Operators of equivalent sorting power and related Wilf-equivalences

Mathilde Bouvel
joint work with Michael Albert

29 mars 2013
Previously, on groupe de travail CÉA...

We study permutations sortable by sorting operators which are compositions of stack sorting operators S and reverse operators R.

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_n sortable by $S \circ S$ as permutations of \mathfrak{S}_n sortable by $S \circ R \circ S$, and many permutation statistics are equidistributed across these two sets.
We study permutations sortable by sorting operators which are compositions of stack sorting operators S and reverse operators R.

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_n sortable by $S \circ S$ as permutations of \mathfrak{S}_n sortable by $S \circ R \circ S$, and many permutation statistics are equidistributed across these two sets.

Computer experiments then suggest that:

Conjecture (The (id, R) conjecture)

For any operator A which is a composition of operators S and R, there are as many permutations of \mathfrak{S}_n sortable by $S \circ id \circ A$ as permutations of \mathfrak{S}_n sortable by $S \circ R \circ A$. Moreover, many permutation statistics are equidistributed across these two sets.
Our primary purpose is to prove the \((id, R)\) conjecture.

Theorem

The \((id, R)\) conjecture holds.

The proof uses:

- The characterization of preimages of permutations by \(S\)
- A new bijection (denoted \(P\)) between \(Av(231)\) and \(Av(132)\)
In this episode...

Our primary purpose is to prove the \((id, R)\) conjecture.

Theorem

The \((id, R)\) conjecture holds.

The proof uses:

- The characterization of preimages of permutations by \(S\)
- A new bijection (denoted \(P\)) between \(Av(231)\) and \(Av(132)\)

The bijection \(P\) has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences). For instance:

Theorem

\(Av(231, 31254)\) and \(Av(132, 42351)\) have the same enumerative sequence, and their common generating function is

\[
F_5(t) = \frac{t^3 - t^2 - 2t + 1}{2t^3 - 3t + 1}.
\]
Definitions
Permutations and patterns

Permutation: Bijection from \([1..n]\) to itself. Set \(\mathfrak{S}_n\).

We view permutations as **words**, \(\sigma = \sigma_1 \sigma_2 \ldots \sigma_n\)

Example: \(\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7\).

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
Permutations and patterns

Permutation: Bijection from $[1..n]$ to itself. Set \mathfrak{S}_n.

We view permutations as **words**, $\sigma = \sigma_1 \sigma_2 \ldots \sigma_n$

Example: $\sigma = 1\ 8\ 3\ 6\ 4\ 2\ 5\ 7$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists\ i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preceq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \ldots \sigma_{i_k}$ on $[1..k]$ yields π.

Example: $2\ 1\ 3\ 4 \preceq 3\ 1\ 2\ 8\ 5\ 4\ 7\ 9\ 6$ since $3\ 1\ 5\ 7 \equiv 2\ 1\ 3\ 4$.
Permutations and patterns

Permutation: Bijection from $[1..n]$ to itself. Set \mathcal{S}_n.

We view permutations as words, $\sigma = \sigma_1\sigma_2\ldots\sigma_n$

Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Occurrence of a pattern: $\pi \in \mathcal{S}_k$ is a pattern of $\sigma \in \mathcal{S}_n$ if $
exists \ i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preceq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \ldots \sigma_{i_k}$ on $[1..k]$ yields π.

Example: $2 \ 1 \ 3 \ 4 \preceq 3 \ 1 \ 2 \ 8 \ 5 \ 4 \ 7 \ 9 \ 6$ since $3 \ 1 \ 5 \ 7 \equiv 2 \ 1 \ 3 \ 4$.

Avoidance: $Av(\pi, \tau, \ldots)$ = set of permutations that do not contain any occurrence of π or τ or ...
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$\begin{array}{c}
\begin{array}{c}
6 \quad 1 \quad 3 \quad 2 \quad 7 \quad 5 \quad 4
\end{array}
\end{array}$
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

\[
\begin{array}{cccccc}
1 & & & & & 3 2 7 5 4 \\
&&\downarrow&\downarrow&&\\
&\uparrow&6&
\end{array}
\]
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1

2 7 5 4

3 6
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

```
1 2
```

3 6

```
7 5 4
```
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the **Hanoi condition**.

```
1 2 3                  7 5 4
```

```
6
```
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 2 3 6

7 5 4
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\begin{array}{ccccccc}
1 & 2 & 3 & 6 & \leftarrow & 7 & 5 & 4
\end{array}$$
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 2 3 6

5 7

4
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 2 3 6

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
The stack sorting operator S:

Sort (or try to do so) using a **stack** satisfying the **Hanoi condition**.

$1 \ 2 \ 3 \ 6 \ 4$
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 2 3 6 4 5

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
Definitions, context and main result

The stack sorting operator \(S \)

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 2 3 6 4 5 7
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$S(\sigma) = 1 \ 2 \ 3 \ 6 \ 4 \ 5 \ 7 \quad \quad 6 \ 1 \ 3 \ 2 \ 7 \ 5 \ 4 = \sigma$$

Equivalently, $S(\varepsilon) = \varepsilon$ and $S(LnR) = S(L)S(R)n$, $n = \max(LnR)$
The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$S(\sigma) = 1 \ 2 \ 3 \ 6 \ 4 \ 5 \ 7 \leftarrow \sigma = 6 \ 1 \ 3 \ 2 \ 7 \ 5 \ 4$

Equivalently, $S(\varepsilon) = \varepsilon$ and $S(LnR) = S(L)S(R)n$, $n = \max(LnR)$

- Permutations sortable by S: $Av(231)$, enumeration by Catalan numbers [Knuth 1975]
- Sortable by $S \circ S$: $Av(2341, 35241)$ [West 1993], enumeration by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ [Zeilberger 1992]
- Sortable by $S \circ S \circ S$: characterization with (generalized) excluded patterns [Claesson, Úlfarsson 2012], no enumeration result
Main result

Reverse operator \(R \): \(R(\sigma_1\sigma_2\cdots\sigma_n) = \sigma_n\cdots\sigma_2\sigma_1 \)

Theorem

For any operator \(A \) which is a composition of operators \(S \) and \(R \), there are as many permutations of \(\mathfrak{S}_n \) sortable by \(S \circ A \) as permutations of \(\mathfrak{S}_n \) sortable by \(S \circ R \circ A \). Moreover, many permutation statistics are equidistributed across these two sets.

To prove it, we use:

- the characterization of preimages of permutations by \(S \) [Bousquet-Mélou, 2000]
- a new bijection (denoted \(P \)) between \(\text{Av}(231) \) and \(\text{Av}(132) \)
Definitions, context and main result

Main result, an equivalent statement

Recall that the set of permutations sortable by S is $\text{Av}(231)$. Hence, the set of permutations sortable by $S \circ R$ is $\text{Av}(132)$.

Theorem

For any operator A which is a composition of operators S and R, there is a size-preserving bijection between

- permutations of $\text{Av}(231)$ that belong to the image of A, and
- permutations of $\text{Av}(132)$ that belong to the image of A, that preserves the number of preimages under A.

We shall see later about the equidistributed statistics.
Preimages under S

from [Bousquet-Mélou, 2000]
Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{\text{in}}(\theta)$ of θ: $S(\theta) = \text{Post}(T_{\text{in}}(\theta))$
Stack sorting on trees

The stack sorting of \(\theta \) is equivalent to the post-order reading of the in-order tree \(T_{\text{in}}(\theta) \) of \(\theta \): \(S(\theta) = \text{Post}(T_{\text{in}}(\theta)) \)

Example: \(\theta = 5 \ 8 \ 1 \ 9 \ 6 \ 2 \ 3 \ 7 \ 4 \), giving \(S(\theta) = 5 \ 1 \ 8 \ 2 \ 3 \ 6 \ 4 \ 7 \ 9 \).
Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{\text{in}}(\theta)$ of θ: $S(\theta) = \text{Post}(T_{\text{in}}(\theta))$

Example: $\theta = 5 \ 8 \ 1 \ 9 \ 6 \ 2 \ 3 \ 7 \ 4$, giving $S(\theta) = 5 \ 1 \ 8 \ 2 \ 3 \ 6 \ 4 \ 7 \ 9$.

$T_{\text{in}}(\theta) = 5 \ 8 \ 1 \ 6 \ 7 \ 4 \ 3 \ 2 \ 9$ and $\text{Post}(T_{\text{in}}(\theta)) = 5 \ 1 \ 8 \ 2 \ 3 \ 6 \ 4 \ 7 \ 9$.
Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ: $S(\theta) = \text{Post}(T_{in}(\theta))$

Example: $\theta = 5\ 8\ 1\ 9\ 6\ 2\ 3\ 7\ 4$, giving $S(\theta) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9$.

$$T_{in}(\theta) = \begin{array}{c} 9 \\ 8 \ 1 \\ 6 \ 7 \ 4 \\ 2 \ 3 \ 4 \end{array}$$ and $\text{Post}(T_{in}(\theta)) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9$.

Proof: Since $S(LnR) = S(L)S(R)n$, $T_{in}(LnR) = \begin{array}{c} n \\ T_{in}(L) \\ T_{in}(R) \end{array}$ and $\text{Post}(T_{in}(LnR)) = \text{Post}(T_{in}(L)) \text{Post}(T_{in}(R))n$.

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{\text{in}}(\theta)$ of θ: $S(\theta) = \text{Post}(T_{\text{in}}(\theta))$

Example: $\theta = 5\ 8\ 1\ 9\ 6\ 2\ 3\ 7\ 4$, giving $S(\theta) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9$.

$T_{\text{in}}(\theta) = \begin{array}{c} 5 \\ 8 \\ 9 \\ 1 \\ 6 \\ 7 \\ 4 \\ 2 \\ 3 \\ 7 \\ 4 \end{array}$ and $\text{Post}(T_{\text{in}}(\theta)) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9$.

Proof: Since $S(LnR) = S(L)S(R)n$, $T_{\text{in}}(LnR) = \begin{array}{c} n \\ T_{\text{in}}(L) \\ T_{\text{in}}(R) \end{array}$

and $\text{Post}(\begin{array}{c} n \\ T_{\text{in}}(L) \\ T_{\text{in}}(R) \end{array}) = \text{Post}(T_{\text{in}}(L))\ \text{Post}(T_{\text{in}}(R))n.$

Consequence: For $\pi \in \text{Im}(S)$, $\theta \in S^{-1}(\pi)$ iff $\text{Post}(T_{\text{in}}(\theta)) = \pi$.
A decreasing binary tree T is **canonical** if $\forall x, z$ such that x is the left child of z, z has a right child, and the leftmost node in the right subtree of z is $y < x$.

Proposition: For $\pi \in \text{Im}(S)$, there is a unique canonical tree T_π such that $\text{Post}(T_\pi) = \pi$. In fact $T_\pi = T_{\text{in}}(\theta)$ where θ is the permutation having the greatest number of inversions in $S^{-1}(\pi)$.
A decreasing binary tree T is **canonical** if $\forall x, z$ such that x is the left child of z, z has a right child, and the leftmost node in the right subtree of z is $y < x$.

Proposition: For $\pi \in \text{Im}(S)$, there is a unique canonical tree T_π such that $\text{Post}(T_\pi) = \pi$. In fact $T_\pi = T_{\text{in}}(\theta)$ where θ is the permutation having the greatest number of inversions in $S^{-1}(\pi)$.

Proposition: All $\theta \in S^{-1}(\pi)$ may be described from T_π by **local re-rootings of subtrees**, or **wind blowing**.

Consequence: $|S^{-1}(\pi)|$ depends only on the **shape** of T_π (and in particular, not on its labeling).
Example of canonical tree

\[\pi = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9 \in \text{Im}(S) \]
The canonical tree T_π is:

```
  /\  
 /   \\
5 - 8 - 1
  \ /  \
 6 - 9 - 7
  /   \
3 - 2 - 4
  /\  
 /   \\
```

$\pi = 518236479 \in \text{Im}(S)$
Example of canonical tree

\[\pi = 518236479 \in \text{Im}(S) \]

The canonical tree \(T_\pi \) is:

\[\begin{array}{c}
5 & 8 & 1 & 9 & 6 & 3 & 2 & 7 & 4 \\
\end{array} \]

\(\theta = 581963274 \) is such that \(S(\theta) = \pi \) and \(T_{\text{in}}(\theta) = T_\pi \).
Example of canonical tree

\[\pi = 5 1 8 2 3 6 4 7 9 \in \text{Im}(S) \]

The canonical tree \(T_\pi \) is:

\[\begin{align*}
9 & \quad 8 \quad 1 \\
6 & \quad 7 \\
2 & \quad 3
\end{align*} \]

\[\theta = 5 8 1 9 6 3 2 7 4 \] is such that \(S(\theta) = \pi \) and \(T_{\text{in}}(\theta) = T_\pi \).

There are 4 other permutations in \(S^{-1}(\pi) \): those whose in-order trees are:

\[\begin{align*}
\begin{array}{c}
5 \quad 8 \quad 1 \\
2 \quad 6 \\
3 \quad 7 \\
\end{array} & \quad \begin{array}{c}
5 \quad 8 \quad 1 \\
2 \quad 3 \\
6 \quad 7 \\
4
\end{array} \\
\begin{array}{c}
5 \quad 8 \quad 1 \\
2 \quad 6 \\
3 \quad 7 \\
\end{array} & \quad \begin{array}{c}
5 \quad 8 \quad 1 \\
2 \quad 3 \\
6 \quad 7 \\
4
\end{array}
\end{align*} \]
Example of canonical tree

\[\pi = 5\,1\,8\,2\,3\,6\,4\,7\,9 \in \text{Im}(S) \]

The canonical tree \(T_\pi \) is:

\[\begin{array}{c}
9 \\
8 \quad 1 \\
6 \quad 7 \quad 4
\end{array} \]

\(\theta = 5\,8\,1\,9\,6\,3\,2\,7\,4 \) is such that \(S(\theta) = \pi \) and \(T_{\text{in}}(\theta) = T_\pi \).

There are 4 other permutations in \(S^{-1}(\pi) \): those whose in-order trees are:

In particular, \(|S^{-1}(\pi)| = 5 \).
Example of canonical tree

\[\pi = 4 \, 1 \, 8 \, 2 \, 3 \, 6 \, 5 \, 7 \, 9 \in \text{Im}(S) \]

The canonical tree \(T_{\pi} \) is:

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]

\[\begin{array}{c}
9 \\
/ \\
8 \\
/ \\
1 \\
/ \\
6 \\
/ \\
3 \\
/ \\
2 \\
\end{array} \]
Example of canonical tree

\(\pi = 4 \ 1 \ 7 \ 2 \ 3 \ 6 \ 5 \ 8 \ 9 \in \text{Im}(S) \)

The canonical tree \(T_\pi \) is:

\[
\begin{array}{c}
5 & 8 & 9 \\
1 & 6 & 7 \\
3 & 2 & .
\end{array}
\]

\(\theta = 5 \ 8 \ 1 \ 9 \ 6 \ 3 \ 2 \ 7 \ 4 \) is such that \(S(\theta) = \pi \) and \(T_{\text{in}}(\theta) = T_\pi \).

There are 4 other permutations in \(S^{-1}(\pi) \): those whose in-order trees are:

In particular, \(|S^{-1}(\pi)| = 5 \).
Example of canonical tree

\(\pi = 4 1 7 2 3 6 5 8 9 \in \text{Im}(S) \)

The canonical tree \(T_\pi \) is: 4\,\overleftrightarrow{7}\,1\,\overleftrightarrow{6}\,3\,2\,5.

\(\theta = 5 8 1 9 6 3 2 7 4 \) is such that \(S(\theta) = \pi \) and \(T_{\text{in}}(\theta) = T_\pi \).

There are 4 other permutations in \(S^{-1}(\pi) \): those whose in-order trees are:

In particular, \(|S^{-1}(\pi)| = 5 \).
Example of canonical tree

$\pi = 4\,1\,7\,2\,3\,6\,5\,8\,9 \in \text{Im}(S)$

The canonical tree T_{π} is:

\[
\begin{array}{c}
\text{4} \\
\text{7} \\
\text{1} \\
\text{6} \\
\text{3} \\
\text{2} \\
\text{5} \\
\end{array}
\]

$\theta = 4\,7\,1\,9\,6\,3\,2\,8\,5$ is such that $S(\theta) = \pi$ and $T_{\text{in}}(\theta) = T_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

In particular, $|S^{-1}(\pi)| = 5$.
Example of canonical tree

\[
\pi = 4 \ 1 \ 7 \ 2 \ 3 \ 6 \ 5 \ 8 \ 9 \in \text{Im}(S)
\]

The canonical tree \(T_\pi \) is:

\[
\begin{align*}
4 & \quad 7 & \quad 9 \\
1 & \quad 6 & \quad 8 & \quad 5 \\
\end{align*}
\]

\[
\theta = 4 \ 7 \ 1 \ 9 \ 6 \ 3 \ 2 \ 8 \ 5 \text{ is such that } S(\theta) = \pi \text{ and } T_{\text{in}}(\theta) = T_\pi.
\]

There are 4 other permutations in \(S^{-1}(\pi) \): those whose in-order trees are:

\[
\begin{align*}
4 & \quad 7 & \quad 9 & \quad 6 & \quad 8 & \quad 5 \\
1 & \quad 2 & \quad 3 & \quad 5 \\
\end{align*}
\]

In particular, \(|S^{-1}(\pi)| = 5 \).
Example of canonical tree

\[\pi = 4 \ 1 \ 7 \ 2 \ 3 \ 6 \ 5 \ 8 \ 9 \in \text{Im}(S) \]

The canonical tree \(T_\pi \) is: \(\begin{tikzpicture} \end{tikzpicture} \)

\[\theta = 4 \ 7 \ 1 \ 9 \ 6 \ 3 \ 2 \ 8 \ 5 \] is such that \(S(\theta) = \pi \) and \(T_{\text{in}}(\theta) = T_\pi \).

There are 4 other permutations in \(S^{-1}(\pi) \): those whose in-order trees are:

In particular, \(|S^{-1}(\pi)| = 5 \) is unchanged.

Mathilde Bouvel
Operators of equivalent sorting power and related Wilf-equivalences
Example of canonical tree

\[\pi = 4 \; 1 \; 7 \; 2 \; 3 \; 6 \; 5 \; 8 \; 9 \in \text{Im}(S) \]

The canonical tree \(T_\pi \) is: \(4 \begin{array}{c} 7 \\ 1 \end{array} \
\begin{array}{c} 9 \\ 6 \end{array} \
\begin{array}{c} 8 \\ 3 \end{array} \
\begin{array}{c} 5 \end{array} \).

\[\theta = 4 \; 7 \; 1 \; 9 \; 6 \; 3 \; 2 \; 8 \; 5 \] is such that \(S(\theta) = \pi \) and \(T_{\text{in}}(\theta) = T_\pi \).

There are 4 other permutations in \(S^{-1}(\pi) \): those whose in-order trees are:

In particular, \(|S^{-1}(\pi)| = 5 \) is unchanged.

Conclusion: \(|S^{-1}(\pi)| \) is determined by the shape of \(T_\pi \).
Bijection $\text{Av}(231) \leftrightarrow^{P} \text{Av}(132)$
A new bijection between $\text{Av}(231)$ and $\text{Av}(132)$

Diagrams of permutations; Sum and skew sum

Diagram of $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$:

- α a permutation of \mathcal{S}_a,
- β a permutation of \mathcal{S}_b

- **Sum**:
 \[\alpha \oplus \beta = \alpha (\beta + a) = \begin{array} \alpha \end{array} \begin{array} \beta \end{array} \]

- **Skew sum**:
 \[\alpha \ominus \beta = (\alpha + b) \beta = \begin{array} \alpha \end{array} \begin{array} \beta \end{array} \]
A new bijection between $\text{Av}(231)$ and $\text{Av}(132)$

Describing permutations in $\text{Av}(231)$ and $\text{Av}(132)$

- **$\text{Av}(231) = \varepsilon + \text{Av}(231)$**
- **$\text{Av}(132) = \varepsilon + \text{Av}(132)$**

Any $\pi \neq \varepsilon \in \text{Av}(231)$ is decomposed as

$$\pi = \alpha \oplus (1 \ominus \beta)$$

with $\alpha, \beta \in \text{Av}(231)$.

Any $\pi \neq \varepsilon \in \text{Av}(132)$ is decomposed as

$$\pi = (\alpha \oplus 1) \ominus \beta$$

with $\alpha, \beta \in \text{Av}(132)$.
A new bijection between $Av(231)$ and $Av(132)$

Bijection P from $Av(231)$ to $Av(132)$

P is recursively defined as:

- If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

 or equivalently, $\alpha \beta \rightarrow P(\alpha) P(\beta)$.

with $\alpha, \beta \in Av(231)$.

Example: For $\pi = 1\,5\,3\,2\,4\,9\,8\,6\,7 \in Av(231)$,

$$P(\pi) =$$

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
A new bijection between $Av(231)$ and $Av(132)$

Bijection P from $Av(231)$ to $Av(132)$

P is recursively defined as:

- If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

- or equivalently, $\begin{array}{c} \alpha \\ \beta \end{array} \xrightarrow{P} \begin{array}{c} P(\alpha) \\ P(\beta) \end{array}$.

with $\alpha, \beta \in Av(231)$.

Example: For $\pi = 153249867 \in Av(231)$,

$P(\pi) = 785469312$.

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
A new bijection between $Av(231)$ and $Av(132)$

Bijection P from $Av(231)$ to $Av(132)$

P is recursively defined as:

- If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

- or equivalently, $\begin{array}{c}
\bullet \\
\beta \\
\end{array}$ \quad \xrightarrow{P} \quad \begin{array}{c}
\bullet \\
P(\alpha) \\
\end{array}$.

with $\alpha, \beta \in Av(231)$.

Example: For $\pi = 1\, 5\, 3\, 2\, 4\, 9\, 8\, 6\, 7 \in Av(231)$, $P(\pi) = 7\, 8\, 5\, 4\, 6\, 9\, 3\, 1\, 2$.

Remark: P is the identity map on $Av(231, 132)$.
A new bijection between $\text{Av}(231)$ and $\text{Av}(132)$

Some properties of P

Proposition: P preserves the shape of in-order trees.

Proof: From the recursive definition of P.

Example: For $\pi = 1\ 5\ 3\ 2\ 4\ 9\ 8\ 6\ 7$ (and $P(\pi) = 7\ 8\ 5\ 4\ 6\ 9\ 3\ 1\ 2$):

$T_{\text{in}}(\pi) = 1 \overset{5}{\quad} \overset{9}{\quad} \overset{8}{\quad} \overset{7}{\quad} \overset{3}{\quad} \overset{2}{\quad} \overset{4}{\quad} \overset{6}{\quad} \overset{1}{\quad}$

$T_{\text{in}}(P(\pi)) = 7 \overset{8}{\quad} \overset{9}{\quad} \overset{3}{\quad} \overset{6}{\quad} \overset{5}{\quad} \overset{4}{\quad} \overset{1}{\quad}$
Some properties of \(P \)

Proposition: \(P \) preserves the shape of in-order trees.

Proof: From the recursive definition of \(P \).

Example: For \(\pi = 1\ 5\ 3\ 2\ 4\ 9\ 8\ 6\ 7 \) (and \(P(\pi) = 7\ 8\ 5\ 4\ 6\ 9\ 3\ 1\ 2 \)):

\[
T_{in}(\pi) = 1\ 5\ 3\ 2\ 4\ 9\ 8\ 7
\]

\[
T_{in}(P(\pi)) = 7\ 8\ 5\ 4\ 6\ 9\ 3\ 1\ 2
\]

Consequence: \(P \) preserves the following statistics:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Proof: These are determined by the shape of in-order trees.
Proof of the main result:
Some key ideas
Proof of the main result:
Some key ideas

Theorem

For any operator A which is a composition of operators S and R, there are as many permutations of \mathfrak{S}_n sortable by $S \circ A$ as permutations of \mathfrak{S}_n sortable by $S \circ R \circ A$. Moreover, many permutation statistics are equidistributed across these two sets.
Definition of Φ_A

For $\pi \in \text{Av}(231)$, we may see $P(\pi) \in \text{Av}(132)$ as obtained from π by some relabeling of $\{1, 2, \ldots, n\}$, denoted λ_π, i.e. $P(\pi) = \lambda_\pi \circ \pi$.
Idea of the proof of the main result

Definition of Φ_A

For $\pi \in \operatorname{Av}(231)$, we may see $P(\pi) \in \operatorname{Av}(132)$ as obtained from π by some relabeling of $\{1, 2, \ldots, n\}$, denoted λ_π, i.e. $P(\pi) = \lambda_\pi \circ \pi$.

Definition:

- Take θ a permutation sortable by $S \circ A$.
- Set $\pi = A(\theta)$. $\pi \in \operatorname{Av}(231)$.
- Consider λ_π such that $P(\pi) = \lambda_\pi \circ \pi$.
- Define $\Phi_A(\theta) = \lambda_\pi \circ \theta$.

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
Definition of Φ_A

For $\pi \in \text{Av}(231)$, we may see $P(\pi) \in \text{Av}(132)$ as obtained from π by some relabeling of $\{1, 2, \ldots, n\}$, denoted λ_π, i.e. $P(\pi) = \lambda_\pi \circ \pi$.

Definition:

- Take θ a permutation sortable by $S \circ A$.
- Set $\pi = A(\theta)$. $\pi \in \text{Av}(231)$.
- Consider λ_π such that $P(\pi) = \lambda_\pi \circ \pi$.
- Define $\Phi_A(\theta) = \lambda_\pi \circ \theta$.

Theorem: Φ_A is a bijection between the set of permutation sortable by $S \circ A$ and the set of those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
Idea of the proof of the main result

Proving that Φ_A is a bijection

Definition: A respects P if, for all $\pi \in \text{Av}(231) \cap \text{Im}(A)$:

- For each θ such that $A(\theta) = \pi$, we have $A(\Phi_A(\theta)) = P(\pi) = \lambda_{\pi} \circ \pi$
- some condition (??) on canonical trees...
Idea of the proof of the main result

Proving that Φ_A is a bijection

Definition: A respects P if, for all $\pi \in \text{Av}(231) \cap \text{Im}(A)$:

- For each θ such that $A(\theta) = \pi$, we have $A(\Phi_A(\theta)) = P(\pi) = \lambda_\pi \circ \pi$ and $T_{\text{in}}(\Phi_A(\theta)) = \lambda_\pi(T_{\text{in}}(\theta))$,
- the correspondence $\Phi_A : \theta \mapsto \Phi_A(\theta)$ is a bijection between $A^{-1}(\pi)$ and $A^{-1}(P(\pi))$.
Proving that Φ_A is a bijection

Definition: A respects P if, for all $\pi \in \text{Av}(231) \cap \text{Im}(A)$:

- For each θ such that $A(\theta) = \pi$, we have $A(\Phi_A(\theta)) = P(\pi) = \lambda_\pi \circ \pi$ and $T_{\text{in}}(\Phi_A(\theta)) = \lambda_\pi(T_{\text{in}}(\theta))$,
- the correspondence $\Phi_A : \theta \mapsto \Phi_A(\theta)$ is a bijection between $A^{-1}(\pi)$ and $A^{-1}(P(\pi))$.

Proposition: The identity operator respects P.

Proposition: If A respects P then so does $A \circ R$.

Proposition: If A respects P then so does $A \circ S$.

Mathilde Bouvel
Operators of equivalent sorting power and related Wilf-equivalences
Definitions

Preimages under S

$P : \text{Av}(231) \leftrightarrow \text{Av}(132)$

Proof of main result

Idea of the proof of the main result

Proving that Φ_A is a bijection

Definition: A respects P if, for all $\pi \in \text{Av}(231) \cap \text{Im}(A)$:

- For each θ such that $A(\theta) = \pi$, we have $A(\Phi_A(\theta)) = P(\pi) = \lambda_\pi \circ \pi$ and $T_{\text{in}}(\Phi_A(\theta)) = \lambda_\pi(T_{\text{in}}(\theta))$,
- the correspondence $\Phi_A : \theta \mapsto \Phi_A(\theta)$ is a bijection between $A^{-1}(\pi)$ and $A^{-1}(P(\pi))$.

Proposition: The identity operator respects P.

Proposition: If A respects P then so does $A \circ R$.

Proposition: If A respects P then so does $A \circ S$.

Theorem: Every operator A respects P.

Consequence: Φ_A is a bijection between the set of permutations sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Operators of equivalent sorting power and related Wilf-equivalences
Statistics preserved by Φ_A

Theorem: Φ_A preserves the shape of in-order trees.

Consequence: Φ_A preserves the following statistics:
- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Other statistics preserved:
- Zeilberger’s statistics when $A = A_0 \circ S$:
 $\text{zeil}(\theta) = \max\{k \mid n(n-1) \ldots (n-k+1) \text{ is a subword of } \theta\}$
- the reversed Zeilberger’s statistics when $A = A_0 \circ S$ and A_0 contains at least a composition $S \circ R$:
 $R\text{zeil}(\theta) = \max\{k \mid (n-k+1) \ldots (n-1)n \text{ is a subword of } \theta\}$
Who is Φ_S?

- Φ_S provides a bijection between the set of permutations sortable by $S \circ S$ and those sortable by $S \circ R \circ S$.
- With O. Guibert, we gave a common generating tree for those two sets, providing a bijection between them.

Problem

Are these two bijections the same one?

It is not as easy as it seems...
More about the bijection $\text{Av}(231) \overset{P}{\leftrightarrow} \text{Av}(132)$

Related Wilf-equivalences

... Next talk!