(n - 2)\alpha n, (n - 2)n \alpha(n - 1), n(n - 2)\alpha (n - 1))</td>
<td>✓</td>
</tr>
<tr>
<td>(a\alpha b\beta c\gamma, \gamma \neq \varepsilon)</td>
<td>is not a class</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Some open questions

Q1. When is $B^{-1}(\text{Av}(B))$ a class, for $|B| \geq 2$?

Partial answer: $B^{-1}(\text{Av}(B))$ is a class when $B^{-1}(\text{Av}(\pi))$ is a class for every $\pi \in B$, but not only.

- $B^{-1}(\text{Av}(B)) = \bigcap_{\pi \in B} B^{-1}(\text{Av}(\pi))$.
- An example is $\Gamma_3 =$ the set of permutations of length 4 ending with 1: $B^{-1}(\text{Av}(\Gamma_3))$ is a class, although Γ_3 contains 2341 and $B^{-1}(\text{Av}(2341))$ is not a class.

Q2. Are the growth rates of C and $B^{-1}(C)$ related?

Growth rate of a permutation class $C = \limsup_{n \to \infty} \sqrt[n]{c_n}$ where c_n is the number of permutations of length n in C.
Some open questions

Q1. When is $B^{-1}(Av(B))$ a class, for $|B| \geq 2$?

Partial answer: $B^{-1}(Av(B))$ is a class when $B^{-1}(Av(\pi))$ is a class for every $\pi \in B$, but not only.

- $B^{-1}(Av(B)) = \bigcap_{\pi \in B} B^{-1}(Av(\pi))$.
- An example is $\Gamma_3 =$ the set of permutations of length 4 ending with 1: $B^{-1}(Av(\Gamma_3))$ is a class, although Γ_3 contains 2341 and $B^{-1}(Av(2341))$ is not a class.

Q2. Are the growth rates of C and $B^{-1}(C)$ related?

Growth rate of a permutation class $C = \limsup_{n \to \infty} \sqrt[n]{c_n}$ where c_n is the number of permutations of length n in C
Composing sorting operators

- **SB-sortable permutations**:
 \[(SB)^{-1}(Av(21)) = B^{-1}(Av(231)) = Av(3241, 2341, 4231, 2431)\]

- **B²-sortable permutations**:
 \[(BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321)) = Av(\Gamma_2)\]

- **B^k-sortable permutations**:
 \[(B^k)^{-1}(Av(21)) = Av(\Gamma_k) \text{ with } \Gamma_k = \text{the set of permutations of length } k + 1 \text{ ending with } 1.\]

Other sorting operators:

- built from \(B, S, \ldots\) and symmetries of the permutations \((i, r, c)\)
- with a queue
- definition of abstract sorting operator
Composing sorting operators

- SB-sortable permutations:
 \[
 (SB)^{-1}(Av(21)) = B^{-1}(Av(231)) = Av(3241, 2341, 4231, 2431)
 \]

- B^2-sortable permutations:
 \[
 (BB)^{-1}(Av(21)) = B^{-1}(Av(231, 321)) = Av(\Gamma_2)
 \]

- B^k-sortable permutations:
 \[
 (B^k)^{-1}(Av(21)) = Av(\Gamma_k) \text{ with } \Gamma_k = \text{the set of permutations of length } k + 1 \text{ ending with } 1.
 \]

Other sorting operators:
- built from B, S, \ldots and symmetries of the permutations (i, r, c)
- with a queue
- definition of abstract sorting operator