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In this appendix we give an unconditional argument for the following (un)-property
of the slice filtration on DM(k):
Proposition 0.1 — The slice filtration on DM(k) does not preserve geometric
motives.

Recall that the slice filtration is a sequence of transformations:

ν≥n → ν≥n−1 → · · · → id

where ν≥n(M) = τ(M(−n))(n) with τ : DM(k) → DMeff(k) the right adjoint to
the full embedding DMeff(k) ⊂ DM(k). When M is effective (e.g.. the motive
M(X) of a smooth projective variety X) we have τ(M(−n)) = Homeff(Z(n),M)
where Homeff stands for the internal hom in DMeff(k). We will prove the following:
Proposition 0.2 — Assume that k is big enough. There exists a smooth

projective k-variety X such that Homeff(Z(1),M(X)) is not a geometric motive.
We will implicitly assume k algebraically closed and work with rational coefficients.

1. Compacity in DMeff(k)

Recall the following classical notions (see [Neeman. Triangulated categories ]):
Definition 1.1 — Let T be a triangulated category with arbitrary infinite

sums. An object U ∈ T is called compact if the functor homT (U,−) : T → Ab
commutes with sums. The category T is compactly generated, if there exists a set G
of compact objects in T such that the family of triangulated functors homT (U [n],−),
where U ∈ G and n ∈ Z, is conservative (that is detects isomorphisms).

If T is compactly generated by G then the subcategory Tcomp of compact objects
is the pseudo-abelian envelop of the triangulated sub-category of T generated by G.

Let (An)n∈N be an inductive system in T . Its homotopy colimit is the cone of:

(id− s) : ⊕n∈NAn → ⊕n∈NAn

where s is the composition An0 → An0+1 → ⊕n∈NAn on the factor An0 . It is denoted
by hocolimn∈NAn . We have the following lemma:
Lemma 1.2 — If U ∈ T is compact, then homT (U,−) commutes with N-indexed
homotopy colimits.

The following proposition is well-known. It follows immediately from the commu-
tation of Nisnevic hyper-cohomology with infinite sums of complexes:
Proposition 1.3 — The category DMeff(k) is compactly generated by the set of
M(X) with X in a set representing isomorphism classes of smooth k-varieties. More-
over the sub-category DMgm

eff (k) is the sub-category of compact objects of DMeff(k).
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2. Finite generation in HI(k)

Recall that DMeff(k) admits a natural t-structure whose heart HI(k) is the
category of homotopy invariant Nisnevic sheaves with transfers. For an object
M ∈ DMeff(k) we denote hi(M) the truncation with respect to this t-structure.
Recall that hi(M) is simply the i-th homology sheaf of the complex M . We will also
write hi(X) for hi(M(X)) when X is a smooth k-variety. We make the following
definition:
Definition 2.1 — A sheaf F ∈ HI(k) is called finitely generated if there exists
a smooth variety X and a surjection h0(X) // // F .

It is clear that the property of being finitely generated is stable by quotients. It
is also stable by extensions. Indeed, let F ⊂ G in HI(k) such that F and G/F are
finitely generated and chose surjections a : h0(X) // // F and b : h0(Y ) // // G/F .

There exists a Nisnevic cover U → Y such that b|U lifts to b′ : h0(U) // G . We

get in this way a surjection a
∐
b′ : h0(X

∐
U) // // G .

Assuming that k is countable we say that a sheaf F is countable if for any smooth
k-variety X the set F (X) is countable. Note the following technical lemma:
Lemma 2.2 — Let F be a sheaf in HI(k) which is countable. There exists a
chain (Sn)n∈N of finitely generated sub-sheaves of F such that F = ∪n∈NSn.

Proof. Consider the set S whose elements are the finitely generated sub-sheaves of
F . This set is countable as every finitely generated sub-sheaf of F is the image of
a map a : h0(X) → F with X a smooth k-variety and a ∈ F (X). Fix a bijection
b : N ∼→ S and denote Sn =

∑n
i=0 b(i). We clearly have that F = ∪n∈NSn. �

As a corollary we have the following:
Proposition 2.3 — Let F be a countable sheaf in HI(k). Suppose that

homHI(k)(F,−) commutes with N-indexed colimits. Then F is finitely generated.

Proof. By lemma 2.2 we can write F = colimn∈N(Sn) with Sn finitely generated
sub-sheaves of F . Using hom(F, F ) = colimn∈N hom(F, Sn) one can find n0 ∈ N
such that the identity of F factors trough the inclusion Sn0 ⊂ F . This implies that
F = Sn0 . �

Remark 2.4 — By working a little bit more, one shows under the hypothesis of
2.3 that F is finitely presented in the sense that there exists an exact sequence:

h0(X2) // h0(X1) // F // 0

with X1 and X2 two smooth k-varieties.

3. conclusion

Using propositions 1.3 and 2.3 we can prove the following:
Theorem 3.1 — Let M be a geometric motive in DMeff(k). Suppose that
hi(M) = 0 for i < 0. Then h0(M) is finitely generated1.

1In fact h0(M) is even finitely presented (see 2.4)
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Proof. The motiveM being geometric, it is defined over a finitely generated field (in
particular a countable one). Hence, we may assume our base field k countable. It
follows that the sheaves hi(M) are countable. This can be proved by reducing to the
case M = M(X) with X a smooth k-variety and using Voevodsky’s identification
M(X) = C∗Ztr(X) with C∗ the Suslin-Voevodsky complex.

By 2.3 we need only to check that homHI(k)(h0(M),−) commutes with N-colimits.
Let (An)n∈N be an inductive system and denote A its colimit. First, remark that
A is also the homotopy colimit of (An)n∈N in DMeff(k). Indeed, one has an exact
triangle:

⊕An
id−s // ⊕An

// hocolimAn
//

It is easy to see that the morphism of sheaves id − s is injective. It follows that
hocolimn∈NAn is the co-kernel of id− s which is canonically isomorphic to A.

Having this in mind, we can write:

homHI(k)(h0(M), colimAn)
1
= homDMeff(k)(h0(M), hocolimAn)

2
= homDMeff(k)(M,hocolimAn)

3
= colim homDMeff(k)(M,An)

4
= colim homHI(k)(h0(M), An)

Equality (1) follows from the above discussion. Equalities (2) and (4) follow from
the condition hi(M) = 0 for i < 0. Equality (3) is the compactness of M . This
proves the theorem. �

Let X be a smooth projective variety of dimension d. Using [Voevodsky, triangu-
lated category of motives. Theorem 4.2.2 and Proposition 4.2.3] we have:

• the sheaf hi(Homeff(Z(1)[2],M(X))) is zero for i < 0,
• the sheaf h0(Homeff(Z(1)[2],M(X))) is canonically isomorphic to the Nis-
nevic sheaf CHd−1

/X associated to the pre-sheaf: U  CHd−1(U ×k X).
To prove 0.2 it suffices by 3.1 to find a smooth projective variety X of dimension

d = 3 such that CHd−1
/X is not finitely generated. To do this, we will construct a

quotient of CHd−1
/X which is constant but not finitely generated.

Definition 3.2 — Let U be a smooth k-scheme. A cycle [Z] ∈ CHd−1(U ×k X)
is said to be U-algebraically equivalent to zero if there exist a smooth and connected
U-scheme V → U , a finite correspondence of degree zero

∑
i ni[Ti] ∈ Cor(V/U) (i.e.

ni ∈ Z and ti : Ti → U are finite and surjective) and a cycle [W ] ∈ CHd−1(V ×k X)
such that [Z] is rationally equivalent to

∑
i ni(ti × idX)∗[W ∩ (Ti ×X)].

We denote NSd−1(U ×k X)U the quotient of CHd−1(U ×k X) with respect to the
U-algebraic equivalence. We let also NSd−1

/X be the Nisnevic sheaf associated to the
pre-sheaf U  NSd−1(U ×k X)U .

We have clearly a surjective morphism CHd−1
/X → NSd−1

/X . The latter sheaf is
constant (because our base field k is algebraically closed). Indeed, for any finitely
generated extension k ⊂ K we have NSd−1

/X (K) = NSd−1(X⊗kK). It is a well-known
fact that the Neron-Severi group is invariant by extensions of an algebraically closed
field.

Now, it is easy to see that a constant sheaf is finitely generated if and only if its
group of sections over k is a finite dimensional Q-vector space (using that a map
from h0(X) to a constant sheaf factors trough Qtr(π0(X)) with π0(X) the set of
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connected components of the variety X). We are done since NS2(X) is not finite
dimensional for a generic quintic in P4.


