A low-Mach Roe-type solver for the Euler equations
allowing for gravity source terms
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A time-continuous finite volume scheme for a system of
conservation laws dyq + V - f(q) = 0 with ¢ : R x RT — R"
f:R*"— R"

reads (e.g. in d = 2):
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Roe-type schemaes:
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Modification of the diffusion matrix

Roe matrix:

Take D = P'|Pf’| and use P to finetune scalings of D.
Weiss & Smith 95 / Turkel 99 gives
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Incompressible limit
For the Euler equations in d spatial dimensions

n=d+?2 q=(p, pv, €)
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562p|v\2 and the local Mach number M = —=
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together with e = £ |
v — 1

~ €.

Expand quantities as power series in €, e.g.
D= p(o) -+ ep(1> - 62p<2) + ...

Limit in the continuous case: incompressible hydrodynamics with p'? as the dynamic

pressure, as well as me) = Vp(l) = 0.

We suggest (Miczek+ 15, Barsukow+ inprep.) a P such that
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terms violating asymptotics “ manner.
Formally: Formally:
pgi)l — pz<'0—>1 = pz(@ — pq;_1(€> =0 — Vp(@ =
pgi)l — pf;l_)l = Az(...)+ O(A$2) Discrete equation reproduces the analytic constraint even for finite Ax! (£ =0,1)
. Example: stationary, mncompressible 2-d vortex
Kinetic energy | rtofacts
The equation for the kinetic energy ey, = % can be written
as Roe scheme: / /‘. *
PY\_Py. .
Oi€rin + V (v (ekin + ?)> — er v & Oe). exact: c— 107 ¢ — 10-10
and 1s equivalent to " '.

Oréxin + V - (U (ekm + p(Q)) >+0(6) = p<2)V v € Ofe).
Kinetic energy is a conserved qliantity in the limit € — 0.
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Time mntegration
# explicit time integration:
e linear von Neumann stability can be performed completely due to

decomposing eigenspace of the amplification matrix
e CFL constraint £L € O(¢?)

# implicit time integration: necessary for
near-incompressible flow to overcome separation of
acoustic and advective time scales!

e for accuracy: advective time step ﬁ—; ~ % c O(1)

e ESDIRK-schemes and the Newton-Raphson method for the implicit
steps

o (preconditioned) iterative algorithms for the linear systems

e Computation and storage of the Jacobian (sparse with dense blocks)
important issues for an efficient implementation
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our method:

Influence of gravity source terms
With Ma/Fr=1, Ma=¢€¢ — 0
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Its limit are hydrostatic equilibria with Vp(o> = ,0<O) g(0>.

Energy as time-continuous scheme for Weiss& Smith 95 / Turkel 99 (bottom row of matrix Dyws.r):
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Oye - N (central :ﬂux) o (diffusive part) = pg - v
c O(1) cO(1/e) €01

The highest order equation (formally) would still impose Vp!”) = 0 — the method is thus not
asymptotic preserving.

The new modification overcomes this problem:
Our diffusion matrix D does not have entries proportional to 6—12 in its energy row!

References:

Weiss, J. M. & Smith, W. A. 1995, ATAA Journal, 33, 2050

Turkel, E. 1999, Annual Review of Fluid Mechanics, 31, 385

Miczek, F'., Ropke, F. K., Edelmann, P. V. F. 2015, Astronomy & Astrophysics, 576, A50
Barsukow, W., Edelmann, P. V. F., Klingenberg, C. Ropke, F'. K. in prep.




