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In this paper, we are concerned with open Markovian queueing processes (Kelly, 1979, §2.4), in which
individuals of a single type arrive at, move among and leave a set of J queues. Arrivals at the different queues
occur as independent Poisson streams with rates v;, 1 < j < J; the service requirements of the individuals
at the queues they visit are independent negative exponential random variables with unit mean; the total
service effort at queue j is ¢;(n) when n customers are in line, where it is assumed that ¢;(0) = 0,
¢;(1) > 0, that each ¢; is an increasing function, and that individuals each receive the same service effort;
upon leaving queue j, an individual moves to queue k& with probability A;,, 1 < k < J, or leaves the
system with probability p;: p;j+>", Ajr = 1. The resulting process N = (N(t), t € R) of the numbers of
customers in line at the various queues at time ¢ is a pure jump Markov process on (Z1)7 | with transition

rates given by

n—n+te; at rate vj;
n—n—e;+ep atrate Aje®;i(nj); (1.1)
n—n-—e; at rate widi(ng),

where e; denotes the j’th coordinate vector in (Z+)” .

The simplest queueing process of this kind is the M/M/1 queue, for which it was proved by Burke (1956)
and Reich (1957) that, in the steady state, the output process is Poisson. The generalization of this result
which we examine is Melamed’s (1979) theorem. In the case where ¢;(n) =¢;I[n > 0] forall 1 <j < J,
he showed that the steady state flow along link (4, %) in an open queueing process is Poisson if and only if
a loop condition is satisfied: that no customer can travel along (j, k) more than once. The restriction on
the functions ¢; was subsequently lifted by Walrand and Varaiya (1981). Here, we relax the loop condition
somewhat, and investigate how close to Poisson are the flows from one queue to another.

The argument is based on Stein’s method, and in particular on Theorems 2.6 and 3.7 of Barbour and
Brown (1992b), where the approximation of point processes by Poisson point processes is discussed. The
theorems bound the difference between the distributions of a finite point process and a Poisson point process
on a compact, second countable Hausdorff carrier space T', with respect to two different metrics, in terms
of the difference between the unconditional distribution of the point process and the distribution of the rest
of the point process conditional on there being a point at a given position v € I'.

In Section 2, the construction of the open queueing process and its time-reverse is detailed in the way
needed for the results here, basic facts about the law of the process conditional on transitions at particular
times are derived and the Poisson approximation results are described. Section 3 contains the main results,
and discusses in some detail the example of a tandem queueing system with some feedback. in the example,
both lower and upper bounds are considered. Section 4 contains improvements and a comparison with
previous work in this area of Brown and Pollett (1982). Section 5 contains proofs of a couple of the technical

results.

2. Preliminaries

We consider the open queueing process introduced above, and summarize some relevant facts from
Kelly (1979), Section 2.4.
Let the forward customer chain X be a Markov chain with state space {0,...,J}, where 0 represents

the state before the customer arrives and after the customer leaves and 1,...,J the queues. Its transition
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A customer arriving into the network in state & chooses a route sampled independently from the forward
customer chain starting in k& and terminated at the first entrance into 0. The distribution of a customer’s
initial state is given by (pog, 1 < k < J). In addition, the arriving customer samples his service requirements
at the queues along his route independently from the negative exponential distribution with mean 1.

We assume that the parameters A;z, p;,v; allow an individual to reach any queue from outside the
system and to leave the system from any queue, either directly or indirectly via a chain of other queues.
Then the forward customer chain 1s irreducible, and every state is persistent, because the state space is finite.
The expected number of visits to queue j between returns to 0 in the forward customer chain is given by

a;/> 5 Vi, where {o; }3]:1 is the unique solution to the equations

aj; = v; + Eai/\” (21)

i=1

(see, for example, Asmussen (1987), Chapter T, Theorem 3.2).
Let {bj}}]ﬂ be defined by the equations

EHT 1 64(r)

We assume that the sum is finite for each j. This assumption implies that the process N has a unique
stationary distribution and is ergodic. In the stationary state, for each ¢ > 0, the numbers N;(t),j =
1
probability

,-..,dJ, in the queues in the stationary state are independent, and the number in queue j is n with

n
@

T 6 22

Equilibrium realizations of (N(t), ¢ > 0) can be constructed in the following way. First, the values
N;(0), j=1,...,J, are sampled from the stationary distribution (2.2). Then the customers present at
time 0 are ordered in some arbitrary way, the i’th in order being in queue j(i) . The i’th customer now
samples his route X () through the system independently from the chain X started in J(7) , and his service
requirements are then determined by the independently sampled negative exponential variables with mean 1.
The arrivals of the customers after time 0 are determined by a Poisson process of rate Zj v; , and each
of these customers receives a route sampled from X with initial distribution (pgr, 1 < k < J). Standard
theory then assures us that the exogenous arrivals at the queue j are Poisson with rate v;, independently
of the other exogenous arrival streams. The customers arriving after time 0 also sample their corresponding

independent exponential service requirements.
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reversed process as another open queueing network, whose transition rates are given by:

v n
n—n-—eg at rate M;
(675
Aj ng)o; y
n—n+e; —eg atrate M; (2.3)
Qg
n—n+te; at rate i

The forward customer chain for this time-reversed process we call the backward customer chain X* . The
backward customer chain can be seen to be the time—reversal of the forward customer chain, and it has

transition probabilities:

14 :
Po; ZJJ’ , 1<G<T phe=0;
_ iy
=t \ (2.4)
* Vi * Jk .
St = 1< k<J
Pro ap’ kj o =7

The system before time 0 can then be constructed in an exactly analogous way to the system after time 0,
with the exception that the Poisson process of exogenous “arrivals” (which in reality represent departures)
has rate ijl p;a; , and that routes are sampled independently from paths of X* stopped at 0.

It will be useful to use conditional intensities (see, for example, Brémaud (1981)). The history F that
we use is that generated by all arrivals, departures and transfers between queues, or equivalently by the state
of the process N at the current and all previous instants. Foreach 1 <j k < J, let M;; denote the point
process consisting of transitions from queue j to queue k;set M = {M;z,0 < j, k < J}, where departures
are interpreted as transitions to 0 and arrivals as transitions from 0. Then the conditional intensity for M
(1<j,k<J) attime ¢ is ¢;(N;(t—))Ajx , for Mo it is ¢;(N;(t—))y; and for My; just v;. From this,
the form of the stationary distribution and the fact that the expected integral of the conditional intensity

over [0,1] is the rate of a stationary point process, it can be seen that the rate of M is
Pik = Ajkcj.

Palm distributions figure largely in the approximations which follow, and in particular the reduced Palm
distribution. The Palm distribution PU*¥) of M is the distribution of M , considered as a random measure
on R x {(j,k), 0 <j+#k < J}, conditional on there being a transition from queue j to queue k at 0,
and the reduced Palm distribution Po(j’k) is the distribution obtained from it by removing from the random

measure the deterministic atom at (0, (4, &)). The reduced Palm distribution for the networks considered

here can be particularly simply expressed, as the following lemma shows.

Lemma 1. For the open queueing network, the reduced Palm distribution for the network given a transition
from queue j to queue k at time 0 (1< j k < .J) is the same as that for the original network, save that
the network on (0,00) behaves as if there were an extra individual at queue k at time 0 and the network
on (—o00,0) behaves as if there were an extra individual in queue j at time 0: ie. if A € F(0—),B €
o(N(z),z > 0)) and ng € Z7 then

PUM(AN(0=) = no + ¢, B) = P(A[N(0—) = ng + ¢;)P(N(0) = no) P(B|N(0) = no + e).  (2.5)
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each arrival, departure or transition in the queueing network by s to the left. The definition of Palm
probabilities for stationary point processes given by Brémaud, Kannurpatti and Mazumdar (1992) [BKM],
p. 383, and the fact that the rate of Mj is pjr combine to give the probability on the left of (2.5) as

1
pj—,jE</0 I[A,N(0—) = no +¢;, Bl o 0, dek(S))

= Pj_klE<Z I[A, N(O—) = ng + €, B] ¢} HTnI[O <T, < 1]) (26)
n>1

= pﬁjE(Z P([A,N(0—) =ng +e¢j, Blobr, | Fr,)I[0 < T, < 1])7
n>1

where 0 < T} < Ty < --- are the times of (j, k) transitions after time 0. By the strong Markov property,

we now have

P([AN(0=) = ng +¢j, BloOr, | Fr, ) I[T < 0]
= P(B|N(0) = ng +ex) I[A, N(0=) = no + ¢j] 0 07, I[T,, < ]

and reversing the above argument then gives
PYR (A, N(0=) = no +¢j, B) = p,- P[B| N(0) = no + ek]E</ I[A, N(0—) = ng + ¢;] 0 0, dek(s)).
0

Note that I[A,N(0—) = ng+ e;] 00, is predictable by (7.1.4) of Baccelli and Brémaud(1987). Applying
the stochastic intensity formula ([BKM], (2.11) p. 385),

PUM(AN(0—) = ng +¢;, B)
=y P[B| N (0) = no + ek]E( [ AN () = na+ 610 0005 (n0 + ejmds)
= pjx P[BIN(0) = no + ex] P[A| N(0—) = no + ¢;]P[N (0—) = no + e;]A\jk b5 ((no + €5);),

and using the form (2.2) of the stationary distribution gives the lemma.

The terminology and results necessary for the Poisson approximations are now introduced. The space
of finite non—negative integer valued measures on the Borel sets of the carrier space I' is denoted X .
Elements of this space can be thought of as finite configurations of points in T'. A pownt process = is a
random element of X', with mean measure (assumed finite) denoted by 7. The distribution of the Poisson
process on T' with mean measure 7 is denoted by Po (7).

We use two metrics to describe how well Po(7) approximates L£(Z). The first is the total variation

distance between probability measures,
1
drv (P, Q) = sup[P(4) = Q)] = S|P - QI

where || - || denotes the total variation norm on finite signed measures and the supremum is taken over the
Borel sets of X' . The second is a metric ds introduced in Barbour and Brown (1992b), which might be
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this metric, suppose that dy is a metric on I' bounded by 1. We first define a metric d; between pairs of
configurations in A and then use this to define a metric dy between pairs of probability measures over A" .
Let K denote the set of functions %k : ' — IR such that

sup |k(y1) — k(y2)|/do(31, y2) < 1,
y12y2€l

and define a distance d; between finite measures p, o over I' by
I if p(T) # o (T),

m~ supycic{| [ kdp— [kdol} if p(T') = a(T) =m > 0.

dy (pa 0') =

Similarly, let G denote the set of functions f: X — IR such that

so(f) == sup |f(&) — f(&2)]/di(é1,62) <1,
§1782€X

and define a distance ds between probability measures over X' by

[raq- [ rarljsas

The metric d;, when restricted to probability measures over (T, dp), is variously known as the Dudley,

ds(Q, R) = sup
feg

Fortet-Mourier, Kantorovich D;; or Wasserstein metric (see Rachev (1984)) induced by dy. When con-
sidered as a distance between configurations &1,&; € X' with [&1] = |&2] = n, d1(€1,&2) can be interpreted

in dual form as
71rr6115n {n~ Z_: do(Y1i, Yar(i)) }

the average distance between the points (y11,...,¥1n) of & and (ya1,...,y2n) of & under the closest
matching (Rachev (1984), Section 2.2). The metric dy is then the corresponding metric induced by d; over
the probability measures on X' . Note that the distances d; and ds, like dg, are bounded.

The metric ds is considerably weaker than the total variation metric. However, a small value of ds
implies that the laws of the empirical distribution functions of the interpoint distances of the two processes are
correspondingly close, and the same is true if the joint empirical distributions of any & successive interpoint
distances are considered. Work is in progress on relating such information to other quantities of interest,
such as waiting times. In the following theorem, as is to be expected, the bounds (a) for total variation
distance are less good than those (b) for the metric dy: this is expressed in the bound (b) by the additional
factor ko(m(T)), which is small like 7(I)~!log(n([')) when m(T) is large. Estimates (a) and (b) follow
from Theorems 2.6 and 3.7 of Barbour and Brown (1992b); an even tighter bound (c) for the distribution of

the total number of points in the process is based on Theorem 3.1 of Barbour and Brown (1992a).

Theorem 1. Suppose = is a finite point process on ' with mean measure w. Suppose that, for each
~ € T', a finite point process ) on T is realized on the same probability space as Z , in such a way that

20 has the distribution of the reduced Palm process at v for =. Then



() drv (L(E(T)), Po(m(T))) < kl(fr(F))/FEIIE —EOn(dv),

where the functions ki and ks satisfy

At (A) <1, Aka(N) <

(142108 (2)).

N | Ot

3. Around Melamed’s theorem

In order to apply Theorem 1 to the open migration process, we need some further notation. Throughout,
C' denotes a subset of T'= {(j, k),1 < j # k < J}, and the carrier space T has the form [0,¢] x C', for some
fixed ¢+ > 0. A location in T is then interpreted as a time s and a directed link from j to k, and a point
of the process at (s, j, k) represents a departure from queue j of a person who immediately joins queue k
at time s, with (s,0,7) used to denote an arrival at queue j and (s,k,0) used to denote a departure from
queue k. With M as defined preceding Lemma 1, let Mc denote the process {Mjx, (j,k) € C}, ML its
restriction to [0,%]. Let v* be the restriction of Lebesgue measure v to [0,¢], p the measure on T with
atoms pji , the steady state flow rates along the links (j, k), and pc its restriction to C'. Finally, let X

be a realization of X started in state k, and let X*(°) be a realization of X* started in state j; set

EC_EEI[ z+1)EC]

and
n=E Z x99, x1ea

Thus ¢% denotes the expected number of transitions along links in C yet to be made by an individual
currently in state k£, and né denotes the expected number of transitions along links in C' already made by
an individual currently in state j: note that these quantities do not involve the ¢;’s. Then the following
result complements those of Melamed (1979) and Walrand and Varaiya (1981).

Theorem 2. Let Hék =k + 77% . Then

(a) drv(L(ME),Po(v! x pc)) <t D pikbl;

(4,k)eC
(b) da(L(ME), Po (' x pc)) < tha(tp(C)) D pjnbl;
(] k)eC
(c) drv(L(Mc{[0,4] x C}),Po(tp(C))) < thi(tp(C)) > pinblt

(4,k)eC

Remark 1. The bound (c) for the total number of C -transitions is particularly attractive, being uniform
for all ¢. The dy process bound (b) is almost as satisfactory, in that it grows only logarithmically with ¢ .

By contrast, the total variation process bound (a) grows linearly with ¢ .

Remark 2. It is possible to include arrival processes and departure processes in the point process being
approximated. However, this complicates the notation and argument, and the details, which are straight-

forward, are omitted.
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along links in C' for a customer currently travelling along the link from queue j to queue k.

Remark 4. If §c = max(; xjec Hék = 0, as is the case when Melamed’s ‘absence of loops’ condition is
satisfied, the distribution of M is thus Poisson, and the theorem contains the direct half of Melamed’s
theorem. Here, the interest lies more in the fact that the effects of departures from his stringent condition

are explicitly quantified: see Example 1 below.

Proof. 1In view of Theorem 1, it is enough to estimate the norm ||M¢ — M((jj’k)H for each (j, k) € C,
where M , as before, is the steady state process of (' —transitions, and Méj’k) + 5(()j’k) is constructed on

the same probability space, and has the conditional distribution of M¢ given the occurrence of a (j, k)

transition at time 0, so that Mg’k) has the corresponding reduced Palm distribution of M¢c . We achieve

the construction in such a way that
MUP > M on {RxTI\{(0,(j,k)}, (3.1)

and then show that
ik j 9 ¢
EI|MY* — M| = ek + nl. (3.2)

Construct the process N as indicated in Section 2. To realize the corresponding {NU*)(2), ¢ > 0},
add an individual to queue k at time 0, and use X(°) to give the route taken by the extra individual.
To get the extra time evolution, use independently sampled exponential service requirements and let its
instantaneous service rate be ¢;(r+ 1) — ¢;(r) whenever it is in queue [ together with r other individuals.
Note that, in this construction, it is essential that individuals are indistinguishable. The same procedure is
used looking backwards in time, starting N¥) this time with an extra individual in queue j at time 0,
and using the same N(0) as before. We use X*(0) ag the sequence of queues that the extra customer in
queue j has visited in the past, with the corresponding extra service requirements and service rates as for

the extra individual in forward time. Claims (3.1) and (3.2) are now immediate and the theorem follows.

Example 1. [Tandem M/M/1/co queues, with occasional feedback into the second queue]. Suppose that
J=2, ¢1(n)=¢a(n) =1 forall n>1, Ma=1, daa=1—ps=p, v5 =0 and v; < 1 —p. The choice
p = 0 would give a simple tandem queue, and the input into the second queue would be precisely a Poisson
stream. Here, we describe what happens if p is positive, but small. If we take C = {(1,2),(2,2)}, so that

Mg¢ records the flows into queue 2, we have the following results, proved in Section 5:

(1—I/1—p)2y1pt : ty M
(a) TTETE dpv (L(ML), Po (vt x pe)) < o
(b) d2(L(ME),Po (v x pc)) < %log+(5(?y_ltp)) 15—pr
() drv(L(McA[0,8] x C}), Po(tp(C))) < 12__Pp’

where, for the lower bound in (a), we require that
1/2 <t < (1—p)?/2p.

8
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input traffic rate vq as constant and taking the feedback probability p to be smaller than (1 —11)/2, we
see that we cannot avoid the disappointing growth of the upper bound for the total variation distance in
proportion to vit. This is because the lower bound in (a) is of exactly the same order, with respect to
(small) p and to vt the latter over the whole range from 1/2 to the point at which the upper bound no
longer gives any useful information. The ratio of upper to lower bounds in (a) is 28/(1 — v; — p)?, which
increases as the input traffic goes towards its maximum level. The upper bound in (c) is uniformly small for
small p, whilst that in (b) is small provided ¢ is not very large.

Our proof of the lower bound could be shortened somewhat by using Burke’s output theorem for the
flow from queue 1 to queue 2. However, the proof given could in principle be extended to more complicated
networks with loops, at the expense of much more calculation, suggesting that the linear growth of the total

variation distance with time may be a general phenomenon for networks with loops.
Remark 5. Note that if, for any (j,k) and (,m) in C,
k) ik q -
E|| M, U, — M| = Hi(lym)} >0, (3.3)

the distribution of M¢ cannot be Po (v x pc), implying the converse half of Melamed’s theorem. This is

because

B (M) ~ 1) = B ([ (M50 1) 03009

- E(/Otm(s) o&)dek(s)),

with v (s) = Mjg[—s,t —s] — 1. Thus, from the Matthes—Mecke formula ([BKM] p. 383), it follows that
EMJZR( ) — EM;i(t) = kaE/ M]k [—s,t — 5] ds,

giving
t .
Var Mg (t) — EM;x(t) :/ pin EAMP (5,1 — 5] — Mji[—s,1 — s]}ds; (3.4)
Q

the formula

Cov (Mjk(t), My, (t)) = /0 ijE{Ml(,i’k)[—s,t — 8] — Mym[—s,t —s]}ds, (I,m) # (j, k), (3.5)

is proved similarly. Hence, if (3.3) is true then either (3.4), if ({,m) = (4, k), or otherwise (3.5) is positive,
whereas, for independent Poissons, these quantities are all zero. Thus f¢ = 0 is necessary for M¢ to have
the distribution Po (v x p¢) . Furthermore, (3.4) could in principle also be used as the basis of an argument
for establishing a lower bound on the total variation distance between E(M;k) and Po (p;xt), using an
analogue of Theorem 3.E of Barbour, Holst and Janson (1992).

There are a number of situations in which the Qjck might reasonably be expected to be small but not
zero. One such is a hierarchical production process, where items pass through a sequence of stages in their

production, but may occasionally be returned to an earlier stage because of faults being present: Example 1 is

9
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the Hék . Another is a ‘distributed’ service system, in which J is large, the Aj5, 1 < j # k < J, are all
small, and the p; are bounded away from zero: an idealized model of a shopping mall, for instance. Here,
the structure is rather more complicated, and a quick estimate of the 6 ’s in terms of the A’s and u’s can
prove useful.

For a first version, define the quantities

J
+ — mi . + , . )
= min s V= e ) Al b € O)
, (3.6
5~ = 121;1(}’{7’/0473 YT = 1rSnJaSXJk_1(ak/\kj/aj)I[(k’j) € C].

Note that T is an upper bound for the probability that an individual travels along a link in C' at its next
transition, whatever its current state, and v~ is the corresponding bound in the reversed process: JT is a
lower bound for the chance of leaving the system at the next transition, and §~ the corresponding bound
in the reversed process. Then it is immediate that 618 <yt /§* for all k and that 77jc <~/ forall j.

Hence
oz (5)+ () o7

an estimate which can readily be used in conjunction with Theorem 2.

The fact that (3.7) uses both forward and backward estimates is a drawback if, for example, C' =
{(k,jo) : 1 <k < J} consists of all links into state jg, since then 3~ is likely to be big, because of
the contribution to the maximum from j = j;. However, the quantity Z(j,k)ecpjk‘gé‘k appearing in the
sharper estimates of Theorem 2 has an interpretation which can be analysed using just one time direction.

To see this, let ..., Z7_1,7Zy,71,... be a stationary Markov chain whose transition matrix is that of the
forward customer chain. As previously stated, this chain is irreducible and persistent, and it has a stationary
distribution which is proportional to {ijl vj,aq,...,a5}. By Theorem 7.16 of Breiman (1968), this
process has no non-trivial invariant events. Let S be the space of doubly infinite sequences of elements of
{0,1,...,J},let f:S — IR and for | be an integer, let 6, denote the shift transformation on S which
shifts a sequence so that its [th element is in the zero position. Then, since the invariant events of the

stationary process {f(Z o 6;)};2, are contained in those of Z , the ergodic theorem gives

L Sia f(Z o)

n—00 n

= 5(1(7). (3.8)

For (j,k) € C and z € S we can apply (3.8) to fi(z) = I[z0 = j,z1 = k] and
fa(z) = I(z0,21) € C] to get
i 2tz 12 =0, 21 = K] _ pin
nsoo YL I[(Z1, Ziga) € C] p(C)

(3.9)

For z € S, let mi(z) < ma(z) < ... be all the indices > 0 at which z takes the value 0. Let mg(z) be
the greatest strictly negative index for which z takes the value 0. For r =1,2,...,let K,(z) denote the
number of [ such that m,_1(z) <! < m,(z) and (z;,z41) € C, so that K,(z) represents the number of

transitions in C between successive visits to 0. For [ = 1,2..., let r(/,z) denote the unique integer such

10
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convenience we adopt the convention that if the argument z € S in a function is omitted from now on, it is

to be replaced by the Markov chain Z. Applying (3.8) to f3 and f; gives

Yoo (Key = WIZi=§, Z141 = k] E<f3)

lim

n—¥eo Yoieo 710 = 4, Z141 = K] Pk (3.10)
ik
= 6.
For n=1,2,..., let A(n) be the random collection of indices between 0 and m; together with those

between my(,)—1 and n. Thus, from (3.9) and (3.10),

> ikec Pikbe — Lm Yizo gmec Fey = VIZ = j, Ziyr = k]

p(C) oo Yo (%1, Ziga) € €]

o Sal (K = DKy + e g (Kr = DIZ: Zin) € C)
o Crl T Ky Tieapm (7 Zi1) € €

lim g:1(Kp - 1)K,

T
g—00 p=1 Kp

_ E{(K1—-1)K:}
N EFK,

the last two steps following from the strong law of large numbers, in view of the fact that {K,};2; is a

sequence of independent and identically distributed random variables. Now
P[Ky 2 i Ky > 1] < {d/(vd + )},
where ¢t and d% are as in (3.21), and

E{(Ki - 1)K\} _E{(Ki— 1)K |K, >1}

= < E{(Ki—1)K{|Ky>1
EE, Bk >1 < Pl - DR R 2 1),
giving a simple bound
! Z ik — E{(K:1 —1)K1} < 2(@) (1 4 @) (3.11)
p(C) L Pikle = R, = 5+ ) '
(4,k)eC
for use in conjunction with Theorem 2. The neater bound
1 .
= D pikbl < 20E/8Y, (3.12)
PC) 4
J.k)ecC

matching (3.7), follows if 1/)3 < 8t from Lemma 2 in Section 5. Note that, under the suggested conditions
of small A’s and T not too close to 0, 1/)'5/(5"’ is small unless C' contains many of the links out of a given
state. Note also that, by reversing time, (3.11) and (3.12) could be replaced by the same formulae with —

for 4 1in the indices.

11
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In Brown and Pollett (1982), bounds on the total variation distance between the distributions of the
arrival process at a queue and of a Poisson process are also derived. These bounds are quite different in
nature. They do not make any appeal to loop structure or its absence, and do not vanish if Melamed’s
loop condition is satisfied. On the other hand, they can be constructed in systems, such as closed migration
processes, where an individual may make many C —transitions during its time in the system. Broadly
speaking, their bounds are tight when the arrival process at a queue can be thought of as a superposition of
thinned point processes, a typical scenario for good Poisson approximation.

For example, in the distributed service system, taking C' = {(k,j0) : 1 < k < J}, Theorem 2 and
(3.11) give a bound

drv (M), Po o'  pe)) < 24p(C)(S2) (14 L) (4.1)
for the joint distributions of all flows into jq , with

+_
= max Ag;
Ve 1<k<g e

The corresponding bound given in Brown and Pollett (1982), for the single server case ¢x(r) = cxI[r > 0]
for all k| is

J 1/2
t[z kAL, (1= anfen)] (4.2)

k=1
and is for the aggregate flow into jj : note that stationarity requires ay < ¢ . By way of comparison between
the bounds, Cauchy-Schwarz makes (4.2) bigger than tp(C)(2J)~"? if 20y < ¢x for all k, ensuring that
(4.1) is smaller if

4 1rsnkanJ Akjo < §*(20)" 42

on the other hand, if *+ =0, (4.1) is of no use, while (4.2) may be very small.

To obtain a somewhat closer comparison between the results of the two methods, observe that the
bounds given in Theorem 2 can be improved for moderate values of ¢. This is because, in the proof of the
theorem, ||Méj’k) — M¢c]| is used as an upper bound for ||Méj’k) — Mc||[=s,t—s1, 0 < s <t, where the latter
expression denotes the total variation norm of the difference of the two measures on [—s,# — s] x C', and
may be much smaller. Thus, if % (s) denotes the expected number of C ~transitions made in [0, s] by the
‘extra’ individual in state &k at time 0, and if 772(5) denotes the analogous quantity in the reversed process,

the proof of Theorem 2 can be directly modified to yield the following estimate.
Theorem 3. Let Qék(s) =ek(s) + 77jc(5) . Then

dpv (L(ME), Po (v' x pe)) / Z Pﬂﬂ]

(j,k)eC

As a result, if max,>o(¢;(r+ 1) —¢;(r)) =¢; foreach 1< j<J, we have

drv (L(ME),Po (v x pc))

Sl (4.3)

5 { max_c; Z)‘J’“I Jk)eCl+ max X Z agdri/a;)I(k, j) € C’]},

1<5<T

12
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and reversed processes.

As before, the immediate bound (4.3) is of little use when considering the flow into a state jo , because,
if C={(k,jo): 1<k < J}, the second of the maxima can be expected to be large. However, an ergodic
argument can again be used to replace the sum of the two maxima by twice the smaller of them, provided
that

eb(s) < E&(s)and  mi(s) < 7iL(s), (4.4)

where € and 7 relate to typical individuals with given state at time 0, rather than to the ‘extra’ one. A
condition sufficient to ensure (4.4) is that, for each j, the differences ¢;(r + 1) — ¢;(r) decrease with r in

r > 0. This condition is certainly satisfied when ¢;(r) = ¢;I[r > 0], leading to a bound

drv (E(Mé), Po (v* x pc)) < t2p(C) max. Ch ko (4.5)

to be compared with (4.1) and (4.2). Although none of the three bounds is always worse than the others, it
is of interest to note that

J J

2 : 2 2 :
ckak)\ ; and pP C') max Ck)\k' = (max Ck)\k' )( Clk)\k' )
— kjo ( )1§k§J 70 1<k<J Jo — J0

are often of comparable size, in which case (4.5) is of order the square of (4.2), and is hence very much
better.

5. Proofs

Proof of Example 1, (a-c). Solving (2.1), we have a7 = 11 and as = v1/(1 —p) < 1, and it thus
follows that by and by are both finite, and that p12 = 1 and p2s = v1p/(1 —p) . Then simple calculations

in the forward and reversed customer chains give

ne=0, ntz=1/(1-p), e&=p/(l—p) andthus 67 =p/(1—p)and 67 = (1+p)/(1—p).

: 2v 1 :
Y bl = 1_71})2 and  —r-% Y pisbe =2p/(1-p),
(e (1=p) PlO) ioec

and the upper bounds now follow from Theorem 2.

It now remains to consider the lower bound in part (a). The time ¢ > 0 is fixed, and h < t is to be
specified at the end. Let M; and M, denote (simple) point processes and form the (simple) point process
M on [0,t] by defining for s <t

M, = / T[Ms((u+ h) At) — Ma(u) > 1] dM;(u), (5.1)

so that, ignoring boundary effects, M counts the points of M; which are followed within A by a point of
Ms . Now

/t (1 =M} dM; < I[M: > 1] < My, (5.2)

13
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Let M; be a Poisson process of rate p;5 = v1 and M, be an independent Poisson process of rate
pa2 = vip/(1—p). Let Gy = o(My(u),u < s)Vo(Msz). Then the point process M is adapted to the history
G, and the conditional intensity of M at time s <t is v1Js, where J; = I[Ma((s+ h) At) — Ma(s) > 1].
Using (5.1) and (5.2), we have

PM; > 1) < E(M,)

= E(/(:_h I[Ms(s + h) — My(s) > 1]u1ds) +E<[ih I[Ms(t) — Ma(s) > l]ylds)

t—h —pv1h ¢ —pvy (t—s) (53)
= / (1 —e1=r )V1d5+/ (I1—e™ 17 )inds
0 t—h
141 h
h t——
—_ 1_p pyl( 2)’

the middle step following from an interchange of expectation and Lebesgue integration.
We now let M7 be the process of transitions from queue 1 to queue 2, and let My be the process of

feedback transitions from queue 2 to queue 2. The lower bound in (5.2) may be further bounded:
¢ ¢
E(/ (1 =M )dM,) > E(M,;) - E(/ M(S_h)_dMs)
0 h

- E(/}:(Ml(s_) — Mi((s — h)—))d/\/ts) - E(/Oh Ms_dMs),

since each of the points of M is a point of M; .

(5.4)

Taking optional projections and using the Markov property of the system,
¢
E(M;) = E<Z/ P(M3((s + h) At) — Ma(s) > 1|Ns; = n)I[Ns; = n] dMl(s))
- Jo

where the sum is over n = (n1,n2) such that both elements are non-negative. The conditional probability
in the integral is at least the probability that queue 2 completes at least one service in (s, (s + h) At), and
the first such service is fed back to queue 2. This latter probability, for ns >0 and 0 < s <t — h , is equal
to p(1 —e") and for ny >0 and t —h < s <t is equal to p(1 —e~(!=*)) . At the points of M; we have
Ny >1 so

E(./\/lt)

vV

E(/Ot_hp(l — ") dMi(s) + /tihp(l —e ) dMl(S)) (5.5)

(1—e Mpri(t —h) +pri(h—(1—e ™) > (1- g)hpyl(t - %)

the second step following on integrating with respect to the mean measure of M;. On the other hand,
using the fact that if X is a nonnegative integer valued random variable the conditional probability of

X > 1 is bounded above by the conditional expectation of X |

E(M;) < hpE(Mi(t)) = hprit. (5.6)

14
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t ¢
E(/ M(S_h)_d./\/ls> < E(/ ./\/l(s_h)_hp dM1(8)>
h h

= hp/h E(M—n)-I[N1(s) > 1]) ds (5.7)

! hpvt h
= hp/ E(M(s_h)_)lll ds S p21 hpyl(t — 5)’
h

because M ;_p)_ is independent of I[N;(s) > 1]. To see this note that the random variable M_p)_ is
measurable with respect to o(M;(z), Ma(z),z < s), and this o -field is independent of o(Ni(s)). To see
this, note that the o -fields can be defined from the reverse-time system in which s becomes 0. The reverse
time system is also an open queueing network, but the point processes now feed queue number 1. Hence, the
reverse-time point processes can be constructed from random variables which are independent of the state
of the first queue at time 0.

Similarly,

hpv?

E(/ht {Ml(s—)—Ml((s—h)—)}d/\As) < h*pri(t — h) and E(/Oh M, d/\As> < 5 (3

For the tandem queue, combining (5.5), (5.7) and (5.8) in (5.4) and using (5.2) gives

PMc2 1) 2 (1= h(g + (14 D) hpoa(t - 0. (5.9)

Taking the difference between the right side of (5.9) and (5.3) gives the difference of the probabilities of

My > 1 under the actual and Poisson approximation as at least

h
(0 — hy)hpr (t — 5), (5.10)
where
vy 1 pt 7
=1 = — —) < -
=1 > and ~ 2—1—1/1(1—1—2)_47

this last from the upper bound on vyt .
We now take h = §/(27v), and note that

h< (= —p)/[(—p)(1+20)] < 1/201 < 1
from the lower bound for ¢, so that (5.10) then becomes

8vip(t — %) S 3%vipt S (521/1pt.
4~ 8y — 14

(5.11)

Thus the total variation distance of the two processes, which dominates the absolute difference between these

two probabilities, is bounded below by the right hand side of (5.11), because this is nonnegative.

15
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some ¢ < 1/2, then
E{K(K - 1)}

< —c).
R < 2c/(1—c¢)
Proof. Let g; =375, P[K >1], j > 2; then
0<g; <Y d7h=c"1/(1-0) (5.12)

12

by hypothesis, and

E{K(K-1)} _2Xj529 _, [1 U

EK 1490 1+ g2

This latter expression is clearly increasing in each g; for j > 3, and in g5 also if ¢ < 1/2 for any choice
of the g; such that (5.12) holds, since then

Zgj <cE/(1-e)? <1

i3

The maximum possible is thus obtained when equality holds for all j in (5.12), proving the lemma.
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