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Abstract

The paper is concerned with approximating the distribution of a
sum W of integer valued random variables Y;, 1 < ¢ < n, whose
distributions depend on the state of an underlying Markov chain X.
The approximation is in terms of a translated Poisson distribution,
with mean and variance chosen to be close to those of W, and the
error is measured with respect to the total variation norm. Error
bounds comparable to those found for normal approximation with
respect to the weaker Kolmogorov distance are established, provided
that the distribution of the sum of the Y;’s between the successive
visits of X to a reference state is aperiodic. Without this assumption,
approximation in total variation cannot be expected to be good.

1 Introduction

The Stein-Chen method is now well established in the study of approxi-
mation by a Poisson or compound Poisson distribution (Arratia, Goldstein
& Gordon (1990), Barbour, Holst and Janson (1992)). It has turned out
to be very efficient for treating sums of the form W := W, := > " |V,
where the variables Y7, Y5, ... are non-negative, integer-valued, rarely differ-
ent from 0, and have a short range of dependence. A basic example is the
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following: let Y7, Y5, ... be independent and taking values 0 or 1 only, with
pi == P(Y; = 1) generally small, to make a Poisson approximation plausible.
Then the method offers a proof of the celebrated Le Cam theorem, which is
transparent and relatively simple (Barbour, Holst and Janson 1992, I.(1.23)),
and gives the optimal constant:

IL(W) —Po(N)| <2171 Zp? < 2 max p;, (1.1)
i=1

1<i<n
where A := EW = "  p;. Here, £(X) denotes the distribution of a ran-
dom element X, Po(\) the Poisson distribution with mean A, and ||| the

total variation norm of a signed bounded measure v; we need this only for
differences of probability measures @), Q" on the integers Z, when

Q- Q1= 2_100) - Q0] = 2sup |Q(4) - Q'(A)].

Clearly, if the p;’s are not required to be small, there is little content
in (1.1). This is to be expected, since then EW = X and Var W = A—=>"" | p?
need no longer be close to one another, whereas Poisson distributions have
equal mean and variance. This makes it more natural to try to find a family
of distributions for the approximation within which both mean and variance
can be matched, as is possible using the normal family in the classical central
limit theorem. One choice is to approximate with a member of the family of
translated Poisson distributions {TP (u,0?), (u,0?) € R x R, }, where

TP (1, 0%){j} == Po(¢” + 0){j — [ — o*|}
=Po(N){j -7}, JeZ,

where

vi=a(o?) = (p—0], §:=0(u0%) = p—0"—7y
and X\ := N(u,0?) =0 +6. (1.2)

The TP (u, 0?) distribution is just that of a Poisson with mean X' := X (u, 0%)
:= 0% + 6, then shifted along the lattice by an amount v := (u,0?) =
| — 0?]. In particular, it has mean N ++ = u and variance ) such that
02 < XN < 0%+ 1; note that \' = o2 only if u — 0? € Z. For sums of inde-
pendent, integer-valued random variables Y;, this idea has been exploited by
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Vaitkus & Cekanavicius (1998), and also in Barbour & Xia (1999), Cekan-
avicius & Vaitkus (2001) and Barbour & Cekanavicius (2002), using Stein’s
method, leading to error rates of the same order as in the classical central
limit theorem, but now with respect to the much stronger total variation
norm, as long as some ‘smoothness’ of the distribution of W can be estab-
lished.

As in the Poisson case, the introduction of Stein’s method raises the
possibility of making similar approximations for sums of dependent random
variables as well. However, the ‘smoothness’ needed is a bound of order
O(1/y/n) for [|[L(W 4+ 1) — L(W)]|, entailing much more delicate arguments
than are required for Poisson approximation. The elementary example of 2—
runs in independent Bernoulli trials was treated in Barbour & Xia (1999), but
the argument used there was long and involved. More recently, Rollin (2005)
has proposed an approach which is effective in a wider range of circumstances,
including many local and combinatorial dependence structures, in which one
can find an imbedded sum of independent Bernoulli random variables. In this
paper, we consider a different kind of dependence, in which the distributions
of the random variables Y; depend on an underlying Markovian environment.

We suppose that X = (X;)°, is an aperiodic, irreducible and stationary
Markov chain with finite state space £ = {0,1,..., K}. Let Y5, Y1,... be
integer-valued variables which are independent conditional on X, and, as in
a hidden Markov model, such that the conditional distribution £(Y;|X) de-
pends on the value of X; alone; we assume further that, for each 0 < k < K,
the distributions £(Y; | X; = k) are the same for all 7. Under these assump-
tions, and with W = """ | Y;, we show that ||[L(W) — TP (EW, Var W)]| is
asymptotically small, under reasonable conditions on the conditional distri-
butions £(Y1 | X; = k), 0 < k < K. The detailed results are given in Theo-
rems 4.2-4.4. Roughly speaking, we show that if these conditional distribu-
tions are stochastically dominated by a distribution with finite third moment,

and if, as smoothness condition, the distribution @ := L <Zf:11 Y| Xo = 0)
is aperiodic (Q{dZ} < 1 for all d > 2), where S is the step at which X first
returns to 0, then

|L(W) — TP (EW,Var W)|| = O (n~'/?). (1.3)

An ingredient of our argument, reflecting Rollin’s (2005) approach, is again
to find an appropriate imbedded sum of independent random variables.
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In the next section, we give an introduction to proving translated Poisson
approximation by way of the Stein—Chen method. Lemma 2.2 provides a gen-
erally applicable formula for bounding the resulting error. In Section 3, we
establish bounds on the total variation distance between £(W) and L(W +1)
using coupling arguments. The results of these two sections are combined
in Section 4 to prove the main theorems. Theorem 4.4 gives rather general
conditions for (1.3) to hold, whereas Theorem 4.2, in a somewhat more re-
strictive setting, provides a relatively explicit formula for the approximation
error. We then discuss the relationship of our results to those of Cekanavicius
& Mikalauskas (1999), who studied the degenerate case in which Y; = h(k)
a.s. on {X; =k}, 0 < k < K. We conclude by showing that, if @ is in
fact periodic, £(W) is usually not well approximated by a translated Poisson
distribution.

2 Translated Poisson approximation

Since the TP (u, 0?) distributions are just translates of Poisson distributions,
the Stein—-Chen method can be used to establish total variation approxima-
tion. In particular, W ~ TP (u, 0?) if and only if

E{NfFW +1) = (W =) f(W)} =0 (2.1)

for all bounded functions f : Z — R, where X' = X (u,0?) and v = v(u, 0%)
are as defined in (1.2). Define f for C' C Z, by

Jalk) =0, k<0
Nfalk+1) = kfa(K) = 1o(k) = Po(V){C}, k>0,

as in the Stein—Chen method. It then follows that
IfEll < ()72 and [JAf5] < (V)

(Barbour, Holst and Janson 1992, Lemma 1.1.1), where Af(j) := f(j +1) —
f(4) and, for bounded functions g : Z — R, we let ||g|| denote the supremum
norm. Correspondingly, for B C Z such that B* := B — vy C Z,, the
function fp defined by

fB(j) = fé*(] _7)7 ] € Za (22)
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satisfies

Nfg(w+1) = (w—7)fp(w)
Nfpe(w—=y+1) = (w—7)fp-(w—7)
= 1p-(w—7) —Po(N){B"}

— 1p(w) — TP (1, 0){B) (2.3)
if w > ~, and
Nfpw+1) = (w—=7)fp(w) =0 (2.4)
if w < ; and clearly
Ifal < (X)72 and [|Afp]l < (V)7 (2.5)

This can be exploited to prove the closeness in total variation of £(WW) to
TP (p1, 0?) for an arbitrary integer-valued random variable . The next two
results make use of this.

Lemma 2.1 Let pu1, 10 € R and 0%,03 € Ry \ {0} be such that v1 = |1 —
0?] <9 = |ps —03]. Then

ITP (1, 07) = TP (2, 03)|| < 2{07" |11 — pz| + 07%(lof — 03] + 1)}

Proof. Both distributions assign probability 1 to Z N [71, oo), so it suffices
to consider B such that B —~; C Z,. Then, if W ~ TP (ug,03), we have

P(W € B) — TP (11, 03){B}
E{15(W) = TP (11, 07){B}}
= E{\M/fs(W +1) = (W =) f5(W)},

from (2.3), where \; := N (u,0?), [ = 1,2. Applying (2.1), it thus follows
that

P(W € B) — TP (u1,03){B}
= E{(\ = M) fs(W +1) = (v2 — m) fa(W)}
= E{(M = X)Afs(W) — (2 — 1) fr(W)},



and hence, from (2.5), that

[P(W € B) — TP (u1, 07){ B}|
< (M) lat = a3l #1010 = Gf) + (M) — paal,

proving the lemma. ]

The next lemma provides a very general means to establish total vari-
ation bounds; it is our principal tool in Section 4. Note that we make no

assumptions about the dependence structure among the random variables
Yi,...,Y,.

Lemma 2.2 Let Y1,Ys, ..., Y, be integer valued random variables with finite
means, and define W := Y"" | Y;. Let (a;)?; and (b;)?; be real numbers
such that, for all bounded f : 7 — R,

B[,/ (W)] - EEF(W) — o E[AFW)] < bASl, 1<i<n (26
Then
|L(W) — TP (EW, o?)|| <2(\)* (5 + Z bi) + 2P[W < EW — o7,
i=1
where o :=>"" 1 a;, 6 = 6(EW,0?) and N = % + 4.

Proof. Adding (2.6) over i, and then adding and subtracting c¢Ef(W) for
c € R to be chosen at will, we get

[E[(W =) f(W)] = (EW —c—0®)Ef(W) —*E[f (W +1)]| < (Z bi) 1AL,

where 0% = """ | a; as above. Taking ¢ = v = |[EW —¢?], so that the middle
term (almost) disappears, the expression can be rewritten as

[E[(W =) f(W)] = NE[f(W + 1)]| < (5 +) bi) 1A, (2.7)

=1

where § and )\ are as above.



Fixing any set B C Z, + v, take f = fp as in (2.2). It then follows
from (2.3) that

IP(W € B) — TP (EW, 0%){ B}
— [E{(1s(V) — TP (EW, o>} BYI[W = 7] + I[W <))}
< [E{N fo(W +1) = (W = 3) fp(W) I[W = 4]} + BV < 7)
— [E{Nfa(W + 1) — (W =) fa(W)}| + P(W < 7). (2.8)

this last from (2.4). Hence (2.7) and (2.8) show that, for any B C Z; + 7,

[P(W € B) — TP (EW,0*){B}|

< (6 T Zb) |Afsll +BOW <)

=1

< ()7 (6 + ib) +PW < 7). (2.9)

i=1

Now the largest value D of the differences {TP (EW,c*){C} — P(W € C)},
C C Z, is attained at a set Cy C Z, + 7, and is thus bounded as in (2.9);
the minimum is attained at Z \ Cy with the value —D. Hence

[B(W € C) — TP (EW,0?){C}] < (V)" (5 + Zb) FPW <)

=1

for all C' C Z, and the lemma follows. O

If the random variables Y; have finite variances, both X' and Var W
are typically of order O(n), so that letting b:=n"'>""  b; and applying
Chebyshev’s inequality to bound the final probability, we find that then
|L(W) — TP (EW, 0?)| is of order O(n~! +b). Hence we are interested in
choosing aq, as, . .. so that by, by, ... are small. For independent Y7, Ys,. .., it
is easy to convince oneself that the choice

a; = E[Y; W] - E[YJE[W), (2.10)

is a good one, and this also emerges in our Markovian context. Notice
that (2.10) implies that 0% = Var .



Establishing (2.6) in the Markovian setting, for a; chosen as in (2.10), is
the core of the paper; it is accomplished in Section 4. For the estimates made
in that analysis, it is useful to introduce a coupling of X with an independent
copy X' = (X[)2,. The relevant properties of the coupling are given in the
next section. From now on, we assume that the conditional distributions
L(Y1]X1 =k),0<k < K, each have finite variance.

3 The Markov chain coupling

Let X = (X;)2, and X' = (X])°, be independent copies of an aperiodic,
irreducible and stationary Markov chain with state space £ = {0,1,..., K}.
To understand their crucial role, recall (2.6), and note that

EYif(W)] —ENJE[f(W)] = E[Yif(W)] - E[Yif (W')]
= EYi(f(W) — f(W)]. (3.1)

Here W' = > | Y/, and Y{,... Y, are chosen from the conditional dis-

tributions (L£(Y;|X]), 1 < i < n), independently of each other and of X
and Y := (Y1,...,Y,). Also, recall (2.10), and note that then

a; = E[Y,(W — W")]. (3.2)

Of course, (3.1) and (3.2) follow from the independence of (X, Y) and (X', Y”).
We refer to Lindvall (2002, Part I1.1) for proofs of the statements to be
made now; we shall be brief.
Let 0 be our reference state, and let S = (S,,)%_, and 5" = (S],)>°_, be
the points in increasing order of the sets

{keZ,; X, =0} and {k € Z,; X, =0},
respectively. Then S and S’ are stationary renewal processes. Define Z,, 71, ..

Zy, 21, ... by - -
Sm=> Zj S,=>_ Z.
j=0

J=0

*

Then all the Z variables are independent, and the recurrence times 7y, 7}, Zs, Z5, . ...

are identically distributed, while the delays Zj, Z{ have the well-known dis-
tribution that renders S and S’ stationary.
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Now define S = (5,,)%_, to be the time points at which both S and S’
have a renewal, i.e.

{(k€Z,: X=X, =0}

Then S is again a stationary renewal process, and we set S, = Z;":O Zj.
Let X* = (X})2, be an irreducible, finite state space Markov chain with
reference state 0, and let the associated (S}, )m—o; (Z;)32, have the obvious

m=0>
meanings. For 7 > 0, write
Dj = min{S;, —j; 5,, = j}.

Due to the finiteness of the state space, it is easily proved that there exists
a p > 1 such that, as m — oo,

maxP(D; > m| X; = k) = O(p™); (3.3)
P(Z; = m)=0(p™), P(Zi=m)=0(p™);  (3.4)

c.f. Lindvall (2002, I1.4, p. 30 ff.). Of course, the maximum in (3.3) does not
depend on j. When applied to ((X;, X)), the state space is £ x E; notice
that the aperiodicity of X is needed to make ((X;, X/))$2, irreducible.

For the rest of this section, drop the assumption that X and X’ are
stationary, but rather let X, = X{j = 0, denoting the associated probability
by PY. We shall have much use for an estimate of

ffrg) el e

It is natural to conjecture that 5(n) = O(1/y/n), since that would be true
if the sums )" | Y; formed a random walk independent of X, under an
aperiodicity assumption: cf. Lindvall (2002, 11.12 and I1.14).

Let us say that the distribution of an integer-valued variable V' is strongly
aperiodic if

Bn) =

g.cdf{k+i; P(V =4) >0} =1 for all k. (3.6)
It is crucial to our argument to assume as smoothness condition that

S1
the distribution of Z Y; is strongly aperiodic, (3.7)

i=1
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a condition that we are actually able to weaken later: see Theorem 4.4. It
then follows from (3.7) that also

Si
Z(Yi —Y!/) is strongly aperiodic. (3.8)
For the estimate of (3.5), notice that

i=1
<Xn,1+iyi) € <Xn,iYi>€' H
i=1 =1

(g el ]| o

Sk

S
7 = min { k; 1+ZY,~=§:YZ
i=1

i=1

Now let

We note that S25% (Y; — Y/), k > 0, is a random walk, with step size dis-
tribution given by (3.8): it has expectation 0, finite second moment, and is
strongly aperiodic. For such a random walk, Karamata’s Tauberian theorem
may be used to prove that the probability that at least m steps are needed to
hit the state —1 is of magnitude O(1/y/m) (Breiman 1968, Theorem 10.25),
and hence

P°(r > m) = O(1/vm). (3.10)

Now make a coupling as follows:

X X, for 2'<5:'T
X; for i>5,,

and define Y;”, i > 0, accordingly. Recall (3.9). Standard coupling arguments
yield
<Xn,1 +ZYZ~> c-| —Pp° [(X,ZZY> € H
i=1 '

[ (e8]

< 2P°(S, > n). (3.11)

=
=}
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Let ji = E[Sy] and a = 1/(2/1). We get

P°(S, >n) = P°S, >n,7>an)+PS, >n, 7 < an)
< P’(7 > an) +P(Sianj11 > n).

But the latter probability is of order O(1/n), due to Chebyshev’s inequality,
and the former of order O(1/y/n), by (3.10). Hence (3.5), (3.9) and (3.11)
imply that

B(n) = O0(1/v/n) as n — . (3.12)

4 Main theorem

We now turn to the approximation of L(W), with W as defined in the Marko-
vian setting introduced in Section 1; the notation is as in the previous section,
and the assumption that X and X’ are stationary is back in force.

In order to state the main lemma, we need some further terminology. For
each 1 <i < n, we define
T+ = min{n,min{gk; Sy > z}}

(2

and o ~
T . max{Sg; Sk < i} if S <i;
L | if Sy >i.
We then set
TF -1 n
Ai=>"Y, Wo=> Y, and W= > Y, (4.1)
J=T; J=1 =T +1

with the understanding that W;” = 0 if ;" = 1 and W," =0 if T;* =n. We
also define A}, W/~ and W/™ by replacing Y; by Y;. For use in the argument
to come, we introduce independent copies X of the X-chain, 0 < [ < K,
with £(XW) = £(X | X, = [). By sampling the corresponding Y-variables
conditional on the realizations X, we then construct the associated partial
sum processes U®) by setting Ul = > v, Similarly, we define pairs of
processes (X U") in the same way, but based on the time-reversed chain X
starting with Xo = [ (Norris 1997, Theorem 1.9.1). We use 3(-) to denote the
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quantity in (3.5) derived from the reversed chain, and note that, under (3.7),
the order estimate (3.12) is true also for 8. For any m > 1 and 0 <[ < K,
we then write

—~

he(l,m) :=PUY >r+1), r>0; he(l,m) = —P(UY <r), r <0,

and specify h,(I,m) analogously, using the time-reversed processes U"); we

then set H(m) := max {ETEZ P (-, )], s 172 (- H}

Lemma 4.1 With the a; chosen as in (2.10), the inequality (2.6) is satisfied
with
bi = B(n/4) {3E{Yi(A — A)|(| A + |47}
+B{|Yi(A; — AD|(H(T;" —d) + H(i = T;7))}
+E{Yi(A; — A)[HE|A| + E(H(T;" —4) + H(i — T;))}}
+%'7

where, for 1 <i<mn/2,

v = 2E{|Yi(A; — AD|U[T;" —i>n/4 +P[T;" —i>n/4])}, 1<i<n/2;
v = 2E{|Yi(A; — AD|(I[i = T; >n/4]+Pli —T; >n/4])}, n/2<i<n,
and B(n) = max{B(n), B(n)} = O(n="?) under assumption (3.7).

Proof. The analysis of (2.6) in our Markovian setting is rather technical,
and we divide it into three steps. For the first step, we recall (3.1), giving

EY;f(W)] — E[V]E[f(W)]

= E[Yi(f(W) — f(W))]

= EYi(F(W7 + A+ W) — f(W'7 + AL+ W)

= Ei(f(W; + A+ W) = f(W + A+ W), (4.2)

a careful proof of the last equality making use of a conditioning on
o{T;,T;", and X;, X}, Y}, Y] for T, < j <T;},

and of the symmetry of X and X’. Hence our aim is to bound
LY (f (W + At W) = f(W + A+ W) = Yi(Ai— ADEAF(W)H . (4.3)
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We now first consider indices 7 such that 1 < i < n/2, and begin by
observing that, by direct argument,

E{[Yi(f(W; + A+ W) = f(W; + A+ W)
= Yi(A; = ADEAF(W)I[TT — i > n/4]}
< 2B{|Yi(Ai — ADU[T" —i > n/4]} AL (4.4)
This brings part of the contribution to the quantity 7; in the lemma, and
allows us to make the remaining argument assuming that 7," —i < n/4. So
let
F;=0o{T;,T;", and X;, X5,Y;, Y for 0<j < Ty,

and write

E{Y;(f(W; + Ai + W) = f(W7 + Ap+ WIOITT — i < n/4]} (4.5)
= B{VI[T" —i < n/AE[f(W; + A+ W") — f(W; + Aj + W[ A}

Now, for r,m € 7Z, define
V(r,m):=I[0<r<m-—1]—-I[-1>r>m)],
and observe that
FOVT + A+ W) = f(W7 + Ap+ W)
= D AF(W + A+ W+ )V (r, A; — A))

re€Z

= (A — A)Af(W7 + W)
+ I IAFW + AL+ Wi+ 1) = AF(W + WV (r, A — A)

reZ

= (A = A)AfW7 + W)
Y VA= A) Y N FW W4 s)V(s, A+ ). (4.6)

reZ SEZ

So, from (4.2)—(4.6), we have isolated the term
E{Yi(Ai = ADITT — i < n/JAF(W; + W)}, (4.7)

from (4.5), together with an error involving the second differences in (4.6).
The remainder of the first step consists of bounding the magnitude of this
error.
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To do so, note that the second differences in (4.6) are all of the form
A%f(- + W), where the “”-part is measurable with respect to F;, and W;"
is the contribution from the Markov chain starting from 0 at time 7. Fur-
thermore, for any integer valued random variable Z and any bounded func-

tion h, |EAR(Z)| < ||h||||I£(Z + 1) — L(Z)||. Hence, using (3.5), it follows
that, for T." — i < n/4, entailing n — T;" > n/4, we have

E[A%f(-+ WD [ A < [AfB(n/4), (4.8)

where 3(n) is of magnitude O (1/4/n) under assumption (3.7), in view of (3.12).

Now observe that all the variables in (4.6) except W;" are F;-measurable.
What remains in order to use (4.5) is a careful count of the second difference
terms in (4.6), of which there are at most 3|A; — A}|(|A;] + |Af]). Using
(4.2)-(4.7) and (4.8), we have found that

BAYI[T;" — i < n/4)(f(W; + A+ WT) = f(W; + Aj+ W)}
= E{Yi(Ai = ADIT — i < /4] Af(W; + W)
< B0/DIAFIENY: (A — ADI(1A] + [Ai])] (4.9)

where $(n) = O(1/4/n). This is responsible for the first term in the expres-
sion for b; in the statement of the lemma, and completes the proof of the first
step.

The next step is to work on E[Y;(A; — A)I[T:" —i < n/4Af(W, + W)
Although the random variables Y;(A; — A}), W, and W;" are dependent, they

(2

are conditionally independent given T, and 7", and then L(W," | T, = s) =
E(U,@s) fori < s <mn,and L(W |T; =5s) = E((_Js@l) for 1 < s <. This
suggests writing
E[Y;(A; — ADITT —i < n/AJAf(W7 + W)

= E[Yi(A; = A)I[TF =i < n/AIAF(UL + U] +

= Ei(A; = AT =i < n/AE{AF(US + UL} -+, (4.10)
with 7; to be bounded.

We start by writing
E[Y;(Ai = AT —i < n/4JAfF(W + W)
= E{E[Y;(Ai - ADI[T" —i < n/4Af(W + W) |G}
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with G; == o(W,,Yi(A; — A)),T7Y). Now Yi;(A; — ADIT;
G;-measurable, and

E{Af(W, +U) — Af(W, + W) |G}

- e s, Ve -u,) o)
reZ ! ’

—1i < n/4] is

= YE{armr + 00 (x0T -] 6}

reZ

where the last line follows because, conditional on X (© )T+, Uéo)i -U (O)T+ is

independent of W;” and U (© ) . This in turn implies that, on T;" —i < n/4,

E{AF(W; +UY,) — Af(W— + W) |G}
< AN (L T = )]

rez
<E{e(x, 00 1) - 2(x v )6
< ASIH(TT —4)B(n/4), (4.11)
where the last line uses (3.5). Thus it follows that
[B{Yi(Ai = AT — i < n/4JAF(W; + W)}
— E{Yi(A; — ADI[T" —i < n/AAF(W; + U}
< [IAfIB(n/HE{Yi]A; — AH(T;" — i)} = mar. (4.12)
An analogous argument, replacing W,” by Uz@p uses the expression
E{AS (T U“’”) - Af(W’ +U,)1G])
ZE{A2 + U2 +7)h, (X(O_) l,z'—T;)‘Qé},
rez
where G! := o(Y;(A; — AL, T, ,T."), which we bound using 3(n — i) as a
bound for HE(USJ_)Z- +1) — [,(U,(LO_)i)H, giving

E{AF(TO +UY,) — Af(W‘ + U164

< AL b (i = TONL@Y, + 1) = £(U2)]
< |AfIHG —T7)B(n/2). (4.13)
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This yields

[E{Yi(Ai — ADIT — i < n/4AF(W7 + U}
— E{Yi(A; — ADIT — i < nfAAf(U0 + UO)Y
< |AFIB(/2E{Yi|A; — AU H (i =T )} = mia, (4.14)

so that (4.10) holds with 7; = 7,1 4 7;2, accounting for the second term in b;,
and completing the second step.

It now remains only to bound the difference between E{A f (U,L-(E)l + US)_)Z)}
and E{Af(W)}. This is accomplished much as before, by writing W =
W, + A; + W, and separating out the event T;" — i > n/4. This gives

B{(Af(W) = Af(W + WIOITT —i < n/4]}]

E {Z 1T — i < /BN (W, + W+ )V (r, A) | T, T Al H
reZ

< IAFIA(/DEIA, (4.15)
where the last line is as for (4.8), and then

[E{AF(W, + WOITF —i < n/4l} — EAFO, + U )PTT —i < n/4)|

i— n—i 7

< [IAfIB/HE{H(i = T;7) + H(T;" - i)}, (4.16)
this last as for (4.11) and (4.13). There is also the inequality

[E{AF(W)I[T — i > n/4)} — BE{AF(O0) + UPYPT — i > n/4]]
< 2| Af||P[T — i > n/4], (4.17)

covering the contribution from T,;" — i > n/4. Multiplying the bounds in
(4.15), (4.16) and (4.17) by E{|Y:(A; — A})|} gives the third element of b;,
together with the remaining contribution to ;, and the lemma is proved for
1<i<n/2.

Forn/2 < i < n,recall that X and X" are stationary. It is well known that
then (X, ;)j_y and (X] _;)j_, are also stationary; these reversed processes
inherit all the relevant properties of X and X’. In carrying out the analysis
above for the reversed processes, we meet no obstacle, and hence the formula
for the b; holds also for ¢ > n/2. This proves the lemma. O
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The bound in Lemma 4.1 can be combined with Lemma 2.2 to prove
the total variation approximation that we are aiming for, under appropriate
conditions. The expression for b; simplifies substantially, if we assume that

max{P(Y; >r|X; =1),PWM1 < —r|X; =0} < P(Z>r) (4.18)

forall » > 0 and 0 <[ < K, for a positive integer valued random variable 7
with EZ3 < co. If this is the case, then

H(m) <2mEZ;  E(JAl|X.X) <27} - T; + 1)EZ;
E(A?| X, X') < 2Ty =T, +1)’EZ%
E(|YV;A;| | X, X') < 2(TF - T; +1)EZ*

and
E(Yi|l42| X, X') < 2T} — T, +1)°EZ%.

From these bounds, together with the fact that A; and A are independent
conditional on X, X', it follows that

by < B(n/A){4EZ°Er? + SEZEZ*Er? + ARZ*Er;(2EZET; + 2EZET;)}
+8(C' Vv O)(nEZ2p~* + ErEZ2p /%)
< 286(n/4)EZ°Er? + 16(C v C)nEZ?p~"/4, (4.19)

where 7; := T;" — T, + 1, and C,C are the constants implied in (3.3) for
the X-process and its time reversal. Note that, since X and X’ are in
equilibrium, both chains can be taken to run for all positive and negative
times, so that then E7? < E72, where 7 is the length of that interval between
successive times at which both X and X’ are in the state 0 which contains
the time point 0. E7? is in general smaller than E7?, because T; and T}

are restricted to lie between 1 and n. Then the bound (4.19), combined with
Lemma 2.2, leads to the following theorem.

Theorem 4.2 Under assumptions (3.7) and (4.18), and with stationary X,
it follows that

IL(W) — TP (EW, Var W) || < 4 (1 + 1dnp(n)ET*EZ®) /Var W,
where p(n) == B(n/4) + (C Vv C)np~"/*,
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Note that

VarW = iE[Var (Y| X;)] + Var (i E(Y; | Xz)) ;

i=1 i=1

so that the bound in Theorem 4.2 is of order O (n™! 4 ¢(n)) = O(n~/?)
under these assumptions, unless £(Y) is degenerate, in which case W is a.s.
constant. Note also that replacing each Y; by Y;—c, for any ¢ € Z, results only
in a translation, and does not change ||[£(W) — TP (EW, Var W)||, and this

can be exploited if necessary when choosing the random variable Z in (4.18).
The assumption that X be stationary is not critical.
Theorem 4.3 Suppose that the assumptions of Theorem 4.2 hold, except

that the initial distribution L£(Xo) is not the stationary distribution. Then it
is still the case that ||L(W) — TP (EW, Var W)| = O(n=1/2).

Proof. Let X’ be in equilibrium and independent of X, and use it as in
Section 3 to construct an equilibrium process X” which is identical with X
after the time 7;" at which X and X’ first coincide in the state 0. Then
Theorem 4.2 can be applied to W”, constructed from X", and also

W =A +W; and W' = Al + W,

with A; and A} defined as before. Let g : Z — R be any bounded function,
and observe that

[Eg(W) — Eg(W")| = [E{g(A1 + W) — g(A] + W)}

Ar—AY
< EQE | I[A > A Y Ag(Wi + A +j — 1) | Ty, Ay, AY
j=1
AV — Ay
—E | I[A < AY] D7 Ag(Wi + A+ — 1) | T, Ay, AT | 3| (4.20)
j=1

Now, arguing as before, on T;" < n/2, we have

[E{Ag(W +AT+) | T, Av, AT < lgll IV +1)=LW I < [lgll B(n/2),
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with 5(n) = O(1/y/n), implying from (4.20) that

[Eg(W) — Eg(W")] {2P[Ty" > n/2] + E[A; — AY|3(n/2)}|gll

<
<

AETEZ¢(n)g]]. (4.21)

Although the distribution of 73" is not the same as if both X and X’ were
at equilibrium, it has moments which are uniformly bounded for all initial
distributions v, in view of (3.3) and (3.4), and hence, from (4.21) and because

@(n) = O(1/y/n), it follows that ||L(W) — LW")| = O(n~Y/?).
On the other hand,

IEW —EW”| < E|A, — A]] < 2ET{EZ,

and also

|Var W — Var W"”| < Var (W — W") + 2/Var W Var (W — W),
with
Var (W —W") < E{|A; — A/} < 4E{(T{")*}E{Z*} =: 4D?

Y

giving
[Var W — Var W”| < 8D max{VvVarW,D}.

Hence, from Lemma 2.1, it follows that
| TP (EW, Var W) — TP (EW”, Var W")|| = O(n~'/?)

also, completing the proof.

O

Assumption (3.7), that the distribution @ = £ <Zf:11 Y; ‘ Xo = O) be

strongly aperiodic, can actually be relaxed; it is enough to assume that @ is

aperiodic.

Theorem 4.4 Suppose that the assumptions of Theorem 4.2 hold, except
that assumption (3.7) is weakened to assuming that Q is aperiodic. Then it

is still the case that ||[L(W) — TP (EW, Var W)| = O(n=/2).
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Proof. Define a new Markov chain X by splitting the state 0 in X into two
states, 0 and —1. For each 7, set

X- _ Xj if Xj > 1;
7 |-R; ifX;=0,

where (R;, j > 0) are independent Bernoulli Be (1/2) random variables; then
set }//\; =Y}, 7 >0, and define W= Z?Zl ?j Clearly, W = W a.s., so that we
can use the construction based on the chain X to investigate £(W). However,
choosing 0 as reference state also for X, we have

M
5(\'0:0 :£<va>,
m=1

where V}, V5, ... are independent and identically distributed with distribu-
tion ), and M is independent of the V;’s, and has the geometric distri-

Sy
Q=L|DY;
j=1

bution Ge (1/2). Since @ is aperiodic, it follows that @ assigns positive
probability to all large enough integer values, and is thus strongly aperiodic.

Hence Theorems 4.2 and 4.3 can be applied to W, because of its construction
as W by way of X and Y. O

Cekanavicius & Mikalauskas (1999) have also studied total variation ap-
proximation in this context, in the degenerate case in which Y} = h(k) a.s.
on {X; =k}, 0 <k < K. They use characteristic function arguments, based
on earlier work of Sirazdinov & Formanov (1979), and their approximations
are in terms of signed measures, rather than translated Poisson distribu-
tions. In their Theorem 2.2, they give one approximation with error of order
O(n~'/%), and another, more complicated approximation with error of order
o(n~'/?). However, their formulation is probabilistically opaque, and their
proofs give no indication as to the magnitude of the implied constants in the
error bounds, or as to their dependence on the parameters of the problem.
In fact, their ‘smoothness’ condition (2.8) requires that the Markov chain X
has a certain structure, irrespective of the values of h, which is unnatural.
For example, the X-chain with K = 2 which has transition matrix

5 1L

10 10

0 0 1 (4.22)
1 00
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fails to satisfy their condition, although, for many score functions h, (1.3) is
still true; for instance, our Theorem 4.4 applies to prove (1.3) if h(0) = 3
and h(1) = h(2) = 1. However, @ is not aperiodic when h(0) = 3, (1) =1
and h(2) = 2, and, without this smoothness condition being satisfied, Theo-
rem 4.4 cannot be applied. This is in fact just as well, since the equilibrium
distribution of W then assigns probability much greater than % to the set
3Z U {37 + 1}, whereas the probability assigned to this set by the translated
Poisson distribution with the corresponding mean and variance approaches
% as n — 0o.

In fact, if @ is periodic, it is rather the exception than the rule that £(W)
and TP (EW, Var W) should be close in total variation. To see this, let @
have period d. Fix any k£ € F, and take any ¢ € Z, and any realization of
the process such that Xo(w) = 0 and X;(w) = k; let Ry (w) := S1_; Yi(w)
modulo d. Then it is immediate that Ry;(w) = 7y is a constant depending
only on k, since, continuing two such realizations along the same X-path
and with the same Y values until the process next hits 0, the two Y-sums
then have to have the same remainder 0 modulo d. The same considerations
show that L£(Y;|X; = k) is concentrated on a set dZ + py for some p; €
{0,1,...,d — 1}, and that the transition matrix P = (py;) of the X-chain
satisfies the condition

ry+pj =1r; modd whenever pg; > 0. (4.23)

Moreover, for the same r- and p-values, any choice of P consistent with (4.23)
yields a distribution ) with period d.

Now the distribution TP (i, o) assigns probability approaching 1/d as
o — oo to any set of the form dZ 4+ r, r € {0,1,...,d — 1}. On the other
hand, using P* to denote probabilities computed with A as the distribution
of Xy, we have

P)W=r modd = Y APW=r modd|X,=i

icE
= Y APIX, € E,_,, | Xo =1,
(S
where E, := {k € E : r; = r} and differences in the indices are evaluated
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modulo d. This, as n — 0o, approaches the value

U
—

Z)\iﬂ-(Er—m) = /\(ES)T‘—<ET—S)7

i€l s

Il
o

where 7 is the stationary distribution of the X-chain. Hence £*(WW) becomes
far from any translated Poisson distribution as n — oo unless

QU

-1

MNEs)m(Er—s) =1/dfor all 0 <r <d— 1. (4.24)

»
Il
o

It is immediate that (4.24) cannot hold for all choices of \ unless
7(E,) = 1/d for each r € {0,1,...,d — 1}. (4.25)

What is more, it cannot hold in the stationary case, when A\ = 7, unless (4.25)
holds. This follows from multiplying both sides of (4.24) (with A = 7) by ¢}
and adding over r, where ¢;, 0 < j < d—1, are the complex d-th roots of unity,
with to := 1. Writing 7(¢) := S.%) w(E,)t*, this implies that {m(t;)}> =0
for 1 < j <d—1, and hence that the polynomial 7(¢) is proportional to the
polynomial Zj;é t*, which implies (4.25). Indeed, the (circulant) matrix II
with elements I1,; = w(E,_;) has d distinct eigenvectors corresponding to the
eigenvalues 7(t;), so that if w(¢;) # 0 for all j, then (4.24) has \(E;) = 1/d
for all s as its only solution.

But condition (4.23) depends only on the communication structure of P,
and not on the exact values of its positive elements, whereas for (4.25) to
be true needs careful choice of the values of these elements. Hence, for most
choices of P leading to a periodic (), meaning those in which 7(F,) = 1/d for
all 7 is not true, £2(W) and TP (E*W, Var *W) are not asymptotically close
for A = 7, or if A is concentrated on a single point, or indeed, if 7 (¢;) # 0
for all j, for any A not satisfying A(Es) = 1/d for all s. In consequence, for
most choices of P leading to a periodic (), the conclusions of Theorems 4.2
and 4.3 are very far from true.

In the example (4.22) above, @ has period 3 when h(0) = 3, h(1) = 1
and h(2) = 2. Clearly, we have py = 0, p; = 1 and p = 2; we then also have
ro = re = 0 and r = 1, so that Ey = {0,2}, £y = {1} and Ey = 0. It is
easy to check that (4.23) is satisfied, and that it would still be satisfied if py;
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were also positive. The matrices P consistent with condition (4.23) for these
values of the py and r; thus take the form

11—« Qo 0
0 0 1
g 1-80

for 0 < o, < 1, so that 7 = (5, ,)/{8 + 2a}; in (4.22), « = 1/10
and f = 1. However, since 7(F5) is necessarily zero, condition (4.25) is
never satisfied. Furthermore, A(E;) must also be zero, and 7 (t;) = 0 can
only occur for ¢; a complex cube root of unity if 3 = a. Thus, in this
example, the conclusions of Theorems 4.2 and 4.3 are never true; furthermore,
if a # 3, translated Poisson approximation cannot be good for any initial
distribution .
As a second example, take K = 3 and P of the form

1l -«

— o o |

(e Neilol
[

o | — o
@

oL O o

for 0 < o, 0 < 1, so that m = (8, a0, a,a8)/{a + B + 2a}. This matrix
satisfies (4.23) for Y-distributions satisfying py = p2 = 0 and p; = p3 = 1
with d = 2, and then ro = r3 = 0 and r; = 7, = 1, so that Ey, = {0,3}
and F; = {1,2}. Hence n(Ey) = n(F;) = 1/2 only if a = 3, and, if a # 3,
m(—=1) # 0. Thus, if a # 3, the conclusions of Theorems 4.2 and 4.3 are far
from true, and indeed translated Poisson approximation cannot possibly be
good for any initial distribution A which does not give equal weight to Ej
and FEj.

The assumption that X has finite state space E greatly simplifies our
arguments, because uniform bounds on hitting and coupling times, such as
those given in (3.3) and (3.4), are immediate. Results similar to ours can
be expected to hold also for countably infinite E, provided that the chain X
is such that uniform bounds analogous to (3.3) and (3.4) are valid, and if
the distributions of the Y; are such that, for instance, (4.18) also holds.
However, a full analysis of the case in which F is countably infinite would be
a substantial undertaking.
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