Chance and Chaos

A.D. Barbour, Universität Zürich

Version of 22.12.94: appeared in Elemente der Mathematik

In recent years, the idea of chaos produced by simple deterministic algorithms has come to rival the classical concept of randomness as a model for the disorder observed in nature. Indeed, the difficulty in distinguishing between them is happily exploited for the generation of random numbers in computers. In this article, we show that the two can at times be seen as different aspects of the same phenomenon, in which case randomness can be used to explain chaos.

The example we consider is that of the map $h : [0, 1] \to [0, 1]$ defined by

$$h(x) = \min\{x/c, (1 - x)/(1 - c)\},$$

for some $c \in (0, 1)$. Starting with any $x_0 \in [0, 1]$, we recursively define $x_n = h(x_{n-1})$, writing $x_n = h_n(x_0)$ for short. Then it turns out that the set of values $\{x_0, x_1, \ldots, x_n\}$,
ignoring the order of their generation, almost always looks statistically very like a random sample from the uniform distribution on (0, 1).

*** Figure 1 somewhere here ***

This is at first sight surprising. One might have expected that \(x_n \) would converge to one of the two fixed points 0 and \(1/(2 - c) \) of \(h \), or perhaps assume some periodic behaviour, but it does not: for any \(x_0 \) outside a small exceptional set \(E \), which includes the fixed points of \(h \) and all their pre-images (for example, \(h_2(c) = h(1) = 0 \)), all the many periodic points of \(h \), and so on, the sequence \(x_n \) keeps on hopping around, leaving apparently random footprints on (0, 1). Try it on your computer, but don’t take \(c = 1/2! \) And the exceptional set \(E \) is so small that, if \(x_0 \) were chosen at random from the uniform distribution on (0, 1), the chance that \(x_0 \in E \) is zero.

In order to account for this apparent randomness, we shall explore in more detail one of the key ingredients in one’s intuitive idea of chaos, that of unpredictability. A sequence \(x_0, x_1, \ldots \) might be said to be (asymptotically) unpredictable if knowledge of \(x_0 \) gives (little or) no information about the value of \(x_n \) (for large \(n \)). Clearly, the sequence \(x_n = h_n(x_0) \) is not unpredictable in this sense, since, given \(x_0 \), each \(x_n \) can in principle be computed exactly. However, this argument presupposes that \(x_0 \) is known precisely, whereas, in most practical circumstances, this will not be the case: limitations of measurement reduce one’s knowledge at best to being certain that \(x_0 \) is in a known interval, say \((d - \delta, d + \delta) \), for some small \(\delta \). What we shall now show is that, for large \(n \), this information is actually of almost no help at all in predicting \(x_n \).

To express this fact cleanly, let \(1_{\{y \in A\}} \) be the function taking the value 1 if \(y \in A \) and 0 otherwise. Then

\[
\left| \frac{1}{2\delta} \int_{d-\delta}^{d+\delta} 1_{\{a<h_n(x)\leq b\}} \, dx - (b-a) \right| \leq 2\delta \alpha^{-1} \alpha^{-1}(b-a),
\]

for any values \(0 \leq a < b \leq 1 \), where \(\alpha = \max\{c, 1-c\} < 1 \). In other words, the fraction of starting points \(x_0 \) in the interval \((d - \delta, d + \delta) \) for which \(a < h_n(x_0) \leq b \) is for large \(n \) very close to \((b-a) \). But since \((b-a) \) is just the probability that a randomly chosen point of (0, 1) would be in the interval \((a,b)\), the estimate (1) confirms that, for large \(n \), the starting information that \(d - \delta < x_0 < d + \delta \) is of almost no help in predicting the value of \(x_n \): irrespective of the value of \(d \), a blind guess at the value of \(x_n \) does (almost) just as well as using the information that \(x_n = h_n(x_0) \). Thus the recursion \(x_n = h(x_{n-1}) \), in this specific sense, generates ‘unpredictable’ sequences. What is more, the predictive value of the initial information is seen to be at most of order \(\delta^{-1} \alpha^n \), decaying geometrically fast.
with \(n \), so that forecasting further ahead by increasing the precision of the starting data is ineffective: doubling the precision by halving \(\delta \) achieves a forecast with the previous accuracy only for an extra \(\log 2 / \log(1/\alpha) \) steps.

Note, in passing, that rounding error in the computer introduces a little unexpected ‘uncertainty’ into any attempt to compute \(h_n(x_0) \) numerically, so that the answer obtained may be surprising: try \(c = 1/2! \)

How should we prove the unpredictability (1)? Here, we shall do so using the properties of some simple random sequences, known as Markov chains. A random sequence \(X_0, X_1, \ldots \) is called a Markov chain if, given the knowledge that \(X_0 = x_0, X_1 = x_1, \ldots, X_{j-1} = x_{j-1} \) and \(X_j = x \), the distribution of \(X_{j+1} \) depends only on \(x \), and not on \(j \) or on the ‘past history’ \(x_0, \ldots, x_{j-1} \) of the chain. Our sequence \(\{x_n, n \geq 0\} \) is a Markov chain, since, with all this information, we know that \(X_{j+1} = h(x) \) is determined by \(x \) alone — the example is degenerate, in the sense that the distribution of \(X_{j+1} \) assigns probability 1 to the single possible outcome \(h(x) \), so that there is no real randomness at all, but never mind: it is still a (purely deterministic) Markov chain. Now a Markov chain is called stationary if the distribution of the (random) quantity \(X_j \) is the same for all \(j \). This is clearly not normally the case for our sequence \(\{x_n\} \) if \(X_0 = x_0 \) is fixed, because then \(X_1 = h(x_0) \neq x_0 \) (if \(x_0 \notin \{0,1/(2-c)\} \)), and so \(X_1 \) does not have the same distribution as \(X_0 \); each takes a single certain value, and they are different. However, if \(X_0 \) is chosen uniformly at random from \((0,1)\) and \(X_n = h_n(X_0) \), the sequence \(\{X_n\} \) is stationary. This is because

\[
h^{-1}(a,b) = (ca, cb) \cup (1 - (1-c)b, 1 - (1-c)a),
\]

*** Figure 2 somewhere here ***

and hence, if \(Z \) is uniformly distributed on \((0,1)\),

\[
\mathbb{P}[a < h(Z) \leq b] = \mathbb{P}[Z \in h^{-1}(a,b)] \\
= (cb - ca) + (1 - (1-c)a) - (1 - (1-c)b) \\
= c(b-a) + (1-c)(b-a) = b-a \\
= \mathbb{P}[a < Z \leq b],
\]

so that \(h(Z) \) is also uniformly distributed on \((0,1)\) — now use induction!

A key feature of stationary Markov chains is that, if they are viewed backwards in time, they are again stationary Markov chains, though usually with a different transition matrix. That is, if we know that \(X_j = x \) and \(X_{j+1} = x_{j+1}, \ldots, X_n = x_n \), and want to speculate on
the most recent unknown value X_{j-1}, then the conditional distribution of X_{j-1} given all this information once again depends only on x, and not on j or on x_{j+1}, \ldots, x_n. Perhaps surprising, but the calculation with conditional probabilities required to see that this is true is actually very simple. So what happens if we time–reverse the stationary chain $X_n = h_n(X_0)$? The segment (Y_0, Y_1, \ldots, Y_n) of the time reversed chain has to have the same distribution as a segment of the X–chain in reverse order, say $(X_n, X_{n-1}, \ldots, X_0)$, so that immediately each Y_j has to have the uniform distribution on $(0, 1)$. All that is then needed is the joint distribution of a consecutive pair, say (Y_0, Y_1), to determine the distribution of Y_1 for each value y of Y_0, and hence, by induction, to specify the whole Y–chain. Now the distribution of the pair (Y_0, Y_1) is the same as that of the pair (X_1, X_0) (time reversal), which is concentrated on the set $H = \{ (h(x), x) \mid x \in (0, 1) \}$. Thus, given any $y \in (0, 1)$, there are two points (y, cy) and $(y, 1 - (1 - c)y)$ in H which have first coordinate y, so that, given $Y_0 = y$, there are just two possible choices (y and $1 - (1 - c)y$) for Y_1, and the Y–chain will have been specified when the probabilities associated with the two choices have been found. We claim that

$$\mathbb{P}[Y_1 = cy \mid Y_0 = y] = c; \quad \mathbb{P}[Y_1 = 1 - (1 - c)y \mid Y_0 = y] = 1 - c,$$

for all y. To check this, observe that (X_1, X_0) gives probability $b - a$ to the set $H_{a,b} = \{ (h(x), x) \mid a < x \leq b \} \subset H$, because X_0 is uniform on $(0, 1)$. If $0 \leq a < b < c$, we can rewrite $H_{a,b}$ as $\{ (y, cy), \ a/c < y \leq b/c \}$. Because Y_0 is uniform on $(0, 1)$, Y_0 gives probability $(b/c) - (a/c) = (b - a)/c$ to $\{ y : a/c < y \leq b/c \}$, and if (3) is true it follows that (Y_0, Y_1) gives probability $[(b - a)/c].c = (b - a)$ to $H_{a,b}$, as required by time reversal. A similar argument works for $c < a < b \leq 1$. Thus we have the following

Reversal Theorem. The reverse ordered segment $(X_n, X_{n-1}, \ldots, X_0)$ of the stationary X–chain has the same distribution as (Y_0, Y_1, \ldots, Y_n), where Y_0 is uniformly distributed on $(0, 1)$ and, conditional on $Y_j = y$, Y_{j+1} takes the value cy with probability c and the value $1 - (1 - c)y$ with probability $1 - c$.

The interest of the Reversal Theorem is that features of a chain Y in which randomness keeps occurring at every step can be used to deduce results about the essentially deterministic X–sequence: a ‘chaotic’ sequence is mirrored by a ‘random’ sequence.

We now make a construction known as a **coupling** of Y–chains. Take any two starting points $Y_0^{(1)}$ and $Y_0^{(2)}$ in $(0, 1)$, and define sequences $(Y_0^{(1)}, \ldots, Y_n^{(1)})$ and $(Y_0^{(2)}, \ldots, Y_n^{(2)})$ recursively as follows. Given the values $(Y_0^{(1)}, \ldots, Y_j^{(1)})$ and $(Y_0^{(2)}, \ldots, Y_j^{(2)})$, choose at random L, with probability c, or R, with probability $1 - c$. If L, define

$$Y_{j+1}^{(1)} = cY_j^{(1)} \quad \text{and} \quad Y_{j+1}^{(2)} = cY_j^{(2)};$$

for all j.
if \(R \), define
\[
Y_{j+1}^{(1)} = 1 - (1 - c)Y_j^{(1)} \quad \text{and} \quad Y_{j+1}^{(2)} = 1 - (1 - c)Y_j^{(2)};
\]
so that, in either case,
\[
|Y_{j+1}^{(1)} - Y_{j+1}^{(2)}| \leq \alpha |Y_j^{(1)} - Y_j^{(2)}|,
\]
with \(\alpha = \max\{c, 1 - c\} \) as above. This construction yields our next result.

*** Figure 3 somewhere here ***

Coupling Theorem. If \(Y_0^{(1)} \) and \(Y_0^{(2)} \) are chosen independently at random from the uniform distribution on \((0, 1)\), then each of the sequences \((Y_0^{(1)}, \ldots, Y_n^{(1)})\) and \((Y_0^{(2)}, \ldots, Y_n^{(2)})\)

is a stationary \(Y \)-chain, and hence by the Reversal Theorem has the same distribution as that of \((X_n, X_{n-1}, \ldots, X_0)\) in the stationary \(X \)-chain. Furthermore, by construction,

\[
|Y_n^{(1)} - Y_n^{(2)}| \leq \alpha^n |Y_0^{(1)} - Y_0^{(2)}| \leq \alpha^n,
\]

and \(Y_0^{(1)} \) is independent of \(Y_0^{(2)} \).

What does this arcane construction tell us? The Reversal Theorem tells us that the sequence \((X_n, X_{n-1}, \ldots, X_0)\) behaves just like the sequence \((Y_0, Y_1, \ldots, Y_n)\). The coupling construction tells us that the randomness in the step by step choices of the Markov chain \(Y \) determines the value of \(Y_n \) to within an error of \(\pm \alpha^n \), irrespective of the value of \(Y_0 \). Thus the distribution of \(Y_n \) is the same, modulo errors of order \(\alpha^n \), whatever the value of \(Y_0 \), and hence, in this sense, \(Y_n \) and \(Y_0 \) are effectively independent. By time reversal, we thus have \(X_0 \) and \(X_n \) effectively independent, implying the unpredictability of \(X_n \) when \(X_0 \) is (nearly) known.

That this is more than just a heuristic is shown by the completion of the proof of (1). Observe that, in probabilistic notation,
\[
I_{a, b} = \frac{1}{2\delta} \int_{d-\delta}^{d+\delta} 1_{\{a < h_n(x) \leq b\}} \, dx = \frac{1}{2\delta} \mathbb{E} \left[1_{\{X_0 \in (d-\delta, d+\delta)\}} 1_{\{X_n \in (a,b)\}} \right]
\]
is just an expectation involving \(X_0 \) and \(X_n \). Therefore, by the Reversal Theorem,
\[
I_{a, b} = \frac{1}{2\delta} \mathbb{E} \left[1_{\{Y_0^{(1)} \in (a,b)\}} 1_{\{Y_n^{(1)} \in (d-\delta, d+\delta)\}} \right],
\]
also. Now, for any \(y_1, y_2 \) and \((a, b)\), the difference \(|1_{\{y_1 \in (a,b)\}} - 1_{\{y_2 \in (a,b)\}}| \) is either 0 or 1, and can only take the value 1 if \(y_1 \) and \(y_2 \) are on opposite sides of one of the end points \(a \) or \(b \). Thus, if \(|y_1 - y_2| < \varepsilon \),
\[
|1_{\{y_1 \in (a,b)\}} - 1_{\{y_2 \in (a,b)\}}| \leq 1_{\{y_2 \in (a-\varepsilon, a+\varepsilon) \cup (b-\varepsilon, b+\varepsilon)\}}.
\]
Putting \(a = d - \delta, \ b = d + \delta \) and \(\varepsilon = \alpha^n \), it follows that

\[
|1_{\{y_1 \in (d-\delta, d+\delta)\}} - 1_{\{y_2 \in (d-\delta, d+\delta)\}}| \leq 1_{\{y \in G\}}, \tag{4}
\]

with

\[
G = (d - \delta - \alpha^n, d - \delta + \alpha^n) \cup (d + \delta - \alpha^n, d + \delta + \alpha^n).
\]

Hence, using the Coupling Theorem to replace \(Y_n^{(1)} \) by \(Y_n^{(2)} \) in the formula for \(I_{a,b} \), with an error bounded because of (4), we find that

\[
\left| I_{a,b} - \frac{1}{2\delta} \mathbb{E}\left[1_{\{Y_0^{(1)} \in (a,b]\}} 1_{\{Y_n^{(2)} \in (d-\delta, d+\delta)\}} \right] \right| \leq \frac{1}{2\delta} \mathbb{E}\left[1_{\{Y_0^{(1)} \in (a,b]\}} 1_{\{Y_n^{(2)} \in G\}} \right]. \tag{5}
\]

But now, by the Coupling Theorem, \(Y_0^{(1)} \) and \(Y_n^{(2)} \) are independent and uniform on \((0, 1)\), so that we can compute all the expectations in (5) exactly, giving

\[
\left| I_{a,b} - \frac{1}{2\delta} (b - a) \cdot 2\delta \right| \leq \frac{1}{2\delta} (b - a) \cdot 4\alpha^n,
\]

as claimed in (1).

The Reversal and Coupling Theorems can be used for much more than proving (1); almost any ‘random’ feature of the sequences \(x_0, x_1, \ldots, x_n \) can be derived from them. Nor is the method restricted only to functions \(h \) of the form we have considered here, though, for more complicated functions, the technicalities can obscure the essential simplicity of the argument. But the real aim of the paper is to illustrate three more fundamental facts; that, in this example, the difference between chaos and randomness is merely a difference of viewpoint; that methods from one branch of mathematics can find fruitful application in another; and that the ‘coupling method’ in the theory of stochastic processes is a wonderful tool for constructing simple and illuminating proofs.