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A time-continuous finite volume scheme for a system of
conservation laws ∂tq +∇ · f (q) = 0 with q : Rd×R+

0 → Rn

f : Rn→ Rn

reads (e.g. in d = 2):

∂tqi +
f

(x)

i+1
2,j
− f (x)

i−1
2,j

∆x
+
f

(y)

i,j+1
2

− f (y)

i,j−1
2

∆y
= 0

Roe-type schemes:

f
(x)

i+1
2

=
1

2
(f (qi+1) + f (qi))−

1

2
Di+1

2
(qi+1 − qi)

E.g. Roe-scheme: Di+1
2

= |f ′|
evaluated at 〈q〉i+1

2

Incompressible limit
For the Euler equations in d spatial dimensions

n = d + 2 q = (ρ, ρv, e)T f =
(
ρv, ρv ⊗ v +

p

ε2
, v(e + p)

)T

together with e =
p

γ − 1
+

1

2
ε2ρ|v|2 and the local Mach number M = v√

γp/ρ
∼ ε.

Expand quantities as power series in ε, e.g.

p = p(0) + εp(1) + ε2p(2) + . . .

Limit in the continuous case: incompressible hydrodynamics with p(2) as the dynamic

pressure, as well as ∇p(0) = ∇p(1) = 0.

Modification of the diffusion matrix

terms violating asymptotics
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Roe matrix:

DRoe ∈

 O
(

1
ε

)
O
(

1
ε

)
O
(

1
ε

)
O
(

1
ε

)
O
(

1
ε

)


Take D = P−1|Pf ′| and use P to finetune scalings of D.
Weiss & Smith 95 / Turkel 99 gives

DWS-T ∈

 O
(

1
ε2

)
O(1) O

(
1
ε2

)
O
(

1
ε2

)


We suggest (Miczek+ 15, Barsukow+ in prep.) a P such that

D ∈

 O(1)

O(1) γ−1
ε2

O(1)


For supersonic flows we recover the Roe scheme in a continuous
manner.

Formally:

p
(0)
i+1 − p

(0)
i−1 = 0

p
(1)
i+1 − p

(1)
i−1 = ∆x(. . .) +O(∆x2)

Formally:

pi
(`) − pi−1

(`) = 0 −→ ∇p(`) = 0

Discrete equation reproduces the analytic constraint even for finite ∆x! (` = 0, 1)

Kinetic energy
The equation for the kinetic energy ekin = ρ|v|2

2 can be written
as

∂tekin +∇ ·
(
v
(
ekin +

p

ε2

))
=
p

ε2
∇ · v 6∈ O(ε).

and is equivalent to

∂tekin +∇ ·
(
v
(
ekin + p(2)

))
= p(2)∇ · v ∈ O(ε).+O(ε)

Kinetic energy is a conserved quantity in the limit ε→ 0.

numerical dissipation ∈ O(1/ε)
Roe solver:

our method:

Time integration
# explicit time integration:
• linear von Neumann stability can be performed completely due to

decomposing eigenspace of the amplification matrix
•CFL constraint ∆t

∆x ∈ O(ε2)

# implicit time integration: necessary for
near-incompressible flow to overcome separation of
acoustic and advective time scales!
• for accuracy: advective time step ∆t

∆x ∼
1
v ∈ O(1)

• ESDIRK-schemes and the Newton-Raphson method for the implicit
steps
• (preconditioned) iterative algorithms for the linear systems
•Computation and storage of the Jacobian (sparse with dense blocks)

important issues for an efficient implementation

Example: stationary, incompressible 2-d vortex

Roe scheme:

artefacts

ε = 10−1 ε = 10−2 ε = 10−3

ε = 10−7 ε = 10−10
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? ?

exact:

our method:

Influence of gravity source terms
With Ma/Fr = 1, Ma = ε→ 0

∂t

 ρ
ρv
e

 +∇ ·

 ρv
ρv ⊗ v + p

ε2

v(e + p)

 =

 0
1
ε2ρg
ρg · v


Its limit are hydrostatic equilibria with ∇p(0) = ρ(0)g(0) .

Energy as time-continuous scheme for Weiss& Smith 95 / Turkel 99 (bottom row of matrix DWS-T):

∂te +
1

∆x
(central flux)︸ ︷︷ ︸
∈ O(1)

+
1

∆x
(diffusive part)︸ ︷︷ ︸
∈ O

(
1/ε2

) = ρg · v︸ ︷︷ ︸
∈ O(1)

The highest order equation (formally) would still impose ∇p(0) = 0 – the method is thus not
asymptotic preserving.

The new modification overcomes this problem:
Our diffusion matrix D does not have entries proportional to 1

ε2 in its energy row!
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