THE SLICE FILTRATION ON DM(k) DOES NOT PRESERVE GEOMETRIC MOTIVES

JOSEPH AYOUB

In this appendix we give an unconditional argument for the following (un)-property of the slice filtration on $\mathbf{DM}(k)$:

PROPOSITION 0.1 — The slice filtration on DM(k) does not preserve geometric motives.

Recall that the slice filtration is a sequence of transformations:

$$\nu^{\geq n} \to \nu^{\geq n-1} \to \cdots \to \mathrm{id}$$

where $\nu^{\geq n}(M) = \tau(M(-n))(n)$ with $\tau: \mathbf{DM}(k) \to \mathbf{DM}_{\mathrm{eff}}(k)$ the right adjoint to the full embedding $\mathbf{DM}_{\mathrm{eff}}(k) \subset \mathbf{DM}(k)$. When M is effective (e.g.. the motive M(X) of a smooth projective variety X) we have $\tau(M(-n)) = \underline{\mathsf{Hom}}_{\mathrm{eff}}(\mathbb{Z}(n), M)$ where $\underline{\mathsf{Hom}}_{\mathrm{eff}}$ stands for the internal hom in $\mathbf{DM}_{\mathrm{eff}}(k)$. We will prove the following:

PROPOSITION 0.2 — Assume that k is big enough. There exists a smooth projective k-variety X such that $\underline{\mathsf{Hom}}_{\mathrm{eff}}(\mathbb{Z}(1), \mathrm{M}(X))$ is not a geometric motive.

We will implicitly assume k algebraically closed and work with rational coefficients.

1. Compacity in $\mathbf{DM}_{\text{eff}}(k)$

Recall the following classical notions (see [Neeman. Triangulated categories]):

DEFINITION 1.1 — Let \mathcal{T} be a triangulated category with arbitrary infinite sums. An object $U \in \mathcal{T}$ is called compact if the functor $\hom_{\mathcal{T}}(U, -) : \mathcal{T} \to \mathcal{A}b$ commutes with sums. The category \mathcal{T} is compactly generated, if there exists a set \underline{G} of compact objects in \mathcal{T} such that the family of triangulated functors $\hom_{\mathcal{T}}(U[n], -)$, where $U \in G$ and $n \in \mathbb{Z}$, is conservative (that is detects isomorphisms).

If \mathcal{T} is compactly generated by \underline{G} then the subcategory $\mathcal{T}_{\text{comp}}$ of compact objects is the pseudo-abelian envelop of the triangulated sub-category of \mathcal{T} generated by \underline{G} . Let $(A_n)_{n\in\mathbb{N}}$ be an inductive system in \mathcal{T} . Its homotopy colimit is the cone of:

$$(\mathrm{id} - s) : \bigoplus_{n \in \mathbb{N}} A_n \to \bigoplus_{n \in \mathbb{N}} A_n$$

where s is the composition $A_{n_0} \to A_{n_0+1} \to \bigoplus_{n \in \mathbb{N}} A_n$ on the factor A_{n_0} . It is denoted by $hocolim_{n \in \mathbb{N}} A_n$. We have the following lemma:

LEMMA 1.2 — If $U \in \mathcal{T}$ is compact, then $hom_{\mathcal{T}}(U, -)$ commutes with \mathbb{N} -indexed homotopy colimits.

The following proposition is well-known. It follows immediately from the commutation of Nisnevic hyper-cohomology with infinite sums of complexes:

PROPOSITION 1.3 — The category $\mathbf{DM}_{\mathrm{eff}}(k)$ is compactly generated by the set of $\mathbf{M}(X)$ with X in a set representing isomorphism classes of smooth k-varieties. Moreover the sub-category $\mathbf{DM}_{\mathrm{eff}}^{\mathrm{gm}}(k)$ is the sub-category of compact objects of $\mathbf{DM}_{\mathrm{eff}}(k)$.

2. Finite generation in $\mathbf{HI}(k)$

Recall that $\mathbf{DM}_{\mathrm{eff}}(k)$ admits a natural t-structure whose heart $\mathbf{HI}(k)$ is the category of homotopy invariant Nisnevic sheaves with transfers. For an object $M \in \mathbf{DM}_{\mathrm{eff}}(k)$ we denote $h_i(M)$ the truncation with respect to this t-structure. Recall that $h_i(M)$ is simply the i-th homology sheaf of the complex M. We will also write $h_i(X)$ for $h_i(M(X))$ when X is a smooth k-variety. We make the following definition:

DEFINITION 2.1 — A sheaf $F \in \mathbf{HI}(k)$ is called finitely generated if there exists a smooth variety X and a surjection $h_0(X) \longrightarrow F$.

It is clear that the property of being finitely generated is stable by quotients. It is also stable by extensions. Indeed, let $F \subset G$ in $\mathbf{HI}(k)$ such that F and G/F are finitely generated and chose surjections $a: h_0(X) \longrightarrow F$ and $b: h_0(Y) \longrightarrow G/F$.

There exists a Nisnevic cover $U \to Y$ such that $b_{|U}$ lifts to $b': h_0(U) \longrightarrow G$. We get in this way a surjection $a \coprod b': h_0(X \coprod U) \longrightarrow G$.

Assuming that k is countable we say that a sheaf F is countable if for any smooth k-variety X the set F(X) is countable. Note the following technical lemma:

LEMMA 2.2 — Let F be a sheaf in $\mathbf{HI}(k)$ which is countable. There exists a chain $(S_n)_{n\in\mathbb{N}}$ of finitely generated sub-sheaves of F such that $F = \bigcup_{n\in\mathbb{N}} S_n$.

Proof. Consider the set S whose elements are the finitely generated sub-sheaves of F. This set is countable as every finitely generated sub-sheaf of F is the image of a map $a:h_0(X)\to F$ with X a smooth k-variety and $a\in F(X)$. Fix a bijection $b:\mathbb{N}\stackrel{\sim}{\to} S$ and denote $S_n=\sum_{i=0}^n b(i)$. We clearly have that $F=\bigcup_{n\in\mathbb{N}} S_n$.

As a corollary we have the following:

PROPOSITION 2.3 — Let F be a countable sheaf in $\mathbf{HI}(k)$. Suppose that $\hom_{\mathbf{HI}(k)}(F,-)$ commutes with \mathbb{N} -indexed colimits. Then F is finitely generated.

Proof. By lemma 2.2 we can write $F = colim_{n \in \mathbb{N}}(S_n)$ with S_n finitely generated sub-sheaves of F. Using $hom(F, F) = colim_{n \in \mathbb{N}} hom(F, S_n)$ one can find $n_0 \in \mathbb{N}$ such that the identity of F factors trough the inclusion $S_{n_0} \subset F$. This implies that $F = S_{n_0}$.

Remark 2.4 — By working a little bit more, one shows under the hypothesis of 2.3 that F is finitely presented in the sense that there exists an exact sequence:

$$h_0(X_2) \longrightarrow h_0(X_1) \longrightarrow F \longrightarrow 0$$

with X_1 and X_2 two smooth k-varieties.

3. Conclusion

Using propositions 1.3 and 2.3 we can prove the following:

THEOREM 3.1 — Let M be a geometric motive in $\mathbf{DM}_{\mathrm{eff}}(k)$. Suppose that $h_i(M) = 0$ for i < 0. Then $h_0(M)$ is finitely generated¹.

¹In fact $h_0(M)$ is even finitely presented (see 2.4)

Proof. The motive M being geometric, it is defined over a finitely generated field (in particular a countable one). Hence, we may assume our base field k countable. It follows that the sheaves $h_i(M)$ are countable. This can be proved by reducing to the case M = M(X) with X a smooth k-variety and using Voevodsky's identification $M(X) = C_* \mathbb{Z}_{tr}(X)$ with C_* the Suslin-Voevodsky complex.

By 2.3 we need only to check that $\hom_{\mathbf{HI}(k)}(h_0(M), -)$ commutes with \mathbb{N} -colimits. Let $(A_n)_{n\in\mathbb{N}}$ be an inductive system and denote A its colimit. First, remark that A is also the homotopy colimit of $(A_n)_{n\in\mathbb{N}}$ in $\mathbf{DM}_{\mathrm{eff}}(k)$. Indeed, one has an exact triangle:

$$\oplus A_n \xrightarrow{\operatorname{id}-s} \oplus A_n \longrightarrow hocolim A_n \longrightarrow$$

It is easy to see that the morphism of sheaves id -s is injective. It follows that $hocolim_{n\in\mathbb{N}}A_n$ is the co-kernel of id -s which is canonically isomorphic to A.

Having this in mind, we can write:

$$\operatorname{hom}_{\mathbf{HI}(k)}(h_0(M), \operatorname{colim} A_n) \stackrel{1}{=} \operatorname{hom}_{\mathbf{DM}_{\mathrm{eff}}(k)}(h_0(M), \operatorname{hocolim} A_n)$$

$$\stackrel{2}{=} \operatorname{hom}_{\mathbf{DM}_{\mathrm{eff}}(k)}(M, \operatorname{hocolim} A_n) \stackrel{3}{=} \operatorname{colim} \operatorname{hom}_{\mathbf{DM}_{\mathrm{eff}}(k)}(M, A_n)$$

$$\stackrel{4}{=} \operatorname{colim} \operatorname{hom}_{\mathbf{HI}(k)}(h_0(M), A_n)$$

Equality (1) follows from the above discussion. Equalities (2) and (4) follow from the condition $h_i(M) = 0$ for i < 0. Equality (3) is the compactness of M. This proves the theorem.

Let X be a smooth projective variety of dimension d. Using [Voevodsky, triangulated category of motives. Theorem 4.2.2 and Proposition 4.2.3] we have:

- the sheaf $h_i(\underline{\mathsf{Hom}}_{\mathrm{eff}}(\mathbb{Z}(1)[2], M(X)))$ is zero for i < 0,
- the sheaf $h_0(\underline{\text{Hom}}_{\text{eff}}(\mathbb{Z}(1)[2], M(X)))$ is canonically isomorphic to the Nisnevic sheaf $\mathrm{CH}_{/X}^{d-1}$ associated to the pre-sheaf: $U \leadsto \mathrm{CH}^{d-1}(U \times_k X)$.

To prove 0.2 it suffices by 3.1 to find a smooth projective variety X of dimension d=3 such that $\operatorname{CH}_{/X}^{d-1}$ is not finitely generated. To do this, we will construct a quotient of $\operatorname{CH}_{/X}^{d-1}$ which is constant but not finitely generated.

DEFINITION 3.2 — Let U be a smooth k-scheme. A cycle $[Z] \in CH^{d-1}(U \times_k X)$ is said to be U-algebraically equivalent to zero if there exist a smooth and connected U-scheme $V \to U$, a finite correspondence of degree zero $\sum_i n_i[T_i] \in Cor(V/U)$ (i.e. $n_i \in \mathbb{Z}$ and $t_i : T_i \to U$ are finite and surjective) and a cycle $[W] \in CH^{d-1}(V \times_k X)$ such that [Z] is rationally equivalent to $\sum_i n_i(t_i \times id_X)_*[W \cap (T_i \times X)]$.

such that [Z] is rationally equivalent to $\sum_{i} n_{i}(t_{i} \times id_{X})_{*}[W \cap (T_{i} \times X)]$.

We denote $NS^{d-1}(U \times_{k} X)_{U}$ the quotient of $CH^{d-1}(U \times_{k} X)$ with respect to the U-algebraic equivalence. We let also $NS^{d-1}_{/X}$ be the Nisnevic sheaf associated to the pre-sheaf $U \leadsto NS^{d-1}(U \times_{k} X)_{U}$.

We have clearly a surjective morphism $\mathrm{CH}_{/X}^{d-1} \to \mathrm{NS}_{/X}^{d-1}$. The latter sheaf is constant (because our base field k is algebraically closed). Indeed, for any finitely generated extension $k \subset K$ we have $\mathrm{NS}_{/X}^{d-1}(K) = \mathrm{NS}^{d-1}(X \otimes_k K)$. It is a well-known fact that the Neron-Severi group is invariant by extensions of an algebraically closed field.

Now, it is easy to see that a constant sheaf is finitely generated if and only if its group of sections over k is a finite dimensional \mathbb{Q} -vector space (using that a map from $h_0(X)$ to a constant sheaf factors trough $\mathbb{Q}_{tr}(\pi_0(X))$ with $\pi_0(X)$ the set of

connected components of the variety X). We are done since $\mathrm{NS}^2(X)$ is not finite dimensional for a generic quintic in \mathbb{P}^4 .