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Abstract

A Poisson limit theorem for sums of dissociated 0-1 random variables is
refined by deriving the first terms in an asymptotic expansion. The most
natural refinement does not remove all the first-order error in a number of
applications to tests of clustering, and a further approximation is derived
which gives excellent results in practice. The proofs are based on the tech-
nique of Stein and Chen.

CORRELATIONS; INTERPOINT DISTANCES; POISSON APPROXIMATIONS; RATES OF
CONVERGENCE

1. Introduction

In a recent paper, Barbour and Eagleson (1985) established a general
Poisson approximation theorem (together with an error estimate) for sums of
dissociated 0-1 random variables, using a method of proving distributional
limit theorems originated by Stein (1970) and adapted to the Poisson context
by Chen (1975); the results improve upon the earlier conclusions of Brown and
Silverman (1979). However, Stein’s technique is also applicable to the deriva-
tion of higher-order asymptotic estimates to accompany limit theorems, and it
is sensible to ask whether it is possible to improve upon the Poisson approxi-
mation by including further corrections of this type. In this paper, two such
refined approximations are established. The first of these, whilst the most
natural in the context of Stein’s method, turns out to be insufficiently sharp
when analysing close interpoint distances and a second approximation is
derived in order to overcome this problem. The corrections appear, when
compared to simulations of interpoint distances on a hypersphere (as in the
analysis of correlation coefficients), to be practically as well as theoretically
useful.
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A limit theorem for sums of dissociated random variables 587

The notation and the results are set out in the next section, some examples
are discussed in Section 3 and the proofs are presented in Section 4.

2. Statement of results

Let N be a collection of subsets of size m, drawn from the natural numbers,
and suppose that, for each J €N, the random variable X, can take only the
values 0 or 1. The random variables {X,; JEN} are said to be dissociated
(McGinley and Sibson (1975)) if collections of them which have no index in
common are independent. That is, { X;; J € #} is independent of { X; K€ X"}
whenever # N A = . As an example of dissociated random variables,
consider a sequence {Y), Y,- - - } of independent but not necessarily identi-
cally distributed random variables and a symmetric 0-1 function of m
variables, ¢. When J = {i}, iy,- - +, i,, }, define

X;=¢(Y;,---, Y,).

The {X;} are clearly dissociated.
Let Ny={KEN:KNJ# J}and Ny = N,\{J}, so that {Xx; KEN,} are
those random variables which could depend on X;. Set

pr=EX;, Bix=EX; Xy, 7m=EXXiX;.
The statistics which will be considered are of the form
T= 2 XJ

JEN
and we shall denote

ET = 2 D;i= 1.

JEN

Barbour and Eagleson (1985) showed that, if P, denotes a Poisson distribu-
tion with parameter A, then
sup |P(TE€A)—Py(4)]

Acz?

2.1)
=min(l,A7") ¥ {P} + Y (px +ﬂJK)}'

JEN KEN;,
To state our first theorem, let

Cri=pi+ X (pwx+By)

KEN;
and define
2.2) a;:= min(1, 1.44°"%)

and
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2.3) b, := min(1, A7 ").
Let
6i=0+3b, Y Y Vs

JEN K+#LEN;

where
2
5=2{b1 ) CJ} +4ab; ¥ CJ< > PK)

JEN JEN KEN,

2.4)
+bl{z[ S pba+2( 3 n) 3 pulf.

JEN LK+#LEN; KEN; LEN,

and let

Ky 1= —§<p3+ )y (pJpK—ﬂJx)>-

KEN;

Denote the nth Charlier polynomial by
n n r—1
C.(a;t):= X ( )(— DAl (¢ —m)
r=0 \r m=0

and define a measure, P{", on Z™* by assigning mass

e "
J!

{1+ 3#6:G(4;))}

to the point j.
Theorem 1. With the above notation
sup |P(TEA)— PP (A)| =4,

Aczt
Remarks 1. If the {X,; JEN} are completely independent, the above
result simplifies as fB;x = p;px and y,; = ppxpr. Let P denote a random
variable with distribution P;. In the special case of m = 1, Theorem 1 reduces
to

sup
Acz?

n 2 n
= 8‘{171 > pf} +4a;b, ¥ p},
j=1 j=1

which is of the same form as the result obtained by Barbour and Hall (1984) for
this case (see their Theorem 3).
2. Theorem 1, applied to the binomial distribution, B(n, An "), gives

P,(4)— in'E{I(P EA)P*— (24 + )P + A%}
= P(B(n,in""HEA)+ O(n?).

P(TEA)— Pi(A)+ %l'2<i pjz) E{I(PEA)P*— (24 +1)P + 1%}

j=1
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Thus, Theorem 1 shows that
P[TEA]=P[B(n,in")EA]+ O(n~2%4,)

where A = =, p, as usual, and n = — A%/k,, provided that x, <0. For x,> 0,
there is an analogous representation using the negative binomial,

P[T €A]=P[NB(k, 9)EA] + O(n~% 3,)

where k = A%/, and k(1 — q)/q = A.
3. For the special sets 4 = {j: j = s}, the approximation in Theorem 1 can
be given explicitly as

PP = Py(A) — Jope ™2 "4 A — 5 + 1}/(s — 1)!

A typical example in which Theorem 1 would be useful is in testing for
tendencies towards periodicity in a collection of points distributed in the
plane, where one would expect an unusually large number of interpoint
distances that were, within a certain tolerance, integer multiples of a given unit
of distance. The distribution of the number of such interpoint distances, on the
null hypothesis of a random distribution of points, could be estimated using
Theorem 1, provided that the tolerance was chosen so that the expected
number thereof was of only moderate size. A similar problem, this time on the
line, arises in epidemiology when assessing evidence for a latent period of
infection from data on the time of presentation of cases of a disease, and the
number of pairs of cases whose times of presentation differ by a certain
interval is of interest (Mantel and Bailar (1970)). However, in the more usual
problem, in which evidence for clustering in a distribution of points is adduced
from abnormally large numbers of close pairs, a more subtle analysis is
required. This is typically because, if points Y, and Y; are close to Y,, then Y, is
also close to Y3. SowhenJ = {i, j}, K = {i, k} and L = {j, k} the quantity y,,
can be of the same order of magnitude as S, in contrast to the first two
examples, where it is of smaller order. So when considering close pairs, these
terms must be included in the correction to obtain a sensible approximation.
For simplicity, we do this only for the case m = 2. WhenJ = {i, j}, K = {i, k}
denote {j, k} by (JK) and let

d,:=0+8b ¥ ) > Y

JEN KENj LENS
L #K,(JK)

+20,3 5 pufoa 3 pth 3 |

JEN KEN; LEN, LEN

K= Y X YikUK).

JEN KEN;

Define a measure, P, on Z* by assigning mass
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e/
J!

{1+ 36,GA4;)) + 6C3(4;.))}

to the point j.
Theorem 2. When m = 2, and with the above notation,
sup |P(TEA)— PP (4)| =9,

aczt
Remarks 4. When B, and ykx, are of the same order of magnitude, the
two correction terms are clearly of the same order, unless, for K €N, , X, and
Xy are (almost) uncorrelated, in which case the second correction term is the
larger. Examples of the various possibilities are given in Section 3.
5. When 4 = {j:j = s}, the approximation is given by

PR(A) = PO(A) + Yse 25~ 3(A — s + 1)P — s + 1}/(s — 1)!

3. Examples

A natural example is given by considering the (3) different distances between
n points independently distributed over some space. A sensible statistic, useful
for testing whether the points are random against a clustering alternative, is the
number of ‘small’ interpoint distances. Here,

T= Y I(Y,-Y|=e),
l1=si<j=n

where the Y, are independent and identically distributed under the null
hypothesis and ¢ is some suitably chosen measure of closeness, depending on
n. The common distribution of the ¥; determines the correction factors given
in Theorem 2. Because the { Y; } are identically distributed, the values of p,, B,k
and 7, are unchanged by permutations of the indices 1 =i = n.

If one has some information about the expected size of the clustering effect,
this should be used to fix ¢ and hence to determine A through

G.1) /1=ET=<;)P(|Y1——Y2|§£).

A critical region for T of the form [s, co] can then be chosen with associated
size
3.2) P(Tzs)=Y e "Wj'+ C,

Jj=s
where C, is the correction term from Theorem 2. Alternatively, the critical
value s and a target size o can be used to determine a value of 4 through the
equation

(3.3) a=73 e W
j=s
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and hence a value of &: a closer approximation to the true size is then given, by
(3.2),asa+ C,.

To obtain an explicit expression for C,, consider n points distributed
independently over an open subset Q of R*, according to a distribution with a
bounded continuous density function f. The probability that a pair of points is
separated by a distance less than ¢ is

pim [ AIONIx —y| <eldsdy.
Q

When &, and so p, also, is small, changing variables by settingy = x + &z gives,
by dominated convergence,

(3.4) p,=¢ fnf(x)dx{f%)f(x +el[|z] < 11dz} = Vi + 0(&),

where V, is the volume of the k-dimensional unit sphere, g, = [q f° "*+1(x)dx
and Q,(x) = {z: x + &2 €Q}. If a and s are fixed, they determine 4 through
(3.3), and the equation

(3.5) p.=4 / (’2’)

determines ¢. It follows that, if n is large, p, = p, = O(n~?) and the corre-
sponding ¢ is O(n ~%%).

In order to compute the finer approximation a + C; to the size of test
obtained, note that Q,(x)— R* as ¢ =0, and observe that

Be:= Bunun = |  SESO@Ix —y| <ellllx —z| <eldxdydz
03

2
o [ ][ itz <naf as
Q Qfx)
=e*Viu + o(e™)
=0(n™",
again by dominated convergence, and

Y3 .= Pu,2501.31(2.3)
= fnsf(x)f(y)f(z)lllx -yl <elllx —z| <el[ly —z| <eldxdydz
=82"f9f(x)dx{fnﬁx)f(x +eu)fix +ew)l[|u| <1)[|w]| <]

XI[|lw—u|< l]dudw}
= 82kaﬂ2 + 0(82k)
=0(n"",
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where

W= f I{|lu —w| <1)duadw.
(Iml<LIw|<1)

It is also easily seen that all y’s based on four or more different points are of
order n~° Hence if N =D, := {(i,)j); 1 =i <j =n},

L% G mro=(5) 20— 26— D)
JED, KEN;
=420 ", — ud)pi + o(n™Y),

and u, > uf unless f is constant on Q, which must then be a bounded subset of
R*. Thus the first correction term is of magnitude n ', unless the 7 points are
uniformly distributed over Q, when only edge effects make any non-zero
contribution. For the second correction term,

n
) E(X,XKXUK))=(2) 2n — 2,
JeD, KEN;

is also of order n ™",

Hence, from Theorem 2, we have the approximation
e AT A —s+1)
(s—1)

1
P[T§S]=a+§<;l> {p! —2(n —2)(B. — p})}
(3.6)

—Ays=3p01 _ 2
+(n>yse AHA—s+1) s+1}+0(n_2).

3 (s—1n

The same approximation clearly holds also for open subsets Q of uniformly
smooth manifolds, such as spheres and toruses.

In the particular case of distances between points independently and
uniformly distributed on a circle, 8, and y, can be explicitly calculated as p? and
3p? respectively. When considering the distribution of the smallest spacing
between any pair of »n such points, (3.3) and (3.5) indicate that spacings ¢ given
by

e=2mi/n(n — 1),

for fixed A, are of the appropriate order of magnitude: for such an ¢,
D, = &/m = A/(3), and the probability that the smallest spacing is less than ¢ is
then, to a first approximation, 1 — e~ * + O(n ") from (2.1). Using (3.6), this
estimate is improved to

1—e *+ 3% (i — 1)+ 02,

which agrees with the expansion for the same probability, obtained by explicit
calculation. A similar check can be made using the distribution of the second
smallest spacing, which is also expressible in terms of the distribution of T
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A rather more interesting example is that of points uniformly distributed on
a unit sphere in R*. Such points have the same distribution as
(k + 1)-dimensional vectors of independent, identically distributed normal
random variables, centred at their sample mean and normalized by their
sample standard deviation. In this case the ‘distance’ between two points can
be taken to be the cosine of the angle they subtend, so that ‘close’ points are
vectors which are highy correlated. These distances are also pairwise indepen-
dent (Geisser and Mantel (1962), Brown and Eagleson (1984)) and 7, can be
obtained from the joint probability density of the three correlation coeffi-
cients, ryy, 113, I3, calculated between Y, ¥, and Y;, namely:

C(k + 1)(1 - r|22 - r]23 —_ r223 + 2rlér13r23)(k—4)/2
X I(l - r122 - r123 - r223 + 2r12r13r23>0),

Once 7y, is calculated (by numerical integration), Equation (3.6) can be used.
Although (3.6) provides a theoretically better estimate of the critical prob-
ability P[T = s] than the target value « computed according to a Poisson
approximation, in that the error remaining is of order n ~? rather than of order
n~!, it is reasonable to ask whether it has practical importance: that is,
whether, for n so small that « is not a good approximation to P[T = s], the
estimate in (3.6) is any better. Figure 1 shows the results of 23000 simulations
of the correlation example with k£ =9, in comparison with the target size o
derived from the Poisson approximation (a« = 5%) and with the prediction
given by (3.6), for n = 5, 10 and 15. It is clear that the prediction given by (3.6)
is extremely reliable, even for small n and relatively large s. Consideration of
the error estimates in Theorem 2 indicates that, if a fixed percentage error in
the probability to be approximated is tolerable, s can be allowed to grow
linearly with n. Figure 1 suggests that a relative error of 20% or less is
maintained in this example for s = 2n. It is tempting to suppose that a normal
approximation might be appropriate for larger s, but this is not in fact the case,
since the statistic 7 has, in the terminology of U-statistics, a degenerate kernel.

4. Proofs

The notation is that of Section 2. In addition, let x = x, , be the test function
used in the proof of (2.1), namely x: Z* — R is given by

x(0)=0
x(m+1)=iA""ém![P,(4 N U,)— P,(A)P,(U,), m=0,

where U, ={0,1,---,m}. It is shown in the appendix to Barbour and
Eagleson (1983) that

sup |x;4(j)| =min(l, 1.417"?) =g,,
jz0
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Figure 1. Comparison of the approximations (3.3) and (3.6) to P[T = s] with simulation, in the

case of distances between points distributed independently and uniformly over the unit sphere in

R®, with a fixed at 0.05. The approximation (3.6) is denoted by O, and the estimates from 23000
simulations by X

and
sup | x40 + 1) — x,4()| =min(1, A" ") = b,

Jjz0
uniformly in 4 C Z*. To prove Theorem 1, we shall show that

sup |P(TEA)— Pi(A)+ 1GE{x; ,(P +2) — x; 4(P + 1)}]| =6,

Acz*
As it follows from the definition of x; 4 that
E{x(P+2)—x(P+ 1)} =—3E{I(PEA)1 —24"'"P+A7*P(P — 1))},

this will be sufficient to prove the theorem.
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Let Z, = Zxen, Xxand T, = T — Z,, so that T, is independent of X,. Then as
in Barbour and Eagleson (1984),

P[TEA]—Py(A4)= X pE{X(T +1)—x(T, + 1)}

JEN

= X E{X,[x(T) = x(T; + D]},

JEN

(4.1)

where x denotes x; ,. Consider the first sum. It is immediate that
IX(T+1D)=x(T; + 1) = Z,{x(T; +2) — x(T, + )}| =2b(Z, - 1)*,

so that the first sum may be written as

4.2) > p,E{(X,+ Z_XK> x(T; +2)—x(T, + 1))}+e,,
where - =

(4.3) le | §2b‘,§Np’E(Z’_ n*.

Let

Zyx= Y X, and Ty =T,— Zg,

LENAN;

so that T is independent of both X; and Xj: then, directly,

| Xx((Ty + 2) — x(T; + 1)) — Xe(x (T + 2) — x(Tix + 1))| = 26, X¢Z g,
so that

E{Xx(x(T; + 2) = x(T; + 1))} = E{Xxk(x(T)x + 2) — x(T)x + 1))} + ey,
4.4)
where
(4.5) | ey | = 2b,E(XyZ ).
Finally, whatever the integer-valued random variable W and function f,
(4.6) |Ef(W) — Ef(P)| =2sup | f()|d(W, P),
where d(W, P) denotes the total variatior; distance between the distributions
of Wand P,

d(W,P):= sup |P(WEA)— P(PEA)|.

acz*
Combining (4.2), (4.4) and (4.6) and using the independence of X; and T, and
of X;, Xy and Ty, it follows that the first sum in (4.1) may be written as

) PJ{PJE(X(P +2)—x(P+1)+ ¥ pEx(P+2)—x(P+ 1))}

JEN KEN;

4.7)
+e+ X {5’31 + X (prewx + eux)} ,

JEN KEN;
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where

(4.8) less | = 2bp;d(T,, P)
and

4.9) leax | = 2b;pypxd(Ti, P).

Now both T;and T are dissociated statistics, though with means 4, and A
possibly smaller than A, and a straightforward extension of the argument
leading to (4.1) gives

AT, P)=a(A—A)+b ¥ C,

LEN
and
(4.10) d(Ti, P)<a,(A—Ax)+ b, ¥ C,.
LEN

This allows the estimate

4.11) =Y ey =2b X sz{aa Y pktb X CL}’
JEN JEN KEN, LeN
and
(4.12) =Y Y ex|=25Y X PJPK‘{ZGA Y o+bh X CL}'
JEN KEN; JEN KENy LEN, LEN

For e, and e, , note that

1
(Z,-D7=5 ¥ XX,

= 2 K,LEN,
K+#L
and
XeZix= Y XeXp
LENy
then it follows from (4.3) and (4.5) that
(4.13) lel=b X 0y X B
JEN K,LEN;,
K#L
and
(4.14) =2 Y pex|=20Y Y Y pbu.
JEN KEN; JEN KEN;, LENy

Expression (4.7), together with the estimates (4.11)-(4.14), complete the
analysis of the first sum in (4.1).
For the second, proceed in a similar fashion. Since

| X {x(T) —x(T; + 1)} = X(Z; — X)) {x(T; +2) — x(T, + 1)}|
(4.15)
=20, X/(Z; - X, - 17,
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and for KEN; ,

| Xp X {x(T; + 2) — x(T; + 1)} = X)X {x(Tix + 2) — x(Tix + D}
(4.16)
= 20, X, X(Z s

the second sum can be written as

(4.17) Y 2 EXXOE{x(Ty +2)—x(Ty + 1)} + &5 + e,

JEN KeN;
with
(4.18)  |es| =2b, ¥ E{X}(Z,— X, —D*}=b Y ¥ I vk

JEN JEN KEN; LEN]

L#K
and
lesl =2b, ¥ Y E(X;X¢Zy)
JEN KEN;

(4.19)

=26, Y Y 2V

JEN KEN; LENx
L+J

Expression (4.17) can be reduced further, using (4.6) and (4.10), to
(4.20) Y ¥ EXXOE{x(P+2)—x(P+1)}+es+es+e,

JEN KEN;
where

(4.21) le;l =20, ¥ X ﬂJK{zaA Y ptb X CL}~

JEN KEN; LEN, LEN

Subtracting (4.20) from (4.7), and using (4.1), it follows that the quantity to be
estimated in Theorem 1 is no larger than

z le;l.
j=1

Theorem 1 now follows from the estimates (4.11)-(4.14), (4.18), (4.19), and
(4.21).
As it can be shown that

E{x (P +3)—2x,(P+2)+x,(P+ 1)} = E{I(PEA)C5(4; P)},
Theorem 2 will follow if we show that

sup |P(TEA)— Pi(A) + 1E {x 4(P + 2) — x;4(P + 1)}

Acz*
+ $GE (x4 (P + 3) — 2x34(P + 2) + X 4(P + 1)}
=0,

To do this, observe first that the awkward terms involving Yy, arise only
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from the estimates of es and e, introduced through the errors in the approxi-
mations (4.15) and (4.16). In fact, since Z;x = Z; en, v, X, the estimates (4.19)
of ¢, can immediately be improved to

(4.22) les] =2b, ¥ X Y Ve
JEN KEN; LEN;
L #K,(JK)

which means that the error introduced in the approximation (4.16) is in fact of
the required order. However, (4.15) is essentially too weak, and must be
replaced by

X, {(x(T, + Z;) — x(T, + 1)} = X (Z; — X)){x(T, + 2) — x(T, + 1)}

KEN;,

=4bX;, Y Y XX,
KEN; LEN]
L#KUK)

Thus e; is replaced by e, with

(4.23) leg| = 4b; r X Y Ve
JEN KEN; LEN;
L #K,UK)

avoiding the awkward error terms at the expense of introducing an extra
correction term

1
5 Y Y E[XXXu(x(T; + 3)—2x(T; +2) + x(T, + 1)}],
JEN KeN;

which, as in the proof of Theorem 1, can be reduced to

—1{ > 2 E(X,XKXUK))}E{x(P+3)—2x(P+2)+x(P+ 1} + e + e,

JEN KEN;,
where

(4.24) legl =2b, X X E(X:XxZy),

JEN KEN;,
again of the form (4.22), and

lewl =2b, ¥ Y Bxd(Ty, P)

JEN KEN,

(4.25)
=2h, Y % BJK{zaA Y pth ¥ CL}-

JEN KEN; LEN; LEN
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Theorem 2 follows: the discrepancy is essentially the estimate of

10

Y
Jj=1
Jj#5

provided by (4.11)(4.14) and (4.21)-(4.25).
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