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The Stein-Chen method for Poisson approximation is adapted into a form suitable for obtaining error
estimates for the approximation of the whole distribution of a point process on a suitable topological
space by that of a Poisson process. The adaptation involves consideration of an immigration-death
process on the topological space, whose equilibrium distribution is that of the approximating Poisson
process; the Stein equation has a simple interpretation in terms of the generator of the immigration-death
process. The error estimates for process approximation in total variation do not have the ‘magic’
Stein-Chen multiplying constants, which for univariate approximation tend to zero as the mean gets
larger, but examples, including Bernoulli trials and the hard-core model on the torus, show that this is
not possible. By choosing weaker metrics on the space of distributions of point processes, it is possible
to reintroduce these constants. The proofs actually yield an improved estimate for one of the constants
in the univariate case.
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1. Introduction

The aim of the paper is to estimate the error when approximating a point process
on a general space by a Poisson process. We accomplish this with respect to the
total variation metric and also to other, weaker metrics, using the Stein-Chen
method. In order to describe the results further, it is convenient to start with the
case when the carrier space is finite.
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Stein’s method of obtaining estimates of the error in distributional approximations
was first developed in the context of Poisson approximation by Chen (1975). His
main theorem can be described as follows. Let I" be a finite set of indices, and let
(I, €I') be indicator random variables; set m, =EI,, W=)__,. I, and A =
Ywer To. Suppose that, for each «, a subset N, < I" is given such that N, 5 «, and
set

Z,= Y Iy,  n.=EEL|(I,BeN,)}—ml.
BeNg\a
Let dry denote the total variation metric on probability distributions, so that, if P
and 2 are probability distributions on some space, then

dr(P,2) = SUP‘@(A) —2(A)

L)

where the supremum is over all measurable subsets.

Theorem 1.1. There exist constants ¢;(A) and ¢-(A) such that
dry(Z(W), Po(A))

<a@) ¥ mete(d) T (mo+ mEZ +E(LZ,). O

The constants ¢, and ¢, are shown in Barbour and Eagleson (1983) to satisfy the
inequalities

c(A)<1a1.417Y2 (M)A (1-e).

Another way of using the Stein-Chen method to bound the error in Poisson
approximation is to use coupling, as in Barbour and Holst (1989) and in Stein
(1986, pp. 92-93). Suppose that, for each «, random variables U, and V, can be
constructed on the same probability space in such a way that

P(U,)=L(W), LV, +1)=L(W|I,=1).

Then the following result can be proved.

Theorem 1.2. Whatever the choice of couplings ((U,, V,)), ae€I),
dTV(g( W)a PO(/\)) = CZ(/\) Z ﬂ.arEl Ua - Va|’
ael’

where ¢, is as before. [

Theorem 1.1 is typically more suitable when dependence is in some sense local,
and the N,’s can be chosen to contain those indices 8 where I, is relatively strongly
dependent on I,: Theorem 1.2 is useful when the dependence among the I.’s is
symmetric.
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There are two cases of particular interest. If the couplings (U,, V,) are realized
in such a way that U, =V, as. for all ¢, the indicators (I, a € I') are said to be
negatively related, and the estimate in Theorem 1.2 reduces to ¢,(A){A —Var W}. If
slightly finer couplings (U, I,,, V,) can be realized in such a way that, for each
ael,

LU, 1)) =2(W—1,, L)),
LV, +1)=L(W|I,=1), U,<V, as.,

then the indicators (I,, « € I') are said to be positively related, and the estimate in
Theorem 1.2 is no greater than c,(A){Var W—A+2Y__,. 7.}

In the context of a finite I, some process generalization has already been made:
in Arratia, Goldstein and Gordon (1989), where an analogue of Theorem 1.1 for
processes is proved, and in Barbour (1988). Here, in Section 2, it is shown that both
Theorems 1.1 and 1.2 have process counterparts. However, a major difference
between the results for processes and those for random variables is that the constants
ci(A) and c5(A) for process approximation no longer decrease towards zero with
increasing A. This is an inevitable consequence of using the total variation metric,
since, if the (I,, a € I') are independent, either theorem gives a best estimate of
cHA) Y per %, whereas the event A= {there exists a multiple point} has zero
probability for the process (I,, a € I') and a probability of order Y ,_, m. a1 for
the Poisson process. In Section 3, by choosing smoother metrics on the space of
point process distributions, it is shown that constants ¢{(A) and ¢5(A), with much
the same dependence on A as ¢;(A) and ¢,(A), can be recovered.

The approach used here does not, as in the previous papers, proceed by way of
finite-dimensional distributions. Instead, the method used in Barbour (1988) is
formulated directly in the process setting. This makes the argument more transparent,
and, in particular, leads to simple probabilistic formulae for the various constants
¢, and c,. One unexpected consequence is that the estimate of ¢;(A) in Theorem
1.1 is slightly improved, to ¢,(A)<1aA""*V2/e.

In constructing approximations by a Poisson process, it is natural to take I" to
be a compact, second countable Hausdorff space and to replace the process (I, )acr
by a point process = on I This gives great generality to the results and permits
the consideration of approximation of arbitrary point processes in Euclidean or
other spaces by a Poisson process. The only price to be paid for the generality is
some technical complication, though the proofs are not very difterent from those
which would be needed in the finite case. For general definitions and notation see
Kallenberg (1976); we recall that = is a point process if it is a non-negative, integer
valued random measure on I' and that it is simple if E({a}, w)=<1 for all a €l
and w € £. Since I' is assumed to be compact, it is natural also to assume that =
is almost surely finite, which we do throughout. We also assume that the processes
have finite mean measures. To apply the results of the paper to processes defined
over the whole of a Euclidean space, it may thus be necessary to approximate the
process on an increasing sequence of compacta.
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In Barbour and Brown (1990), approximations for the distribution of the total
number of points = (I") were considered. Papangelou (1980) considered the problem
of total variation approximation of the whole point process by a mixed sample
process, of which a Poisson process is a special case. Apart from this difference,
his bound contains as one term the distance of the distribution of the total number
of points from the corresponding distribution for the mixed sample process, whereas
the result here does not. Papangelou’s result is most directly connected to Theorem
2.6.

2. Total variation approximation

In this section, we reformulate the multivariate Stein equation of Barbour (1988)
in process form, and show how it may be used to establish bounds on the total
variation distance between the distribution of the point process 5 on I' and the
distribution Po(s) of a Poisson process over I' with mean measure 7, assumed
finite. Let 8, denote the point mass at @ and 7= @ (I"). Let & denote the space of
finite point process configurations on I, so that & is the space of finite, non-negative,
integer valued measures on I If £ denotes a typical element of &, the generator &/
defined by

(h)(¢) = L [h(&+ 3a)—h(§)]ﬂ(da)+L [h(§—6.)—h(£)1é(da), (2.1)

for a suitable class of functions h, is that of the immigration-death process Z on
I' with immigration intensity = and with unit per capita death rate, and Z has
equilibrium distribution Po(4r). The corresponding Stein equation is the equation

(£h)(§) = f(£) —Po(a)(f), (2.2)

which makes sense at least for bounded functions f: Z - R, where w(f) denotes
{fdu (all functions introduced are assumed to be measurable). The first step is to
construct a solution of (2.2). We use the notation P* to denote the distribution of
Z when the initial distribution is u, and P? as shorthand for P%; E* and E¢ are
defined similarly.

Proposition 2.1. For any bounded f: % - R, the function h:Z - R given by

h(¢) = -—Lw [E¥/(Z (1)) —Po(ar)(f)] dt (2.3)
is well defined.
Proof. Consider the Slmple coupling of an immigration-death process Z under P*

and a similar process Z under PP taking Z = Zy+ D, Z = Z,+ D, where Z,, D
and D are independent, Z, denotes the immigration-death process under P° with
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no initial particles, and D and D are pure death processes with unit per capita
death rate such that D(0) = ¢ and D(0) ~ Po(#). Then Z(t) = Z(t) forall t = 7, where

r=inf{u=0: D(u)= D(u)=0}.

Hence the integral in (2.3) is bounded by

=)

L ltE%f(zu»—usf(z"(z))ldsz N IPLr> 1) de

0

=2||f[Er<2| £ |Ew(|£[+]|D(0)]) <o,

where | f|=sup|f(&)], W(D)=Y!_ 1/r, and the last inequality follows because
|D(0)|~Po(w). O

It is shown in Proposition 2.3 below that the function /& so defined is a solution
of the Stein equation (2.2). In order to then use the Stein equation to establish
Poisson process approximation, it is necessary to have a result which expresses
the smoothness of its solution h, given in (2.3), in terms of properties of f. This is
the substance of the following lemma, which is also needed in the proof of
Proposition 2.3.

Lemma 2.2. If h is defined by (2.3), and if f(é)=1[£€ A],
(i)  Ah= sup |h(£+8,)-h(&|<1;

teX,acl

(i)  Ah= sup |h(£+8,+85)—h(£+8,)—h(E+8,)+h(8)|=1.

e a,Bel’
Proof. For part (i), note that, from the definition (2.3) of h,
h(¢+38.)—h(é) = J [Ef(Z(1)) —E* =f(Z(1))] dt,
0

where Z is the immigration-death process on I' with immigration intensity (wg, B €
I') and with unit per capita death rate. Let Z be realized under P¢, and let E be
an independent negative exponential random variable with unit mean. Then the
process Z' defined by Z'(t)=Z(t)+8,I[E> (] has distribution P*"*. Thus it
follows that

h(§+6.)—h(¢) =J ESLAZ(1)—f(Z(1)+8,)] e dt,

0

and the estimate A,h <1 is immediate from |f(&) —f(£+8,)|<1.

A similar coupling, introducing two independent negative exponential random
variables E, and E, with unit means, can be used to link P%,P*" P*"% and
P¢*%*% by means of processes Z, Z,, Z and Z,s, where Z has distribution P¥,

Z,(t)=Z(t)+ 8, I[E,>t], Zg(t)=Z(t)+ 85I[ Eg> t],
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and
Zop(t)=Z(t)+ 8, I[E, > t]+ 85I[ Eg > t].
Then it follows that
h(é+8,+65)—h(£+8,)—h(&+85)+h(€)

== J {ES7° 0 f(Z (1) —EF P f(Z (1)) =B f(Z (1)) + EF(Z(1))} dt

0

=—wa§{f(Z(t)+6a+63)—f(Z(t)+5a)

0

—f(Z(1)+86) +/(Z(1))} ™™ dt,
giving A,h<1. O

Proposition 2.3. The function h defined in Proposition 2.1 satisfies equation (2.2).

Proof. Let h,(¢)=—[, [E*/(Z(u))—Po(a)(f)] du. The first time at which a particle
is born or dies has an exponential distribution with parameter g, = 7=+ £(I"). Hence

h (&) =—(f(&)—Po(m)(f)) e %'t
+J e [—qgu(f(f) —Po(a)(f))+ J b (6+6,)m(da)

—I—J, h,“(g—éa)g(da)] du.
r

From the proof of Proposition 2.1, the functions h,(£) are uniformly bounded in s
for each £ and, from Lemma 2.2(i), h,(£+§,.) and h,(£— 8, ) are therefore uniformly
bounded in s and «. Hence we may let 1> 0o and apply bounded convergence to give

h(g)=ql{-[f<s>—Po<n><f>]+J h(é+8.)m(da)
& r

+_[ h(§~53)§(da)}.
r
The proposition follows by rearrangement of the equation. [0

In order to obtain an analogue of Theorem 1.1, it is necessary to introduce
neighbourhoods N, of each point « in I These are assumed to be measurable
subsets of I' with N, 3 a. It is also assumed that the mappings

(a)  &XI'>[0,00): (& a)—£(N,)
and

(b) XxI'>Z%Z: (& a)—¢ restricted to N&
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are product measurable. Since I is a metric space (see Kallenberg, 1976, p. 1), a
natural choice for N, is the closed ball of radius r centred at «.

We next show that such a choice satisfies (a) and (b). For >0, let f5(8) be
¢(e7'd(B, N,)), where d is a metric on I" and ¢(t) =max{1 — ¢, 0}. Then /% conver-
ges pointwise to the indicator of N,. For fixed a and ¢ it therefore follows by
dominated convergence that

FUBEAB) > £(N,),

o

and that, for a bounded continuous function g: I' >R,

r

sl (p)E(ap)~ J g dé.

N,

e @

Thus it suffices to demonstrate the measurability, for fixed &, of the mappings

(& a)HJFfZ d§ and (§ a)—fi8

where [ ¢ is the measure on I' giving f7,£(B) =j'3f§ dé¢ for any Borel set B. This
is done by demonstrating continuity of the maps with respect to the vague topology.
Suppose that «,— « and £, £ and that {8,} is any sequence converging to some
B. Then

|f5. (B —fu(B)<e'|d(B,, N,,)—d(B, N,)|->0,

because N, is the closed ball of radius r and centre a. Continuity now follows from
Kallenberg (1976, A 7.3), and the definition of vague convergence.

To formulate the analogue of 7, in Theorem 1.1 for a point process, we make
some additional assumptions. First, it is supposed that there is a fixed measure v
on I In applications with I" a finite set, » would be counting measure, and on a
compact subset of Euclidean space it would be Lebesgue measure. Next, it is
supposed that, for n=0,1,2,..., the Janossi densities j,:I"" > [0, o) with respect

to »" exist for the process E. This means that, for any non-negative measurable
function f: £ >R,

[E(f(E)) = Z J (n‘)_lf< Z 6(21>j11(a13 L) CI!”)V”(d(Il, R ] dan)- (24)
n=0 J 1" i=1

Informally, (n!)”'j,(e,, ..., a,)v"(da,, ..., da,) is the probability of = producing

points near «,,..., «,; the term with n =0 is interpreted as j,f(#). We may use

these densities to produce the first moment measure 7 of the process: this has

density u(«) given by

/.L(CY): Z J (n!)Aljlr*—l(a’ ala"‘7an)yn(dala"'7daﬂ) (25)
o

n=0
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(Daley and Vere-Jones, 1988, Lemma 5.4.III). The interest here is that, in like
fashion, the densities can be used to define the probability of a point being near «,
given the configuration =* of = outside N,. Let m be fixed and 8 =(8,,...,B.)€
(N)™ For any a, define

Z: J , jm+r+l(a7 ﬁ’ ’)’)(r!)il”r(d’}’)
gla, B) ="
Z J R jm-l—x(ﬁ’ Vi)(S!)_lVS(dTI)

5=0

(2.6)

a

(the term with r =0 is interpreted as j,,.,(a, 8) and the term with s =0 similarly),
so that g is the density of a point at « given that 5 outside N, is Y.|_, 8p,. If the
denominator is zero, g(a, B) is interpreted as zero also. For any & in & concentrated
on N, we may write £=)", 85 for some m and B,,..., B, € N.. Because of
this, and because {j,} is a sequence of symmetric functions, it makes sense to write
g(a, &) for g(a, B). It is also convenient, for any ¢ c &%, to write j,(¢) for
Jalay, ..., a,) where =) §,,. Finally, for @=(a,,...,a,)el", we write 8,
for ¢ given in the previous sentence.

The important property of g is that, for any non-negative or bounded measurable
h:Z-R, we have

[E(JF h(E“)E(da)) =IE<f‘ h(E"g(a, B v(da)). (2.7)

To see this, note that the integrand on the right-hand side is a measurable function
of =, and, according to (2.4), we may write the right side as

L Y X fw J‘(N)A_h(ﬁg)g(a,B)j,,+s(8g+51,)(n!s!)_'

" n=0 s=0

xv'(dn)v"(dB)v(da),

which can be re-expressed as

I 2 J L J .h(aﬁ)jrﬁ—rﬂ(aa+33+57)(n!)_1(r!)*1
! ( (N

" n=0 No)" r=0

xv'(dy)v"(dB)v(de),

upon integrating over #, then summing over s and using (2.6). Note that all the
changes of order of integration are justified by the boundedness or non-negativity
of h and the norming of {j,}. Taking the sums first, using the fact that jr h(E9)E(da)
is zero for the zero measure, and applying (2.4) gives (2.7).

We are now in a position to prove the analogue of Theorem 1.1.

Theorem 2.4. Suppose that = is a simple point process on I" with mean measure 7.
Suppose also that = has Janossi densities {j,}, and that {N,},.r is a neighbourhood
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structure satisfying (a) and (b) above. Then, for any finite measure A,

drv(Z(E), PO(/\))SIE{J‘ E(Na\{a})E(da)}

I

+L E{Z(N)}(a)(da)

+| Hate =) - pelstaar tlm-al @8

where w and g are defined in (2.5) and (2.6), and | -] denotes the total variation
distance between measures, which is twice dr, when applied to probability measures.
Further, if I is finite, the bound is the same as in Theorem 1.1, but without the constants
¢, (A) and c,(A).

Proof. The argument is an elaboration of Chen’s argument for Theorem 1.1. We
first assume that r = A. It is then enough to estimate |E(.s¢h)(Z')|, where o is defined
by (2.1) and h is given by (2.3) with f(¢) = I[ £ € A], for any A < . First, observe that

IIE J'F [H(E—8,)~h(E)~h(E*)+h(E*+5,)]E (da)

le(J‘r E(Na\{a})E(da)>, (2.9)

because, in view of Lemma 2.2(ii), the modulus of the integrand is bounded by
E(N,\{a}). In the same way, and by the Fubini-Tonelli theorem,

’!E I [AW(E*)=h(E*+8,)—h(E)+h(E+8,)]w(da)
B

leJ E(Na)ﬂ'(da):j E{Z(N,)}w(da). (2.10)
r r

Thus, in order to estimate |[E(s¢h)(=)|, it remains only to observe that, from (2.7),

E J’ [A(E“+8,)—h(E“)HE(da) —w(da)}
-

E J'r [hH(E"+8,)—h(E*){g(a, E*) — p(a)}v(da)

sL Elg(a, %)~ p(a)|r(da), (2.11)

whence, combining (2.1), (2.9), (2.10) and (2.11), the bound (2.8) is proved in the
case A = 7.
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In order to extend the result to a general choice of A, it is enough to estimate the
total variation distance between Po(sr) and Po(A). This can also be done using the
Stein-Chen approach, as follows. Let = be a Poisson process with mean measure
A. Then, for any bounded measurable h,

E f [h(E—-6.)—h(E)]E(de)=E J [A(E, —8.)—h(E.)]A(da),
I r
where =, is the Palm process (see (2.15) below) for = at a. Here, =, is a Poisson
process with mean measure A, with the addition of a deterministic atom at «. Hence
the integral on the right-hand side is
J E[A(E)—h(E+35,)]A(da),
r

and thus

[E(sth)(2)|=

L E[A(E+6,)—h(E){m(da)—A(da)}]|.

The latter expression is bounded by || @ — A || since, from Lemma 2.2(i), the absolute
value of the integrand is bounded by one. This completes the proof of the bound
(2.8) for general A.

Suppose now that I' is finite, and that I, = E{a} for each a €I Take v to be
counting measure, so that u(«)=m, =EI,. Then, for 0<n<|I'| and @ e I'" with
a; # a; for all i,

Jnl@)=E{I, --- I, (1—1Ig) - - (1~1Ig )},

where m=|{a,,..., a,}and {B,,..., Bu}={a,, ..., a,}°. The transfer of notation
to that of Theorem 1.1 is now straightforward. [

The first three terms in (2.8) all have natural interpretations. The first measures
the extent of local dependence, the second how ‘large’ the neighbourhoods have
been chosen and the third how much dependence there is between what happens
at @ and what happens outside its neighbourhood. Clearly, there is a trade-off
between the size of the second and third terms, depending on how large the
neighbourhoods are chosen to be.

An example follows, to illustrate in a simple non-discrete case how the bounds
can be calculated. Suppose that I' is the d-dimensional torus [0, 1]% and let x, be
the volume of the unit ball in d dimensions. Consider = to be the hard-core point
process which is uniform over I', has hard-core radius r and mean total number of
points A. The process may be specified by the Janossi density j, with respect to
Lebesgue measure v on I" given by

jn(a) =ck"l [m Iai_aj‘> r} s

i=j



A.D. Barbour, T.C. Brown / Stein’s method for point processes 19

where ¢, the partition function of statistical physics, and « are numbers depending
on A and r chosen in such a way that

) J (n) (@) v"(da) = 1

and

L pula)v(da)=A.

Note that, in this example, w takes the value A everywhere. The case r =0 is the
homogeneous Poisson process of rate k = A, and we expect good approximation of
the hard-core process by the homogeneous Poisson process Po(w), where o= Ay,
if r is small.

To demonstrate this, we take the closed ball B,(r) of radius r centred at a for
N, , making the first term in (2.8) equal to zero. The second term is simply computed
to be A?k,r?. In order to estimate the third term, consider formula (2.6) for gla, B)
when B is such that |8;— B;|> r for all i and j, noting that the value of g(«, B8) for
other values of 8, conventionally taken to be zero, does not contribute to the estimate.
The numerator reduces to the term with r =0, which always takes the value «™"".
The denominator involves the term with s =1 as well as that with s =0, and is equal
to k"{1+kv(A.(B))}, where

A, (B)={a'e N,:|B;—a'|>r for all i};
note that 0< v(A,(B)) < k,r*. Thus

k{l+k k'Y '<gla, B)<«k, (2.12)
and furthermore

Plg(a, ) # k{l+x-kar'} ]

=P[E*{B,(2r)} =1]<EE{B,(2r)} = Ax, (2r)". (2.13)

Hence A = u(a)=Fg(a, E) satisfies

){l+ k- kr'} 'A< wk{l+k k' {1+ Axc3 (20, (2.14)
and thus, from (2.12)-(2.14), the third term in (2.6) is no greater than

2i{1+ ke kqr?} Ak (27 < 2N (k)1 — Ak
In summary, Theorem 2.4 implies that

d(L(E), Po(m)) < A kr' {1+ 0(Ar")},

uniformly in Ax,r? <3.

This bound is sharp in the range where it is small. To see this, consider the event
that at least two points in the approximating Poisson process are at a distance r or
less apart. Given that there are n points in the approximating process, they are



20 A.D. Barbour, T.C. Brown [ Stein’s method for point processes

independently distributed over I" according to ». Hence, upon conditioning on the
position of one point, the probability of a given pair being at most distance r apart
is k., and these events are pairwise independent (see, for example, Brown and
Eagleson, 1984). Thus, given the number N of points of the process, the Bonferroni
inequality implies that the probability of at least one pair being less than r apart is
greater than or equal to

()3 oo

Taking the expectation, it follows that the probability of at least one pair of points
from the Poisson process Po(sr) with rate A being no more than r apart is at least

INkar? =2 A+ 4N kA PP
For the hard-core process, the probability of the same event is zero. Hence we have
proved the following corollary.

Corollary 2.5. Let = be the hard-core process with radius r on the d-dimensional torus
[0,11% and let k, denote the volume of the unit sphere in d-dimensions. Then, if
A =E{Z([0,1]9)} and v is Lebesgue measure,

I kgr {1=0((A v A r < dey(L(E), Po(Av)) < Xkar? {1+0(Ar?)},

uniformly in Axr' <31, O

It is worth noting that, for A =1, the upper bound is small if and only if r is of
smaller order than A%, In this case, the lower bound is of the same order, since
the difference is half the upper bound minus a quantity which is approximately the
square of the upper bound.

The analogue of Theorem 1.2 is more straightforward, and does not involve the
assumptions invoked previously concerning Janossi densities. Instead, we use the
general theory of Palm probabilities: see, for example, Kallenberg (1976, p. 69). If

E' is a point process on [, then a point process =, for some « €I, has the Palm
distribution associated with = at « if, for any measurable function f: I X 2 - [0, ),

E(J fla, E)E(da))z[E<J f(a, Ea)n(da)>, (2.15)
B B

where s is the mean measure of =. The point process =, — 8, is called the reduced
Palm process.

Theorem 2.6. Suppose that E is a finite point process on I', and that, for each a €T,
a finite point process =, on I has been realized on the same probability space, in such
a way that B, has the distribution of the Palm process at « for Z. Then, if o is the
mean measure of = and A is any other finite non-negative measure on I,

dry(E, Po(A)) < L E|E - (Z,—8,)|m(da)+]||A — . (2.16)
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Remark 2.7. As can be seen from the proof, it is not necessary to define all the =,’s
on the same space: it is enough to have, for each « € I', copies of E and =, on the
same space.

Proof of Theorem 2.6. First, take A = sz. From equation (2.15), for any bounded
measurable h: £ - R,

E(Ah)(E)=E j [hW(E+68,)—h(E)+h(E,-6,)—h(E,)]u(da).
e
Now, if ¢, & € & are written in the form
¢ = ‘gl xiayp ,70 = '21 yiay,,

where n denotes the number of distinct atomsin ¢ + ¢ and v, , ..., v, an enumeration
of them, let £ = ¢ A ¢ denote the configuration

5: Z (xi Ayi)a'y,--
i=1

Then it follows from the definition of A,h that, for any a €T,
LAy +8.) = h()]=[h(£+8.)—h(&)]| <y —£[ Azh,

and the same inequality holds with ¢ for . Hence
LA (g +8.) = h()1+[1($) = h(d +8.)]|
<A:h(lly =&+ 1o =€l = Ah]y -],

because of the definition of & The theorem now follows, in the case A = ar, from
Lemma 2.2(ii), by taking any Borel set A< & and letting h be given by (2.3) with
f(&)y=1I[¢<€ A]. For general A, use the same argument as was used to conclude the
proof of Theorem 2.4. []

Remark 2.8. If I is finite, = is simple and I, = E{a}, the first term of the estimate
is just .. m.E||E — (&, — 8, ). For negatively related indicators (I,, « € I'),

Y mE|E-(E,-8,)|=A—Var W,

aecl’
and for positively related indicators

Y mE|E-(E,-8,)||=Var W=2a+2 ¥ 7.

acl’ acl

Remark 2.9. An example in which the bound of Theorem 2.6 can be explicitly

calculated is the Cox process = directed by a finite random measure A. Arguing
conditionally on A, the first term reduces to zero, leaving the estimate

drv(E, Po(m))<E|A—a|.
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The estimates of Theorems 1.1 and 1.2 for the distribution of the total number
of points have already been evaluated in many settings: see, for example, Arratia,
Goldstein and Gordon (1989) and Barbour, Holst and Janson (1992). Although
Theorems 2.4 and 2.6 can now be used to obtain immediate process analogues, the
estimates derived are not so good for large A, because of the factors ¢;(A) and c,(A)
containing negative powers of A, which are present in Theorems 1.1 and 1.2 but not
in Theorems 2.4 and 2.6. As shown by Corollary 2.5 and the Bernoulli trials example
in the Introduction, it is not in general possible to find analogous factors to improve
the process bounds for total variation approximation.

3. Approximation in the d, metric

As is shown in the previous section, there is no possibility of improving the order
of the bounds on total variation distance given in Theorems 2.4 and 2.6 by exploiting
the fact that A is large. However, the total variation metric is extremely strong, and
is completely unsuitable, for instance, if one wishes to approximate a process on a
lattice in R* by a Poisson process with a continuous intensity over R*. There is
therefore the hope that, by choosing a weaker metric than total variation, one might
also be able to introduce factors like A ' into the bounds on process approximation,
and at the same time make the approximation of a discrete process by a continuous
process feasible. This is the aim of the present section.

Suppose now that d, is a metric on I" bounded by 1. Define metrics between pairs
of configurations in & and between pairs of probability measures over Z as follows.
Let J denote the set of functions k:I"' >R such that

sik)=sup |k(y,) = k(y:)l/ do(y1, y2) <00, (3.1)

vEvel’
and define a distance d, between finite measures p, o over I' by

1, if p(I') # o (I'),
diip, o) = m—lsup{ Jkdp—Jkda’/sl(k)}, if p(I')=o(I')=m>0.

ket

(3.2)
Similarly, let & denote the set of functions f/: & - R such that
(/)= _sup [f(&)=f(&)l/di(&:, &) <o, (3.3)
Si76hed
and define a distance d, between probability measures over 4 by
1
d,(Q,R) = sup deQ—fde . (3.4)
$:(f) rez

The metric d,, when restricted to probability measures over (I, dy), is variously
known as the Dudley, Fortet-Mourier, Kantorovich D, ; or Wasserstein metric (see
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Rachev, 1984) induced by d,. When considered as a distance between configurations
£, 6 X with |£| =8| =n, d,(£&,, &) can be interpreted in dual form as

n
Egg {n_l El do(y1is ,szr(i).)} >
the average distance between the points (v, ..., y,,) of & and (y,, ..., ¥»,) of &
under the closest matching (Rachev, 1984, Section 2.2). The metric d, is then the
corresponding metric induced by d; over the probability measures on &. Note that
the distances d, and d,, like d,, are bounded by 1.

When I' is finite and the approximating process is on I, the simplest choice for
d, is the discrete metric. With this choice, the d,-distance between two configurations
with different numbers of points is, as always, one, and that between two configur-
ations with the same number of points is the proportion of points not common to
both configurations, the ‘relative variation’. However, the relative variation distance
is still too strong, if one wishes to compare an intensity measure concentrated on
the points {jn~', 1<j=<n} with an intensity absolutely continuous with respect to
Lebesgue measure on [0, 1], and the same is true for configurations arising from
such intensities. Thus, when using a Poisson process with continuous intensity to
approximate one with a discrete intensity, it is more sensible to take I" to be [0, 1],
or, more generally, if a natural metric d on I" is given, d, can be taken to be d A 1.
The d, distance then reflects an average distance between configurations when the
points are optimally paired.

As in Theorems 2.4 and 2.6, the estimates obtained below for the error in
approximating Z£(Z=) by Po(A) with respect to the d, metric consist of two parts.
The first comes from approximating = by the Poisson process with the same mean
measure, and the second from approximating one Poisson process by a possibly
different one. For the first, the estimate is the same for all d, metrics. This is because
the argument involves comparison of the values of functions f: %>R at configur-
ations ¢, and &, which either have different numbers of points, in which case
d,(&, &) =1 for all d,, or where &, and &, are identical except for the positions of
one or two points, which are then unrestricted in position, so that the choice of d,
again has no influence on the largest value then possible for d,(&,, &). Thus, when
I' is finite, the strongest result for this comparison comes from taking d, to be the
discrete metric, and it is only in the second part, when comparing Po(7) with Po(A),
that the particular choice of d, influences the estimate obtained.

In order to investigate process approximation in terms of the d,-metrics, we start
with some technical results.

Lemma 3.1. Let (Z,),~, be a one-dimensional immigration-death process with
immigration rate A and unit per capita death rate, with P[Z,=k]=1. Then

b —t -1 < .1. -1_ _eaA
J'o e 'E{(Z,+1) }dt\<)\+k+1)(1 e ).
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Proof. Write Z, as the sum of independent random variables X, and Y,, where X,
denotes the number of the initial k individuals still alive at time f, so that X, ~
Bi(k,e™"),and Y,~Po(A(1—e™")) counts the individuals alive at t who arrived after
time zero. Thus

t
+ -1 < + —1:__9__ _ Akt

E{(Z,+1)"}<E(X,+1) k+1[1 (1-e")""]

and
1 -
E(ZA+1) " <E(Y,+1) 's—————[1-e "] (3.5)
A(l—e™)

Hence, letting ¢, be such that e = A/(A+k+1), we have
J e 'E{(Z,+1) "} dt

0

e e} -t

ero—l-[l—(l—eO)"+l]dt+J (1—e™*)dst

o k+1 w A(1—e™)

1
k+1

(11 )
<(1- e
<(-e )(A k+1)’

as required. [

s(l—e*){ log(1+/\_1(k+1))+%10g(1+);(k+1)_1)}

The next lemma is used to control the error incurred by approximating with a
Poisson process with intensity A which may not be the same as 4.

Lemma 3.2. Let A be a finite measure over I', and let h:Z—R be given by (2.3),
where f: & >R is any function in F. Let @ be another finite measure over I" with
7 (') =A(I')=A. Then, for any £€ X,

l L [h(£+8,)—h(&)](w(dy) - A(dy))
=5:()(1—e™)A+A(E+1)"d,(m, A).

Proof. Let h.:I' >R be given by
he(y) = h(£+8,) - h(§).

Then, from the definition of d,,

L [h(§+8,)—h(&)](m(dy) —A(dy)) | < s:(he)Ad (a7, A).
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Now, by taking (Z,),=, to be the immigration-death process with Z, = £, and realizing
P¢+% and P**% together by means of
Zy=Z+8I[E>1), Zy=Z+8.I[E>1],

where the standard exponential random variable E is independent of Z, we find that

|he(y) = he(2)| = ’ J e 'EFLf(Z+6,)—f(Z +6.)]dt
< s5,(f) r e 'Ed\(Z,+6,, Z,+8.) dt

[s'e]

< 5,(f)do(y, 2) J e 'E{(|Z|+1) 7"} de

0

Applying Lemma 3.1 to the one-dimensional immigration-death process |Z,
thus have

si(h) <s()(1—e AT+ g+ 1),

from which the lemma follows. [

, We

The next two lemmas are the analogues of Lemma 2.2(i) and (ii). Because the
class of functions h under consideration is smaller than that needed for total variation
approximation, the smoothness estimates are better.

Lemma 3.3. Under the conditions of Lemma 3.2,

Ah<s(f)An1.6517"77).
Proof. What is required is to estimate |h(&+ 5},)~—h(§)| for any é€ &, ye I, where

h(¢)= -L [E(Z(1)) —Po(m)(f)] dt

and Z is an immigration-death process over I" with intensity A and unit per capita
death rate. As for the proof of Lemma 2.2(i), construct processes Z, and Z, with
the measures P¢ and P**° together, by taking independent realizations of a third
process Z, under P, a pure death process X with unit per capita death rate starting
with X (0) = ¢ and a standard exponential random variable E, and then setting

Z(t)=Zy(t)+ X (1), Zy(t)=Z,(t)+8,I[E>t].
It then follows that
h(é+6,)—h(¢§)

= J e’ ‘ég PLX (1) = nIELf(Zo(1)+ 1) —f(Zo(t) +n +8,)1dt,  (3.6)

0
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where the notation {n < ¢} implies that  and £— 7 are both elements of % The
inequality |h(£+6,) —h(¢€)|<s.(f) is now immediate from (3.2) and (3.3).
For the A-dependent bound, by conditioning on the value of | Zy(¢)|, we have

ELA(Zo(1)+ ) =f(Zo(1) + 1 +8,)]
=P[|Zy(1)]=01/(n)
+ L {PLZo(0)]= ket LELA(Zo(0) ) || Zo(1)] = Kk +1]

—PZo(1)] = KIELA(Zo(1)+ 1+ 8,) || Zo(1)] = 1]} (3.7)
The latter sum is simplified by observing that

[ELS(Zo(1) + || Zo(1)] = k + 1] —E[ f(Zy(1)+ 1+ 8,) || Zo(1)] = k]|
= } AT Jﬂf(zo(rw n+8.)—f(Zo(t)+n+6,)]|Z(1) = k1A (dz)

<s,(f)/(k+1+]n)), (3.8)

since
|f(£+8.)—f(e+8,)|<s:(f)di(¢+6., £+6,)
< 5(N)(E]+ 1) do(z, y) < so(£)(JE]+1) 7"

up, f(£)} may be subtracted from f without altering

+
<5, and hence

Note also that, since 3{inf; f(¢)
(3.6), we may take sup, | f(¢)|

[ELA(Zo()+ m)| |1 Zo(0)] = K| <5520 (3.9)

[SIEEN]

Thus

ELA(Zo(1) +m) = f(Zo(1) + 1 +8,)]]

=s(f) [E{(|Zo(t)|+ DRSS k; PLZo(1)] = K1=P[|Zo(0)| =k —1]|

+%P[\Zo<t>l=0]]
<s:(NE{(Zo(0)]+ 1) 7"} +max P[|Zy(1)| = k]]

<s;(O[A M (A—e ) +{1a(2er,)7"?], (3.10)

where A, =E|Zy(t)|=A(1—e"); see Barbour, Holst and Janson (1992, Proposition
A.2.7) for the final estimate. Since also a direct estimate yields

[ELAZo(1)+m) = f(Zo() + m +8,)]| < (),
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we arrive at the formula

[se]

[5:()17 J e [ELA(Zo(1) + 1) = f(Zo(1) + m+8,)] dt

0

1 1

SJ e_'dt+J. e“'{ + }dt,
o . A(l—e™) V2er(l—e™)

valid for any n < ¢, where 7 is chosen so that e "=1—A"". Computation of the
integrals yields the result

2
A“{Hlog A+ \/: («/X—l)} <1.65A7"7,
€

and this, with (3.6), implies the lemma. [

(3.11)

Remark 3.4. Note that, if f is an indicator function of |£| alone, the inequality (3.8)
is not needed, since the difference being considered is zero, and also that s,(f) = 1.
Hence

[ELA(Zo(0)+m) = f(Zo(0) +m +8,)] s{l nmax P Z(1)] = k]}

by the argument of Lemma 3.3, leading to the estimate

[2
Ah<1A ~A~z1Ao.858A—‘/2. (3.12)
(¥

However, estimates of 4,k for functions f which are indicator functions of |¢| alone
are the same as estimates of ¢;(A). Hence it follows that the estimate of ¢,(A) can
be sharpened to 1aAv2/(e)).

Lemma 3.5. Under the conditions of Lemma 3.2,

5 2
A2h${l /\ﬁ<1+210g+<%))}52(f).

Proof. Adapting the proof of Lemma 2.2(ii) much as the proof of Lemma 2.2(i)
was adapted to prove Lemma 3.3, it follows that

h(£+8,+68.)—h(é+6.)—h(é+8,)+h(¢)

=—J e ggP[X(IF nE{f(Zo(1) +n+8,+6.)

A Zo(1)+m+8,) = f(Zo(1) + 7 +8.)
+/(Zy(1)+m)}dt, (3.13)

from which 4,h < s5,(f) is immediate.
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For the main estimate, observe that

ELA(Zo(t)+m+6,+8.) =f(Zo(1) ++8,) —f(Zo(t) + 1+ 6.) + f(Zo(1) + )]
= éo {PUZo(0)] = KIELA(Zo(1) + m + 8, +6.) || Zo( 1) = k]

—Pl|Zo(O)] = k+ 1IEL/(Zo(1) + m +8,) + f(Zo(1) + 1+ 8.) || Zo(1)| = k +1]
+P[|Zo(0)| = k+2]ELf(Zo(1) + ) || Zo(1)| = k +21}
~P[|Zo(1) = 01 f(n+8,) +f(n+8.)—f(n)}
P Zo(1)] = 1IELS(Zo(1) + ) [|Zo(1)| =11,
Thus, using (3.8) and (3.9), it follows that

[ELA(Zo(£)+m+8,+8.) = f(Zo(1) + 0 +8,) = F(Zo(t) ++8.) + f(Zo(1) + )]
=) [ 3 PUZ(0]= k1-201Z,0)| = k- 11+ P Zy(0)] = -2

+HAE{(|Zo(1)] + 1)‘}} :
Now, if P~ Po(v),
P[P=k]-2P[P=k—-1]+P[P=k-2]
=P[P=k{(1- v "k)*— v 2k},
for all k=0, and hence
L [PLZo(0)]= k1= 2P[1Zy(1)] = k =11+ P[|1Zo(1)| = k=2]]
<2{A(1-e "} L
Thus
[ELF(Zo(1)+m+8,+8.) = f(Zo(1) + +8,)

—f(Zo(1)+n+8.)+f(Zs(1)+7)]|
<{2A5/A(1—e ")}sx(f),

and substitution of this expression into (3.13) leads to the inequality

Azhs<42)\5 %log(z/\))sg(f)\ (1+210g (7 >>S7(f)

for all A =3, completing the proof of the lemma.

O

We are now in a position to prove theorems describing the accuracy, with respect
to the new metric, of the approximation of the distribution of = by a Poisson process
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Theorem 3.6. With the assumptions and notation of Theorem 2.4,

d,(£(E), Po(1))

<fo (v (2)

X [[E J'r E(N\{e})E(da)+ L [EE'(Na)ﬂ(da)]

+{1Ar1.6517Y% L Elg(a, 2*)— u(a)|r(da)

+(1—e ")(2—eM)d,(m, A).
If I is finite and 7v = A, the bound is the same as that of Theorem 1.1, but with ¢,(A)
replaced by {1 A1.651 "%} and c>(X) replaced by {1 (5/(21))(1+2log* GA))}.

Proof. Let f be a function satisfying s,(f) <0, and let h be given by (2.3). Then,
by the argument used in proving Theorem 2.4, we have

[E(sth)(E)| < Ash [[E L E(N\{e})E(da)+ J ‘ [EE(Na)w(da)]

+4h J.V[E\g(a,E“)——,u(aﬂv(da). (3.14)

We are now able to use Lemmas 3.3 and 3.5 to bound 4,h and A4,h, obtaining for
d,(£(F), Po(ar)) the bound given in the theorem, with the last term zero. We then
use the fact that

Po(A)(f)—Po(ar)(f)=Po(A)(sth)
:E{J"[h(E’Jr BV)-h(E’)](ﬂ(dy)—A(dy))},
where =’ has distribution Po(A), which from Lemma 3.2 gives

d>(Po(A), Po(m))<d (@ A)(1 —e*)<1 +A Y e N+ 1)!).

=0
The theorem now follows. [
In the hard-core example which followed Theorem 2.4, it would be natural to
take d, to be Euclidean distance trimmed at 1. This leads to the estimate

d(Z£(E), Po(Av))

<{l/\i(1+21 *(2—A Akt
= 2/\ Og 5 Kar

{1 AL65A 729 N (ke gr (1 = At ) 7,

so that good Poisson approximation in the d,-metric is obtained under less restrictive
circumstances than was possible for total variation approximation.
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Theorem 3.7. Under the conditions of Theorem 2.6,

dr(F(E), Po(L)) < {1 N <1+2 log" (35)>} J E|E—(E,—8,)||=(da)
21 5 r

+(1—e)(2—eM)d,(m, A).

Proof. The proof of Theorem 2.6 is adapted in the same way that the proof of
Theorem 2.4 was adapted to prove Theorem 3.6. [

Remark 3.8. It may well be that the factor log” A is in fact superfluous in Theorems
3.6 and 3.7. However, since the d,-distance is larger than the total variation distance
between £(|Z|) and Po(A), the first part of the estimate cannot be improved much
further.

Example 3.9. If I'={n"'i: 1<i<n} and (I,, a € I') are independent with 7, =p
for each a, it follows from Theorems 3.6 and 3.7 that, taking do(x, y) =|x—y|a 1,

dy(L(E), w)<3(1+2log" (Grnp))p+3/4n,

where p is the measure of the Poisson process with constant intensity np with
respect to Lebesgue measure on [0, r]. Note that the bound depends on r only
through the logarithmic factor.

Note that the methods used in this paper can also be used to give bounds for the
total variation approximation of the total number of points |Z| by Po(A): indeed,
d,-bounds are already bounds for this approximation too, but the more restricted
set of test functions to be checked for total variation approximation of |=| enable
the multiplying factors to be improved a little. The final theorem gives an example
of what can be achieved, and complements the results of Barbour and Brown (1992).

Theorem 3.10. With the assumptions and conditions of Theorem 2.4,

dry(Z(|E]), Po(1))

srA'(1—-e™) [IE j1~ E(Na\{a})E(da)ﬁLJ EEE(Na)ﬂ(da)}

r

+<1 A \/%) I:JLVIE[g(a, EY—pl(a)|v(da)+|a ~—17(F)l].

Proof. The estimates for A,h and 4,h come from Remark 3.4 and from Barbour
and Eagleson (1983), and the last term differs from that of Theorem 3.6 again
because only the distribution of the total number of points is being considered. [
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