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Euler equations Acoustic equations

∂tρ +∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v +
p

ε2
· 1) = 0

Linearization−→ ∂tv +
∇p
ε2

= 0

∂te +∇ · (v(e + p)) = 0 ∂tp + c2∇ · v = 0yε→ 0
yε→ 0

incompressible Euler equations ∇p = 0 and ∇ · v = 0

The acoustic equations are an example of a

Linear hyperbolic system in multi-d

∂tq + J · ∇q = 0
Fourier transform: q(t,x) = q̂(t) exp(ik · x)

⇒ ∂tq̂ + i(J · k)q̂ = 0

Summary
The linearized Euler equations possess a low Mach number limit.
This serves as a guideline to the nonlinear case by the following
result:

The ability of a numerical scheme to resolve the low
Mach number limit is equivalent to preserving a
discrete vorticity.

This allows to characterize all low Mach compliant
schemes.

Stationary states of linear acoustics:

∇p = 0 ∇ · v = 0

Stationary states
• det(J · k) = 0 ⇒ stationary states exist

• their Fourier transform is the right
eigenvector with eigenvalue 0

• If det(J · k) = 0 independently of k, then
the stationary states are called
nontrivial.

Vorticity: ω = ∇× v. For linear acoustics,

∂tω = 0

Constant of motion
• det(J · k) = 0 ⇒ constant of motion exists

Indeed, consider a left eigenvector Ω of
J · k with eigenvalue 0, i.e.

Ω(J · k) = 0

From ∂tq̂ + i(J · k)q̂ = 0 follows ∂t(Ωq̂) = 0.

Given initial data q(0,x) = q̂ exp(ik · x) there
exist q̂0, q̂± such that

q(t,x) = q̂0 + q̂± exp

(
∓i
c|k|t
ε

+ ik · x
)

By reinterpreting c
ε · t as c · tε the low Mach

number limit is equivalent to the limit of
long times.

Continuous statements

Stationarity preserving ⇔ Vorticity preserving ⇔ Low Mach compliant

In the discrete case, the evolution matrix E (see Box below) plays the role of J · k:

Discrete stationary states
• det E = 0 independently of k ⇒
nontrivial discrete stationary
states exist: stationarity preserving
scheme.

• their Fourier transform is the right
eigenvector with eigenvalue 0.

• all the analytic stationary states are
captureda in the discrete. (Both trivial and
nontrivial!)

a More precisely: The discrete stationary states are discretizations
of all the analytic stationary states, not just of the subset of trivial
ones.

Numerical constant of motion
• det E = 0 ⇒ numerical constant of motion

exists.

• its Fourier transform is the left
eigenvector with eigenvalue 0.

For linear acoustics such schemes are called
vorticity preserving.
Vorticity preserving schemes for linear acoustics have been studied among others
in Morton & Roe 2001, Jeltsch & Torrilhon 2006, Mishra & Tadmor 2011.

• Limit of long time also in the discrete.

• von Neumann stability:
non-stationary modes decay in time

• Thus all the limit states for ε→ 0 are
captured in the discrete: low Mach
compliant scheme.

Discrete statements
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Evolution matrix
• rectangular grid with spacing ∆xm in m-th spatial direction, m = 1, . . . , d

• Each cell has a unique index I ∈ Zd, qI is the value of q in cell I .

• km and Im are the components of k and I in m-th direction

Fourier ansatz: qI = q̂ exp
(

i

d∑
m=1

Imkm∆xm

)
= q̂

d∏
m=1

tImm with the translation

factor tm := exp(ikm∆xm).

The semidiscrete scheme ∂tqI +
∑

S∈[−N,N ]d⊂Zd

αSqI+S = 0 upon the Fourier transform

amounts to ∂tq̂ + iE q̂ = 0 with the time evolution governed by the evolution

matrix E = −
∑

S∈[−N,N ]d

iαS

d∏
m=1

tSmm .
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