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We congratulate Harry Crane on a masterful survey, showing the universal
character of the Ewens sampling formula.

There are two grand ways to get a simple handle on the Ewens sampling
formula; one is the Chinese restaurant coupling, and the other is the Feller
coupling. Since Crane has discussed the Chinese Restaurant process, but
not the Feller coupling, we will give a brief survey of the latter.

The Ewens sampling formula, given in Crane’s (1), has an interpretation
in terms of the cycle type of a random permutation of n objects. For θ = 1, it
is just Cauchy’s formula, expressed in terms of the fraction of permutations
of n objects that have exactly mi cycles of order i, 1 ≤ i ≤ n. For general θ,
the power

θm1+m2+···+mn = θK

appearing in the formula, where K denotes the number of cycles, biases the
uniform random choice of a permutation by weighting with the factor θK ,
the remaining factors involving θ merely reflecting the new normalization
constant required to specify a probability distribution. We use the notation
(C1(n), . . . , Cn(n)) to denote a random object distributed according to the
Ewens sampling formula, suppressing the parameter θ but making explicit
the parameter n, so that, with Crane’s notation (1),

(1) P(C1(n) = m1, . . . , Cn(n) = mn) = p(m1, ...,mn; θ).

The Feller coupling, motivated by the example in Feller [6, p. 815], is defined
as follows. Take independent Bernoulli random variables ξi, i = 1, 2, 3, . . .
with the simple odds ratios P(ξi = 0)/P(ξi = 1) = (i − 1)/θ. Thus E ξi =
P(ξi = 1) = θ/(θ + i− 1), and P(ξi = 0) = (i− 1)/(θ + i− 1). Say that an
`-spacing spacing occurs in a sequence a1, a2, . . . of zeros and ones, starting
at position i−` and ending at position i, if ai−`ai−`+1 · · · ai−1ai = 1 0`−11, a
one followed by `− 1 zeros followed by another one. Then if, for each ` ≥ 1,
we define

C`(n) := the number of `-spacings in ξ1, ξ2, . . . , ξn−1, ξn, 1, 0, 0, . . . ,

the joint distribution of C1(n), ..., Cn(n) is the Ewens sampling formula, as
per Crane’s (1) and our (1). This can be seen directly, for the case θ = 1:
consider a random permutation of 1 to n, write the canonical cycle notation
one symbol at a time, and let ξi indicate the decision to complete a cycle,
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when there is an i-way choice of which element to assign next. The general
case θ > 0 follows by biasing, with respect to θK : since K = ξ1+· · ·+ξn, and
the ξ1, . . . , ξn are independent, biasing their joint distribution by θξ1+···+ξn =
θξ1 · · · θξn preserves their independence and Bernoulli distributions, while
changing the odds P(ξi = 0)/P(ξi = 1) from (i− 1)/1 to (i− 1)/θ.

Now, the wonderful thing that happens is that, with Y` defined to be
the number of `-spacings in the infinite sequence ξ1, ξ2, . . ., it turns out
that Y1, Y2, . . . are mutually independent, and that Y` is Poisson distributed,
with EY` = θ/`, as in formula (11) in Section 3.8. This shows that the
Ewens sampling formula is closely related to the simpler independent process
Y1, Y2, . . . , Yn. Explicitly, let Rn be the position of the rightmost one in
ξ1, ξ2, . . . , ξn−1, ξn — noting that always ξ1 = 1 so Rn is well-defined — and
let Jn := (n+ 1)−Rn. We have

(2) C`(n) ≤ Y` + 1(Jn = `), 1 ≤ ` ≤ n,

with contributions to strict inequality whenever, for some 1 ≤ ` ≤ n, an
`-spacing occurred in ξ1, ξ2, . . . starting at i− ` and ending at i > n.

We view (2) as saying that the Ewens sampling formula distributed (C1(n),
. . . , Cn(n)) can be constructed from the independent Poisson Y ’s using at
most one insertion, together with a random number of deletions. The ex-
pected number of deletions is Oθ(1); that is, bounded over all n, with the
upper bound depending on the value of θ. A concrete upper bound is given
in [3], but the limit value, call it c(θ), is cleaner. This limit is the expected
number of spacings of length at most 1, with right end greater than 1, in
the scale invariant Poisson process on (0,∞) with intensity θ/x dx; see [1].
We have

c(θ) =

∫
x>1

θ

x
P( at least one arrival in (x− 1, x)) dx

=

∫
x>1

θ

x

(
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(
−
∫ x
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θ

y
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∫
x>1

θ

x

(
1−

(
1− 1

x

)θ)
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and using the substitution v = 1− 1/x we get

c(θ) = θ

∫ 1

0
(1− v)−1(1− vθ) dv

= θ
∑
n≥0

(
1

n+ 1
− 1

n+ 1 + θ

)

= θ

1

θ
+
∑
n≥0

(
1

n+ 1
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)
= 1 + θ(γ + ψ(θ))

where γ is Euler’s constant and ψ is the digamma function.
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The simple fact that one can transform the Ewens sampling formula into
the highly tractable Poisson process Y1, Y2, . . . , Yn using a bounded (in ex-
pectation) number of insertions and deletions is, in itself, quite powerful,
since there are interesting aspects of the joint distribution which are in-
sensitive to a bounded number of insertions and deletions. For example,
consider the Erdős–Turán law for the order of a random permutation. The
order of a permutation is the least common multiple of the lengths of its
cycles, and the Erdős–Turán law is the statement of convergence to the
standard normal distribution, for the log of the order, centered by subtract-
ing an asymptotic mean log2 n/2, and scaling by dividing by an asymptotic

standard deviation, log3/2 n/3. The effect of a finite number of cycle lengths
is washed away by the scaling; see [5] for details.

In a similar spirit, and modeled after the Feller coupling for the Ewens
sampling formula, [2] shows that for a random integer chosen uniformly
from 1 to n, the counts Cp(n) of prime factors, including multiplicity, can

be coupled to independent Z2, Z3, Z5, . . ., with P(Zp ≥ k) = p−k for prime
p and k = 0, 1, 2, . . ., in such a way that E

∑
p≤n |Cp(n) − Zp| ≤ 2 +

O((log log n)2/ log n); informally, the prime factorization can be converted
into the process of independent geometric random variables, using on aver-
age no more than 2 + εn insertions and deletions. The fact of being able to
convert with o(log log n) insertions and deletions already easily implies the
Hardy–Ramanujan theorem for the normal order of the number of prime
divisors, and the fact of being able to convert with o(

√
log logn) insertions

and deletions readily implies the Erdős–Kac central limit theorem for the
number of prime divisors.

The Feller coupling expresses the Ewens sampling formula in terms of
the spacings of the independent Bernoulli sequence ξ1, ξ2, . . . , ξn. The con-
ditioning relation, described in Crane’s article at the start of Section 3.8,
expresses the Ewens sampling formula in terms of the independent Pois-
son Y1, Y2, . . . , Yn. Both these independent processes have the same limit
upon rescaling, namely, the scale invariant Poisson process on (0,∞) with
intensity θ/x dx. This leads to a property of the scale invariant Poisson
process: the set of its spacings has the same distribution as the set of
its arrivals. This property can be exploited to bound the distance to the
Poisson–Dirichlet limit, which is mentioned in Crane’s Section 4.2. Write
(X1, X2, . . .) for the random vector distributed according to the Poisson–
Dirichlet(θ = 1). For random permutations, writing Li(n) for the size
of the ith largest cycle, [4] shows that there are couplings which achieve
E
∑

i≥1 |Li(n)−nXi| ∼ 1
4 log n, and that no coupling can achieve a constant

smaller than 1/4. For prime factorizations, writing Pi(n) for the ith largest
prime factor of a random integer distributed uniformly from 1 to n, [2] shows
that there is a coupling of random integers to Poisson-Dirichlet such that
E
∑

i≥1 | logPi(n)− (log n)Xi| = O(log log n), and the conjecture that O(1)
can be achieved remains open.
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