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1. Introduction

Let X be a noetherian scheme. Following Morel and Voevodsky (see [24], [25], [28],
[33] and [37]), one can associate to X the motivic stable homotopy category SH(X).
Objects of SH(X) are T -spectra of simplicial sheaves on the smooth Nisnevich
site (Sm/X)Nis, where T is the pointed quotient sheaf A1

X/GmX . As in topology,
SH(X) is triangulated in a natural way. There is also a tensor product − ⊗X −
and an "internal hom": HomX on SH(X) (see [20] and [33]). Given a morphism
f : X // Y of noetherian schemes, there is a pair of adjoint functors (f ∗, f∗)
between SH(X) and SH(Y ). When f is quasi-projective, one can extend the pair
(f ∗, f∗) to a quadruple (f ∗, f∗, f!, f

!) (see [3] and [8]). In particular we have for
SH(−) the full package of the Grothendieck six operators. It is then natural to
ask if we have also the seventh one, that is, if we have a vanishing cycle formalism
(analogous to the one in the étale case, developed in [9] and [10]).

In the third chapter of our PhD thesis [3], we have constructed a vanishing cycles
formalism for motives. The goal of this paper is to give a detailed account of that
construction, to put it in a historical perspective and to discuss some applications
and conjectures. In some sense, it is complementary to [3] as it gives a quick in-
troduction to the theory with emphasis on motivations rather than a systematic
treatment. The reader will not find all the details here: some proofs will be omitted
or quickly sketched, some results will be stated with some additional assumptions
(indeed we will be mainly interested in motives with rational coefficients over char-
acteristic zero schemes). For the full details of the theory, one should consult [3].
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Let us mention also that M. Spitzweck has a theory of limiting motives which is
closely related to our motivic vanishing cycles formalism. For more information, see
[35].

The paper is organized as follows. First we recall the classical pictures: the étale
and the Hodge cases. Although this is not achieved here, these classical constructions
should be in a precise sense realizations of our motivic construction. In section 3 we
introduce the notion of a specialization system which encodes some formal properties
of the family of nearby cycles functors. We state without proofs some important
theorems about specialization systems obtained in [3]. In section 4, we give our
main construction and prove motivic analogues of some well-known classical results
about nearby cycles functors: constructibility, commutation with tensor product
and duality, etc. We also construct a monodromy operator on the unipotent part of
the nearby cycles which is shown to be nilpotent. Finally, we propose a conservation
conjecture which is weaker than the conservation of the classical realizations but
strong enough to imply the Schur finiteness of constructible motives1.

In the literature, the functors Ψf have two names: they are called "nearby cycles
functors" or "vanishing cycles functors". Here we choose to call them the nearby
cycles functors. The properties of these functors form what we call the vanishing
cycles formalism (as in [9] and [10]).

2. The classical pictures

We briefly recall the construction of the nearby cycles functors RΨf in étale co-
homology. We then explain a construction of Rapoport and Zink which was the
starting point of our definition of Ψf in the motivic context. After that we shall re-
call some facts about limits of variations of Hodge structures. A very nice exposition
of these matters can be found in [15].

2.1. The vanishing cycles formalism in étale cohomology. Let us fix a prime
number ` and a finite commutative ring Λ such that `ν.Λ = 0 for ν large enough.
When dealing with étale cohomology, we shall always assume that ` is invertible on
our schemes. For a reasonable scheme V , we denote by D+(V, Λ) the derived category
of bounded below complexes of étale sheaves on V with values in Λ-modules.

Let S be the spectrum of a strictly henselian DVR (discrete valuation ring). We
denote by η the generic point of S and by s the closed point:

η
j // S s

ioo .

We also fix a separable closure η̄ of the point η. From the point of view of étale
cohomology, the scheme S plays the role of a small disk so that η is a punctured
small disk and η̄ is a universal cover of that punctured disk. We will also need the
normalization S̄ of S in η̄:

η̄
j̄ // S̄ s

īoo .

1Constructible motives means geometric motives of [40]. They are also the compact objects in
the sense Neeman [30] (see remark 3.3).
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Now let f : X // S be a finite type S-scheme. We consider the commutative
diagram with cartesian squares

Xη
j //

fη

��

X

f

��

Xs
ioo

fs

��
η

j // S s
ioo

.

Following Grothendieck (see [10]), we look also at the diagram

Xη̄
j̄ //

fη̄

��

X̄

f̄
��

Xs
īoo

fs

��
η̄

j̄ // S̄ s
īoo

obtained in the same way by base-changing the morphism f . (This is what we will
call the "Grothendieck trick"). We define then the triangulated functor:

RΨf : D+(Xη, Λ) // D+(Xs, Λ)

by the formula: RΨf(A) = ī∗Rj̄∗(AXη̄
) for A ∈ D+(Xη, Λ). By construction, the

functor RΨf comes with an action of the Galois group of η̄/η, but we will not
explicitly use this here. The basic properties of these functors concern the relation
between RΨg and RΨg◦h (see [9]):

Proposition 2.1 — Let g : Y // S be an S-scheme and suppose given an

S-morphism h : X // Y such that f = g ◦ h. We form the commutative diagram

Xη
j //

hη

��

X

h

��

Xs

hs

��

ioo

Yη
j // Y Ys.

ioo

There exist natural transformations of functors

• αh : h∗
sRΨg

// RΨfh
∗
η ,

• βh : RΨgRhη∗
// Rhs∗RΨf .

Furthermore, αh is an isomorphism when h is smooth and βh is an isomorphism
when h is proper.

The most important case, is maybe when g = idS and f = h. Using the easy fact
that RΨidS

Λ = Λ, we get that:

• RΨfΛ = Λ if f is smooth,
• RΨidS

Rfη∗Λ = Rfs∗RΨfΛ if f is proper.

The last formula can be rewritten in the following more expressive way: H∗
ét(Xη̄, Λ) =

H∗
ét(Xs, RΨfΛ). In concrete terms, this means that for a proper S-scheme X, the

étale cohomology of the constant sheaf on the generic geometric fiber Xη̄ is isomor-
phic to the étale cohomology of the special fiber Xs with value in the complex of
nearby cycles RΨfΛ. This is a very useful fact, because usually the scheme Xs is
simpler than Xη̄ and the complex RΨfΛ can often be computed using local methods.
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2.2. The Rapoport-Zink construction. We keep the notations of the previous
paragraph. We now suppose that X is a semi-stable S-scheme i.e. locally for the
étale topology X is isomorphic to the standard scheme S[t1, . . . , tn]/(t1 . . . tr − π)
where π is a uniformizer of S and r ≤ n are positive integers. In [32], Rapoport and
Zink constructed an important model of the complex RΨf(Λ). Their construction is
based on the following two facts:

• There exists a canonical arrow θ : Λη
// Λη(1)[1] in D+(η, Λ) called the

fundamental class with the property that the composition θ ◦ θ is zero,

• The morphism θ : i∗Rj∗Λ // i∗Rj∗Λ(1)[1] in D+(Xs, Λ) has a representa-

tive on the level of complexes θ : M• // M•(1)[1] such that the compo-

sition

M• // M•(1)[1] // M•(2)[2]

is zero as a map of complexes.

Therefore we obtain a double complex

RZ•,• = [· · · → 0 → M•(1)[1] → M•(2)[2] → M•(3)[3] → · · · → M•(n)[n] → . . . ]

where the complex M•(1)[1] is placed in degree zero. Furthermore, following Rapoport

and Zink, we get a map RΨfΛ // Tot(RZ•,•) which is an isomorphism in D+(Xs, Λ)

(see [32] for more details). Here Tot(−) means the simple complex associated to a
double complex. In particular, Rapoport and Zink’s result says that the nearby
cycles complex RΨfΛ can be constructed using two ingredients:

• The complex i∗Rj∗Λ,
• The fundamental class θ.

Our construction of the nearby cycles functor in the motivic context is inspired
by this fact. Indeed, the above ingredients are motivic (see 4.1 for a definition of the
motivic fundamental class). We will construct in paragraph 4.2 a motivic analogue
of RZ•,• based on these two motivic ingredients and then define the (unipotent)
"motivic nearby cycles" to be the associated total motive. In fact, for technical
reasons, we preferred to use a motivic analogue of the dual version of RZ •,•. By the
dual of the Rapoport-Zink complex, we mean the bicomplex

Q•,• = [· · · → M•(−n)[−n] → · · · → M•(−1)[−1] → M• → 0 → . . . ]

where the complex M• is placed in degree zero. It is true that by passing to the
total complex, the double complex Q•,• gives in the same way as RZ•,• the nearby
cycles complex.

2.3. The limit of a variation of Hodge structures. Let D be a small analytic
disk, 0 a point of D and D? = D − 0. Let f : X? // D? be an analytic family of

smooth projective varieties. For t ∈ D?, we denote by Xt the fiber f−1(t) of f . For
any integer q, the local system Rqf∗C = (Rqf∗Z) ⊗ C on D? with fibers (Rqf∗C)t =
Hq(Xt, C) is the sheaf of horizontal sections of the Gauss-Manin connection ∇ on
Rqf∗Ω

.
X?/D?. The decreasing filtration F k on the de Rham complex Ω

.
X?/D? given by

F kΩ
.
X?/D? = [0 → . . . 0 → Ωk

X?/D? → · · · → Ωn
X?/D?]

induces a filtration F kRqf∗Ω
.
X?/D? by locally free OD?-submodules on Rqf∗Ω

.
X?/D?.
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For any t ∈ D?, we get by applying the tensor product − ⊗OD? C(t) a filtration
F k on Hq(Xt, C) which is the Hodge filtration. The data:

• The local system Rqf∗Z,
• The OD?-module (Rqf∗Z) ⊗ OD? = Rqf∗Ω

.
X?/D? together with the Gauss-

Manin connexion,
• The filtration F k on (Rqf∗Z) ⊗ OD?

satisfy the Griffiths transversality condition and are called a Variation of (pure)
Hodge Structures.

Let us suppose for simplicity that f extends to a semi-stable proper analytic
morphism: X // D . We denote by ω.

X/D the relative de Rham complex with
logarithmic poles on Y = X − X?, that is,

ω1
X/D = Ω1

X(log (Y ))/Ω1
D(log (0)).

We fix a uniformizer t : D → C, a universal cover D̄? → D? and a logarithm

log t on D̄?. In [36], Steenbrink constructed an isomorphism (ω.
X/D)|Y // RΨfC

depending on these choices. From this, he deduced a mixed Hodge structure on
Hq(Y, (ω.

X/D)|Y ) which is by definition the limit of the above Variation of Hodge
Structures.

2.4. The analogy between the situations in étale cohomology and Hodge

theory. Let V be a smooth projective variety defined over a field k of characteristic
zero. Suppose also given an algebraic closure k̄/k with Galois group Gk and an
embedding σ : k ⊂ C. In the étale case, the `-adic cohomology of Vk̄ is equipped
with a structure of a continuous Gk-module. In the complex analytic case, the Betti
cohomology of V (C) is equipped with a Hodge structure.

Now let f : X // C be a flat and proper family of smooth varieties over

k parametrized by an open k-curve C. Then for any k̄-point t of C, we have a
continuous Galois module2 Hq(Xt, Q`). These continuous Galois modules can be
thought of as a "Variation of Galois Representations" parametrized by C which is
the étale analogue of the Variation of Hodge structures (Hq(Xt(C), Q), F k) that we
discussed in the above paragraph.

Now let s be a point of the boundary of C and choose a uniformizer near s. As
in the Hodge–theoretic case, the variation of Galois modules above has a "limit" on
s which is a "mixed" Galois module given by the following data:

• A monodromy operator N which is nilpotent. This operator induces the
monodromy filtration which turns out to be compatible with the weight fil-
tration of Steenbrink’s mixed Hodge structure on the limit cohomology (see
[15]),

• The grading associated to the monodromy filtration is a continuous Galois
module of "pure" type.

As in the analytic case, this limit is defined via the nearby cycles complex. Indeed,
choose an extension of f to a projective scheme X ′ over C ′ = C ∪ {s}. Let Y be
the special fiber of X ′. The choice of a uniformizer gives us a complex RΨX′/C′Q`

on Y . Then the "limit" of our "Variation of Galois representations" is given by
Hq(Y, RΨX′/C′Q`). The monodromy operator N is induced from the representation

2In general only an open subgroup of Gk acts on the cohomology, unless t factors trough a
k-rational point.
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on RΨX′/C′Q` of the étale fundamental group of the punctured henselian neighbour-
hood of s in C.

3. Specialization systems

The goal of this section is to axiomatize some formal properties of the nearby
cycles functors that we expect to hold in the motivic context. The result will be the
notion of specialization systems. We then state some consequences of these axioms
which play an important role in the theory. Before doing that we recall briefly the
motivic categories we use.

3.1. The motivic categories. Let X be a noetherian scheme. In this paper we
will use two triangulated categories associated to X:

(1) The motivic stable homotopy category SH(X) of Morel and Voevodsky,
(2) The stable category of mixed motives DM(X) of Voevodsky.

These categories are respectively obtained by taking the homotopy category (in the
sense of Quillen [31]) associated to the two model categories of T = (A1

X/GmX)-
spectra:

(1) The category SpectT
s (X) of T -spectra of simplicial sheaves on the smooth

Nisnevich site (Sm/X)Nis,
(2) The category SpectT

tr(X) of T -spectra of complexes of sheaves with transfers
on the smooth Nisnevich site (Sm/X)Nis.

Recall that a T -spectrum E is a sequence of objects (En)n∈N connected by maps

of the form En
// Hom(T, En+1) . We sometimes denote by SpectT (X) one of

the two categories SpectT
s (X) or SpectT

tr(X). We do not intend to give the detailed
construction of these model categories as this has already been done in several places
(cf. [5], [20], [24], [25], [28], [33], [37]). For the reader’s convenience, we however give
some indications. We focus mainly on the class of weak equivalences; indeed this
is enough to define the homotopy category which is obtained by formally inverting
the arrows in this class. The weak equivalences in these two categories of T -spectra
are called the stable A1-weak equivalences and are defined in the three steps. We
restrict ourself to the case of simplicial sheaves; the case of complexes of sheaves
with transfers is completely analogous.

Step 1. We first define simplicial weak equivalences for simplicial sheaves. A map

A•
// B• of simplicial sheaves on (Sm/X)Nis is a simplicial weak equivalence

if for any smooth X-scheme U and any point u ∈ U , the map of simplicial sets3

A•(Spec(Oh
U,u)) // B•(Spec(Oh

U,u)) is a weak equivalence (i.e. induces isomor-

phisms on the set of connected components and on the homotopy groups).

Step 2. Next we perform a Bousfield localization of the simplicial model structure

on simplicial sheaves in order to invert the projections A1
U

// U for smooth X-

schemes U (see [13] for a general existence theorem on localizations and [28] for this
particular case). The model structure thus obtained is the A1-model structure on
simplicial sheaves over (Sm/X)Nis. We denote HoA1(X) the associated homotopy
category.

3This map of simplicial sets is the stalk of A•

// B• at the point u ∈ U with respect to the

Nisnevich topology.
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Step 3. If A is a pointed simplicial sheaf and E = (En)n is a T -spectrum of
simplicial sheaves we define the stable cohomology groups of A with values in E to
be the colimit: Colimn homHo

A1 (X)(T
∧n ∧ A, En). We then say that a morphism of

spectra (En)n
// (E ′

n)n is a stable A1-weak equivalence if it induces isomorphisms

on cohomology groups for every simplicial sheaf A.

By inverting stable A1-weak equivalences in SpectT
s (X) and SpectT

tr(X) we get
respectively the categories SH(X) and DM(X). Let U be a smooth X-scheme. We
can associate to U the pointed simplicial sheaf U+ which is simplicially constant,

represented by U
∐

X and pointed by the trivial map X // U
∐

X . Then, we

can associate to U+ its infinite T -suspension Σ∞
T (U+) given in level n by T ∧n ∧ U+.

This provides a covariant functor M : Sm/X // SH(X) which associates to

U its motive M(U). Similarly we can associate to U the complex Ztr(U), con-
centrated in degree zero, and then take its infinite suspension given in level n by

Ztr(A
n × U)/Ztr((A

n − 0) × U) ' T
L

⊗n
L

⊗ U . This also gives a covariant functor

M : Sm/X // DM(X) . The images in SH(X) and DM(X) of the identity X-

scheme are respectively denoted by IX and ZX . When there is no confusion we will
drop the index X.

Remark 3.1 — Sometimes it is useful to stop in the middle of the above construc-
tion and consider the homotopy category HoA1(X) of step 2. The abelian version
with transfers of HoA1(X) is the category DMeff(X) which is used at the end of
the paper. This is the category of effective motives whose objects are complexes
of Nisnevich sheaves with transfers and morphisms obtained by inverting A1-weak
equivalences.

Remark 3.2 — One can also consider the categories SHQ(X) and DMQ(X)
obtained from SH(X) and DM(X) by killing torsion objects (using a Verdier local-
ization) or equivalently by repeating the above three steps using simplicial sheaves
and complexes of sheaves with transfers of Q-vector spaces (instead of sets and
abelian groups). It is important to note that the categories SHQ(X) and DMQ(X)
are essentially the same at least for X a field. Indeed, an unpublished result of
Morel (see however the announcement [27]) claims that SHQ(k) decomposes into
DMQ(k)⊕?(k) with ?(k) a "small part" equivalent to the zero category unless the
field k is formally real (i.e., if (−1) is not a sum of squares in k).

Remark 3.3 — The triangulated categories SH(X) and DM(X) have infinite
direct sums. It is then possible to speak about compact motives. A motive M is
compact if the functor hom(M,−) commutes with infinite direct sums (see [30]). If
U is a smooth X-scheme, then its motive M(U) (in SH(X) or DM(X)) is known
to be compact (see for example [33]). Therefore, the triangulated categories with
infinite sums SH(X) and DM(X) are compactly generated in the sense of [30]. We
shall denote SHct(X) and DMct(X) the triangulated subcategories of SH(X) and
DM(X) whose objects are the compact ones. The letters ct stand for constructible
and we shall call them the categories of constructible motives (by analogy with the
notion of constructible sheaves in étale cohomology considered in [2]).

The elementary functorial operators f ∗, f∗ and f# of the categories SH(−) and
DM(−) are defined by deriving the usual operators f ∗, f∗ and f# on the level of
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sheaves. For HoA1(−), the details can be found in [28]. It is possible to extend these
operators to spectra (see [34]). For DM(−) one can follow the same construction.
Details will appear in [6]. The tensor product is obtained by using the category of
symmetric spectra. The details for SH(−) can be found in [20]. For DM(−) this
will be included in [6]. Using the elementary functorial operators: f ∗, f#, f∗ and ⊗,
it is possible to fully develop the Grothendieck formalism of the six operators (see
chapters I and II of [3]). For example, assuming resolution of singularities one can
prove that all the Grothendieck operators preserve constructible motives.

Except for the monodromy triangle, the formalism of motivic vanishing cycles
can be developed equally using the categories SH(−) or DM(−). In fact, one can
more generally work in the context of a stable homotopical 2-functor. See [3] for a
definition of this notion and for the construction of the functors Ψ in this abstract
setting.

3.2. Definitions and examples. Let B be a base scheme. We fix a diagram

η
j // B s

ioo

with j (resp. i) an open (resp. closed) immersion. We do not suppose that B is the
spectrum of a DVR or that s is the complement of η. Every time we are given a
B-scheme f : X // B , we form the commutative diagram with cartesian squares

Xη
j //

fη

��

X

f

��

Xs
ioo

fs

��
η

j // B s.
ioo

.

We recall the following definition from [3], chapter III:

Definition 3.4 — A specialization system sp over (B, j, i) is given by the
following data:

(1) For a B-scheme f : X // B , a triangulated functor:

spf : SH(Xη) // SH(Xs)

(2) For a morphism g : Y // X a natural transformation of functors:

αg : g∗
sspf

// spf◦gg
∗
η.

These data should satisfy the following three axioms:

• The natural transformations α? are compatible with the composition of mor-
phisms. More precisely, given a third morphism h : Z // Y , the diagram

(g ◦ h)∗sspf
//

∼

��

spfgh(g ◦ h)∗η

∼

��
h∗

sg
∗
sspf

// h∗
sspfgg

∗
η

// spfghh
∗
ηg

∗
η

is commutative,
• The natural transformation αg is an isomorphism when g is smooth,



THE MOTIVIC NEARBY CYCLES AND THE CONSERVATION CONJECTURE 9

• If we define the natural transformation βg : spfgη∗ // gs∗spf◦g by the
composition

spfgη∗ // gs∗g
∗
sspfgη∗

αg // gs∗spfgg
∗
ηgη∗ // gs∗spfg

then βg is an isomorphism when g is projective.

Remark 3.5 — A morphism sp // sp′ of specialization systems is a collection

of natural transformations spf // sp′f , one for every B-scheme f , commuting

with the αg, i.e., such that the squares

g∗
sspf

//

��

spfgg
∗
η

��
gssp

′
f

// sp′fgf
∗
η

are commutative.

Remark 3.6 — Let us keep the notations of the Definition 3.4. It is possible to
construct from α? two natural transformations (see chapter III of [3])

spf◦gg
!
η

// g!
sspf and gs!spf◦g // spfgη! .

These natural transformations are important for the study of the action of the duality
operators on the motivic nearby cycles functors in paragraph 4.5. However, we will
not need them for the rest of the paper.

Remark 3.7 — The above definition makes sense for any stable homotopical
2-functor from the category of schemes to the 2-category of triangulated categories
(see chapter I of [3]). In particular, one can speak about specialization systems in
DM(−), SHQ(−) and of course in D+(−, Λ). For example, the family of nearby
cycles functors Ψ = (Ψf)f∈Fl(Sch) of the paragraph 2.1 is in a natural way a special-
ization system in D+(−, Λ) with base (S, j, i).

Example 3.8 — It is easy to produce examples of specialization systems. The
most simple (but still very interesting) example is what we call in chapter III of [3]
the canonical specialization system χ. It is defined by χf(A) = i∗j∗(A).

Example 3.9 — Given a specialization system sp and an object E ∈ SH(η), we
can define a new specialization system by the formula: sp′

f(−) = spf (−⊗ f ∗
η E). In

the same way, given an object F of SH(s), we define a third specialization system
by the formula: sp′′f(−) = spf(−) ⊗ f ∗

s F .

3.3. The basic results. We state here some (non-trivial) results that follow from
the axioms of Definition 3.4. For the proofs (which are too long to be included here)
the reader can consult chapter III of [3]. For simplicity, we shall stick to the case
where B is an affine, smooth and geometrically irreducible curve over a field k of
characteristic zero, s a closed point of B and η a non-empty open subscheme of B−s
or the generic point of B.

We fix a section π ∈ Γ(B, OB) which we suppose to have a zero of order one on s
and to be invertible on η. We then define for n ∈ N, two simple B-schemes:

• Bn = B[t]/(tn − π) and en : Bn
// B the obvious morphism,
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• B′
n = B[t, u, u−1]/(tn − u.π) and e′n : B′

n
// B the obvious morphism.

Recall that the unit objects of SH(X) and DM(X) were respectively denoted by
I = IX and Z = ZX . We shall also denote by Q = QX the unit object of DMQ(X).
The proofs of the following three theorems are in [3], chapter III.

Theorem 3.10 — 1- Let sp be a specialization system over (B, j, i) for SH

(resp. for DM). Suppose that for all n ∈ N, the objects:

• spen
(I) ∈ Ob(SH((Bn)s)) (resp. spen

(Z) ∈ Ob(DM((Bn)s))),
• spe′n(I) ∈ Ob(SH((B′

n)s)) (resp. spe′n(Z) ∈ Ob(SH((B′
n)s))),

are constructible (see remark 3.3). Then for any B-scheme f : X // B , and
any constructible object A of SH(Xη) (resp. DM(Xη)), the object spf(A) is con-
structible.

2- Let sp be a specialization system over (B, j, i) for DMQ(−). Suppose that for
all n ∈ N, the objects spen

(Q) ∈ DMQ(s) are constructible. Then for any B-scheme
f : X // B , and any constructible object A ∈ DMQ(Xη), the object spf (A) is
constructible.

The following result will play an important role:

Theorem 3.11 — 1- Let sp // sp′ be a morphism between two specialization

systems over (B, j, i) for SH (resp. DM). Suppose that for every n ∈ N, the induced
morphisms:

• spen
(I) // sp′en

(I) (resp. spen
(Z) // sp′en

(Z) ),

• spe′n(I) // sp′e′n(I) (resp. spe′n(Z) // sp′e′n(Z) ),

are isomorphisms.
Then for any B-scheme f : X // B , and any constructible object A of SH(Xη)

(resp. of DM(Xη)) the morphism

spf(A) // sp′f(A)

is an isomorphism. When spf and sp′f both commute with infinite sums, the con-
structibility condition on A can be dropped.

2- If we are working in DMQ(−) the same conclusions hold under the following
weaker condition: For every n ∈ N the morphisms

spen
(Q) // sp′en

(Q) are isomorphisms.

Remark 3.12 — In part 2 of Theorems 3.8 and 3.9, we cannot replace DMQ

by SHQ. Indeed, we use in an essential way the fact that the stable homotopical
2-functor DMQ is separated (like "separated" for presheaves) (see chapter II of [3]),
that is, the functor e∗ is conservative for a finite surjective morphism e. This property
for DMQ is easily proved by reducing to a finite field extension and using transfers.

It fails for SHQ already for the morphism Spec(C) // Spec(R) . However, using

Morel’s result [27], one sees that SHQ is separated when restricted to the category
of schemes on which (−1) is a sum of squares.

The previous two theorems are deduced using resolution of singularities from the
following result:
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Theorem 3.13 — Let sp be a specialization system over B. Let f : X // B
be a B-scheme. Suppose that X is regular, Xs is a reduced normal crossing divisor
in X and fix a smooth branch D ⊂ Xs. We denote by D0 the smooth locus of f
contained in D, i.e., D0 is the complement in Xs of the union of all the branches
that meet D properly. Let us denote by u the closed immersion D ⊂ Xs and v
the open immersion D0 ⊂ D. The obvious morphism id // v∗v

∗ induces an

isomorphism: [u∗spff
∗
η ] // v∗v

∗[u∗spff
∗
η ] . Furthermore, if p is the projection of

D0 over s then v∗[u∗spff
∗
η ] ' p∗spidB

.

Remark 3.14 — The previous theorem says that in good situations, the knowledge
of spidB

I suffices to determine (up to extension problems) the motive spfI.

Remark 3.15 — If we work in DMQ(−) and over a field of characteristic zero,
then we can drop the condition that Xs is reduced in Theorem 3.11 and still have

an isomorphism: [u∗spff
∗
η ] // v∗v

∗[u∗spff
∗
η ] . However it is no longer true that

v∗[u∗spff
∗
η ] ' p∗spidB

, unless the branch D is of multiplicity one.

Example 3.16 — To help the reader understand the content of Theorem 3.11,
we use it to make a computation in a familiar situation:

• We shall work with étale cohomology, that is in the stable homotopical 2-
functor D+(−, Λ), and with the nearby cycles specialization system RΨ.

• We take f : X // S to be a semi-stable curve (not necessarily proper)
over a henselian discrete valuation ring S. We suppose that Xs has two
branches D1 and D2 that meet in a point C = D1 ∩ D2.

We will compute the cohomology sheaves of the complex of nearby cycles RΨfΛ.
We have the following commutative diagram:

D1

u1

!!C
CC

CC
CC

C

C

c1
>>||||||||

c2   B
BB

BB
BB

B

c // Xs

D2.

u2

=={{{{{{{{

For i ∈ {1, 2} we denote vi : Di − C // Di the inclusion of the smooth locus of f
in Di. By Theorem 3.11 the restriction u∗

i RΨfΛ of RΨfΛ to Di is given by Rvi∗Λ. As
vi is the complement of a closed point in a smooth curve over a field we know that
Rpvi∗Λ = 0 for p /∈ {0, 1}, R0vi∗Λ = ΛDi

and R1vi∗Λ = ci∗Λ(−1). This immediately
gives that RpΨfΛ = 0 for p /∈ {0, 1}, R0ΨfΛ = ΛXs

and R1ΨfΛ = c∗Λ(−1).

4. Constructing the vanishing cycles formalism

The goal of this section is to construct in the motivic context a specialization
system (in the sense of 3.4) that behaves as much as possible like the nearby cycles
functors in étale cohomology. We begin by explaining why the definition of RΨf

given in paragraph 2.1 does not give the right functors in the motivic context. Let
S be as in 2.1. For an S-scheme f : X // S consider the functor

Φf : DM(Xη) // DM(Xs)



12 JOSEPH AYOUB

defined by the formula Φf (A) = ī∗j̄∗A|Xη̄
. It is easy to check that Φ is indeed a

specialization system over S. There is at least one problem with this definition: we
have Φid(Z) 6= Z (this means for example that Φid cannot be monoidal). Indeed,
let k be an algebraically closed field of characteristic zero and suppose that S is the
henselization of the affine line over A1

k = Spec(k[T ]) in its zero section. In this case,

S̄ is the limit of Sn
// S where Sn = S[T 1/n]. To compute ΦidS

Z, we consider
the diagrams:

ηn
jn //

(en)η

��

Sn

en

��

s
inoo

η
j // S s.

ioo

By definition, ΦidB
Z is the colimit over n ∈ N× of i∗njn∗Z. By an easy computa-

tion, we have that i∗njn∗I = Z ⊕ Z(−1)[−1] and for n dividing m the morphism

i∗njn∗Z // i∗mjm∗Z is given by the matrix:
(

1 0
0 m

n

)

: Z ⊕ Z(−1)[−1] // Z ⊕ Z(−1)[−1] .

Because we are working with integral coefficients, it follows that ΦidS
Z is isomorphic

to Z ⊕ Q(−1)[−1]. This problem disappears in étale cohomology, where the colimit
of the diagram (−× m

n
: Λ 7−→ Λ)n divides m is zero because Λ is torsion.

4.1. The idea of the construction. We will construct the specialization system
Ψ out of the canonical specialization system χ of example 3.8. It is possible to make
the definition over an arbitrary base of dimension one, but unfortunately our main
results are known to hold only over an equi-characteristic zero base. This is because
Theorems 3.8 and 3.9 are not true (as they are stated here) when the special point
s is of positive characteristic 4 even if one assumes resolution of singularities. For
some details on more general situations, the reader can consult [3], chapter III. In
this paper we consider only the base

η = Gm
j //

%%LLLLLLLLLLLL
B = A1

k

��

s = 0
ioo

ttt
tt

ttt
tt

tt

ttt
tt

ttt
tt

tt

k

where k is a field of characteristic zero (not necessarily algebraically closed) and s
is the zero section of the affine line. Note that whenever we have a smooth affine
curve C, a closed point x ∈ C and a function πC ∈ Γ(C, OC) invertible on C − x
with πC(x) = 0, we get by restriction a specialization system over C induced by the

map πC : C // A1
k . So the real restriction is not to work over A1

k but to work

over an equi-characteristic zero base.
In the rest of the section, we will denote by π the variable so that A1

k = Spec(k[π]).
We shall also use the notations in section 3. Theorem 3.9 shows that a specialization
system is to a large extent determined by its values at Iη ∈ SH(η). Thus our main
objective will be to find a specialization system Υ over B such that: ΥidB

I = I. We

4Part 2 of Theorems 3.8 and 3.9 is valid over an arbitrary base of dimension 1 if in the condition
we replace bn by any quasi-finite extension of B (see [3]).
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then modify Υ by a variant of the "Grothendieck trick" to get the nearby cycles
specialization system Ψ.

In order to obtain Υ from the canonical specialization system χ = i∗j∗ of Example
3.8 one has to kill in χidB

I = I ⊕ I(−1)[−1] the component I(−1)[−1]. A way to
do this is to look for an object P ∈ SH(η) such that χidP = I and then take the
specialization system χ(− ⊗ P ) as in Example 3.9. In DMQ there is a natural
candidate for such P given by the motivic "logarithmic sheaf" over Gm (see § 4.6).
With integral coefficients, we do not know of any natural object P ∈ SH(Gm)
with this property, but there is a diagram A∨ of motives in SH(Gmk) such that
the homotopy colimit of χidB

(A∨) is indeed I. In fact, A∨ can be taken to be the
"simplicial motive" obtained from the "cosimplicial motive" A of the next paragraph
by applying Hom(−, I) component-wise. The simplicial motive A∨ gives the motivic
analogue of (the dual of) the Rapoport-Zink bicomplex Q•,• in étale cohomology
(see remark 4.6). So we will define the unipotent part Υ of the nearby cycles to be
the "homotopy colimit" of the simplicial specialization system χ(−⊗A∨).

4.2. The cosimplicial motive A and the construction of Υ. We mentioned
that our construction is inspired by the Rapoport-Zink bicomplex Q•,•. We also
pointed out that this bicomplex is built from i∗Rj∗Λ and the fundamental class

morphism θ : Λ // Λ(1)[1] . The motivic analogue of i∗Rj∗Λ is of course i∗j∗I.

We describe the motivic fundamental class in Definition 4.1 below. Recall that given
an X-scheme U and a section s : X // U , we denote by (U, s) the X-scheme
pointed by s. The motive M(U, s) of a pointed X-scheme (U, s) is the cofiber

of M(X)
M(s)

// M(U) . Moreover, we have a canonical decomposition M(U) =

IX ⊕ M(U, s). For example, the motive of (GmX , 1) is by definition IX(1)[1] and
M(GmX) = IX ⊕ IX(1)[1].

Definition 4.1 — The motivic fundamental class θ : I // I(1)[1] is the

morphism in SH(Gm) defined by the diagram

IGm
θ // IGm(1)[1]

M [Gm
id

7−→ Gm]
∆ // M [Gm × Gm

pr1

7−→ Gm] // M [Gm × (Gm, 1)
pr1

7−→ Gm]

where M is the "associated motive" functor, [X
f

7−→ Gmk] denotes a Gm-scheme X,
pr1 is the projection to the first factor and ∆ is the diagonal immersion.

In DM(Gm), one can equivalently define θ as an element of the motivic cohomol-
ogy group H1,1(Gm) = Γ(Gm, O×) because of the identification

homDM(Gmk)(Z, Z(1)[1]) = homDM(k)(Gm, Z(1)[1]).

It corresponds then to the class of the variable π ∈ k[π, π−1]. It is an easy exercise
to check that the étale realization of θ gives indeed the classical fundamental class.
One difference with the classical situation is that θ ◦ θ is non zero even in DM. In
fact θ ◦ θ corresponds in the Milnor K-theory group KM

2 (k[T, T−1]) to the symbol
{T, T} = {T,−1} which is 2-torsion. Of course one can kill 2-torsion, and try to
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find a representative θ of θ such that θ2 is zero in the model category. We shall do
something different. Note first the following lemma:

Lemma 4.2 — Let C be a category having direct products. Consider a diagram
in C:

A
f // B A′

f ′

oo .

There exists a cosimplicial object (A×̃BA′)• in C such that for n ∈ N, we have:

• (A×̃BA′)n = A × B × · · · × B × A′ = A × Bn × A′,
• d0(a, b1, . . . , bn, a′) = (a, f(a), b1, . . . , bn, a′),
• dn+1(a, b1, . . . , bn, a′) = (a, b1, . . . , bn, f ′(a′), a′),
• For 1 ≤ i ≤ n, di(a, b1, . . . , bn, a′) = (a, b1, . . . , bi, bi, . . . , bn, a′),
• For 1 ≤ i ≤ n − 1, si(a, b1, . . . , bn, a′) = (a, b1, . . . , bi, bi+2, . . . , bn, a′)

where a, a′ and the bi are respectively elements of hom(X, A), hom(X, A′) and
hom(X, B) for a fixed object X of C. Moreover, if f is an isomorphism then the ob-

vious morphism (A×̃BA′) // A′ is a cosimplicial cohomotopy equivalence5, where

A′ is the constant cosimplicial object with value A′.

We apply Lemma 4.2 to the following diagram in the category Sm/Gm of smooth
Gm-schemes:

[Gm
id

7−→ Gm]
∆ // [Gm × Gm

pr1

7−→ Gm] [Gm
id

7−→ Gm].
(x,1)
oo

We denote by A• the cosimplicial Gm-scheme thus obtained. We will usually look at
A• as a cosimplicial object in the model category of T -spectra over Gm: SpectT

s (Gm)
or SpectT

tr(Gm). We claim (and show in remark 4.6) that for a semi-stable B-scheme
f the simplicial object χfHom(A•, I) is the motivic analogue of the double-complex
Q•,• of the paragraph 2.2. This motivates the following definition:

Definition 4.3 — Let f : X // A1
k be a morphism of schemes. Let E be an

object of SpectT
s (Xη). We put

Υf(E) = Tot [LA1

i∗RA1

j∗Hom(f ∗
ηA

•, (E)A1−Fib)]

where (E)A1−Fib is a functorial fibrant replacement and LA1

i∗ and RA1

j∗ are the
left and right derived functors of i∗ and j∗ on the level of T -spectra. (Everything
being with respect to the stable A1-model structure.) This functor sends stable A1-
weak equivalences to stable A1-weak equivalences and induces a triangulated functor

Υf : SH(Xη) // SH(Xs) which we call the motivic unipotent nearby cycles

functor.

Remark 4.4 — Recall that the functor Tot associates to a simplicial object in
a model category M its homotopy colimit. It is simply the left derived functor
of the functor π0 : ∆opM // M that associates to a simplicial object E• the

equalizer of the two first cofaces: E1
//// E0 . In our case the Tot functor has a

simple description. Indeed, a simplicial object in the category of simplicial sheaves
is simply a bisimplicial sheaf and its homotopy colimit is given by the restriction to

5By a cosimplicial cohomotopy equivalence we mean that if we view this cosimplicial morphism
as a simplicial morphism between simplicial objects with values in the category Cop, then it is
a simplicial homotopy equivalence. Note that the notion of a simplicial homotopy equivalence is
combinatorial and makes sense for any category.
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the diagonal ∆ // ∆ × ∆ . Similarly, the homotopy colimit of a simplicial object
in the category of complexes of sheaves is given by the total complex associated to
the double complex obtained by taking the alternating sum of the cofaces.

Remark 4.5 — A better way to define the functors Υf is to use the categories
SH(−,∆) which are obtained as the homotopy categories of the model categories
∆opSpectT

s (−). One can take for example the Reedy model structure induced from
the stable A1-model structure on SpectT

s (−) (or another one depending on the
functor we want to derive). Our functor Υf is then the following composition of
triangulated functors:

SH(Xη)
Hom(A•,−)

// SH(Xη,∆)
j∗ // SH(X,∆)

i∗ // SH(Xs,∆)
Tot // SH(Xs).

Even better, one can use the notion of algebraic derivator to define Υf using only
basic operators of the form a∗, a∗ and a#. This is the point of view we use in [3].

Remark 4.6 — Let us explain the relation between our definition and the
Rapoport-Zink bicomplex Q•,•. We will work with Nisnevich sheaves with trans-
fers over Sm/Gm. Let N(A) be the normalized complex of sheaves with transfers
associated to the cosimplicial sheaf Ztr(A

•). The complex N(A) is concentrated in
(homological) negative degrees and is given by

N(A)−n = Ker(⊕n−1
i=1 si : Ztr(A

n) // ⊕n−1
i=1 Ztr(A

n−1) ) for n ≥ 0.

Recall that An = [(Gm)n+1 pr1

7−→ Gm] and si is given by the projection that forgets the
(i+1)–st coordinate. Because of the decomposition Ztr(GmX) = Ztr(X)⊕Ztr(GmX , 1)
it follows that N(A)−n is isomorphic to Ztr[Gm × (Gm, 1)∧n 7−→ Gm]. In particular,
viewed as a complex of objects in DM(Gm), the complex N(A) looks like:

. . . // 0 // IGm
// IGm(1)[1] // . . . // IGm(n)[n] // . . . .

It is easy to check that the first non-zero differential IGm
// IGm(1)[1] is given

by the motivic fundamental class θ of Definition 4.1. One can prove that the n-th

differential IGm(n − 1)[n − 1] // IGm(n)[n] is always given by θ+ε where, ε is zero

in étale cohomology. It is now clear that when we apply Hom(−, I) component-wise
and then the functor χf we get a motivic analogue of Q•,•.

Remark 4.7 — Markus Spitzweck gave us a topological interpretation of the
functor Υf which gives yet another motivation for our definition. His interpretation
is as follows. One can look at the cosimplicial object A• as the space of paths in Gm

with end-point equal to 1. This means that A• is in a sense the universal cover of Gm.
When taking Hom(A•, E), we are looking at the sections over the universal cover of
Gm with values in E. Finally, when applying i∗j∗, we are taking the restriction of
these sections to the "boundary" of the universal cover. This picture is of course
very similar to the classical one we have in the analytic case.

Proposition 4.8 — The family (Υ?) extends naturally to a specialization
system over A1

k. It is called the unipotent nearby cycles specialization system.
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Proof. We have to define the natural transformations α? and prove that the axioms
of Definition 3.4 hold. Suppose given a morphism of A1

k-schemes

Y
g //

  A
AA

AA
AA

A X

f
��

A1
k.

We define a natural transformation αg : g∗
sΥf

// Υf◦gg
∗
η by taking the composi-

tion

g∗
sTot i∗j∗Hom(f ∗

ηA
•,−)

Tot g∗
s i

∗j∗Hom(f ∗
ηA

•,−)

∼

OO

// Tot i∗j∗g
∗
ηHom(f ∗

ηA
•,−)

��
Tot i∗j∗Hom(g∗

ηf
∗
ηA

•, g∗
η(−)).

It is easy to check that these α? are compatible with composition (see the third
chapter of [3] for details). Furthermore, αg is an isomorphism when g is smooth by
the "base change theorem by a smooth morphism" and the formula g∗

ηHom(−,−) =
Hom(g∗

η(−), g∗
η(−)). We still need to check that βg is an isomorphism for g projective.

It is easy to see that βg is given by the composition

Tot i∗j∗Hom(f ∗
ηA

•, gη∗(−))

∼

��
Tot i∗j∗gη∗Hom(g∗

ηf
∗
ηA

•,−) // Tot gs∗i
∗j∗Hom(g∗

ηf
∗
ηA

•,−)

��
gs∗Tot i∗j∗Hom(g∗

ηf
∗
ηA

•,−).

The first map is an adjunction formula and is always invertible. The second is an
isomorphism when g is projective due to the "base change theorem by a projective
morphism" (proved in chapter I of [3]). The last morphism is also an isomorphism
when g is projective because then gs∗ = gs! (see also the first chapter of [3]) and the
operation gs! commutes with colimits. �

Let us denote a the natural morphism A• // I . This morphism induces a

natural transformation a : i∗j∗ = χf
// Υf which is a morphism of specialization

systems. We have the following normalization, which is the main reason for our
definition:

Proposition 4.9 — The composition: Is
// i∗j∗IGm

// ΥidIGm is an

isomorphism.



THE MOTIVIC NEARBY CYCLES AND THE CONSERVATION CONJECTURE 17

Proof. Recall the commutative diagram

Gm

j //

q
!!B

BB
BB

BB
B

A1
k

p

��

s
ioo

��
��

��
��

��
��

��
��

k.

We define a natural transformation: q∗ // i∗j∗ by the following composition:

q∗
∼ // p∗j∗ // p∗i∗i

∗j∗
∼ // i∗j∗.

Note that this natural transformation is an isomorphism when applied to q∗. In

particular, the maps q∗I(m) // i∗j∗I(m) are isomorphisms for every m ∈ Z. This

implies that the natural map of simplicial objects

q∗Hom(A•, I) // i∗j∗Hom(A•, I)

is an isomorphism.
To prove the proposition, we only need to show that the composition

I // q∗I // Tot q∗Hom(A•, I)

is invertible. By the adjunction formula we have an identification: Hom(q#A
•, I) '

q∗Hom(A•, I). It is then sufficient to check that the morphism of simplicial objects

I // Hom(q#A
•, I) (where I is considered as a constant simplicial motive) is a

simplicial homotopy equivalence. The latter is induced from a map of cosimplicial

objects q#A
• // I which we check to be a cosimplicial cohomotopy equivalence.

The cosimplicial motive q#A
• is the one associated to the cosimplicial k-scheme

obtained by forgetting in A• the structure of Gm-scheme. An easy computation
shows that this cosimplicial scheme is obtained using Lemma 4.2 from the diagram
of k-schemes

Gm
id // Gm k

1oo .

Furthermore the map q#A
• // I is induced via the projection to the second factor

of Gm×̃Gmk. By the last assertion of the Lemma 4.2, this is indeed a cosimplicial
cohomotopy equivalence. �

4.3. The construction of Ψ. Now we come to the construction of the nearby cycles

functors. For this we introduce the morphisms en : A1
k

// A1
k which are given

by elevation to the n-th power. Note that these morphisms are isomorphic to the
en : Bn

// B we introduce in paragraph 3.3 when B = A1
k. Given a morphism

f : X // A1
k , we form the cartesian square

Xn
en //

fn

��

X

f
��

A1
k

en // A1
k.
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Lemma 4.10 — For any non zero positive integer n there is a natural transfor-
mation

µn : Υf
// Υfn(en)∗η.

Moreover, if d is another non zero positive integer, we have: (f n)d = fnd, end =
en ◦ ed and µnd is given by the composition

Υf
µn // Υfn(en)∗η

µd // Υ(fn)d(ed)
∗
η(en)∗η ' Υfnd(end)

∗
η.

Proof. There is an obvious transformation: Υf
// (en)s∗Υen◦fn(en)∗η given by the

composition:

Υf
// (en)s∗(en)∗sΥf

αen // (en)s∗Υf◦en
(en)∗η = (en)s∗Υen◦fn(en)∗η.

To define µn we need to specify a transformation νn : (en)s∗Υen◦fn // Υfn . As

(en)s : (Xn)s
// Xs induces an isomorphism on the associated reduced schemes,

the functor (en)s∗ is an equivalence of categories. Moreover, the two functors
(en)s∗χen◦fn and χfn are naturally isomorphic. To obtain our νn, it is then suffi-

cient to define a map of cosimplicial objects: (fn)∗ηA
• // (en ◦ fn)∗ηA

• .

First note that (en)∗ηA
• is the cosimplicial scheme obtained by Lemma 4.2 from

the diagram

[Gm
id

7−→ Gm]
(x,xn)

// [Gm × Gm
pr1

7−→ Gm] [Gm
id

7−→ Gm].
(x,1)
oo

The commutative diagram of Gm-schemes

[Gm
id

7−→ Gm]
∆ // [Gm × Gm

pr1

7−→ Gm]

(x,yn)

��

[Gm
id

7−→ Gm]
∆oo

[Gm
id

7−→ Gm]
(x,xn)

// [Gm × Gm
pr1

7−→ Gm] [Gm
id

7−→ Gm]
(x,1)
oo

induces a map of cosimplicial schemes A• // (en)∗ηA
• . This gives for any A1

k-

scheme f a map

(fn)∗η(A
•) // (fn)∗η(en)∗η(A

•) ' (en)∗ηf
∗
η (A•) ' (fn ◦ en)∗η(A

•).

The last assertion is an easy verification which we leave to the reader. �

Definition 4.11 — We define the (total) motivic nearby cycles functor

Ψf : SH(Xη) // SH(Xs)

by the formula: Ψf = HoColimn∈N× Υfn(en)∗η.

Remark 4.12 — Because the homotopy colimit is not functorial in a triangulated
category, one needs to work more to get a well–defined triangulated functor. A
way to do this is to define categories SH(−, N×) corresponding to N×-diagrams of
spectra. Then extend the functor Υf to a more elaborate one that goes from SH(Xη)
to SH(Xs, N

×) and associates to A the full diagram (Υfn(en)∗ηA)n. Finally apply
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the colimit functor SH(Xs, N
×) // SH(Xs) . For more details, the reader can

consult the third chapter of [3].

Proposition 4.13 — The family (Ψ?) extends naturally to a specialization
system over A1

k. It is called the (total) nearby cycles specialization system.

We have the following simple lemma:

Lemma 4.14 — 1- Suppose that the morphism f : X // A1
k is smooth. Then

the canonical morphism: ΥfI // ΨfI is an isomorphism.

2- For every n, there exist a natural isomorphism Ψfn(en)∗η
∼ // Ψf making the

triangle

Υfn(en)∗η //

&&MMMMMMMMMMM
Ψfn(en)∗η

∼

��
Ψf

commutative.

Proof. The first point is easy, and comes from the fact that the two objects are
isomorphic to I. The second point is left as an exercise. �

Our next step is the computation of Ψen
I and Ψe′nI (see the notations of paragraph

3.3):

Proposition 4.15 — For every n ∈ N× the canonical morphisms

Υ(en)mI // Ψ(en)I and Υ(e′n)mI // Ψe′nI

are isomorphisms when m is divisible by n.

Proof. In both cases, the proofs are exactly the same in the two cases and are based
on the fact that the normalizations of (en)m and (e′n)m are smooth A1

k-schemes.
Indeed let us denote B = A1, Bn and B′

n as in paragraph 3.3. Then we have:

• (Bn)m = Bn×BBm = Spec(k[π][t1]/(tn1−π)[t2]/(tm2 −π)). When m is divisible
by n, the normalization Qm

n of (Bn)m is Spec(k[π][v]/(vn − 1)[t2]/(tm2 − π))

with v = t1/t
m
n

2 . In particular Qm
n is étale over Bm.

• (B′
n)m = B′

n ×B Bm = k[π][t1, u, u−1]/(tn1 − u.π)[t2][t
m
2 − π]. When m is

divisible by n its normalization Q′m
n is k[π][w, w−1][t2]/(tm2 −π) with wn = u.

In particular Q′m
n is smooth over Bm.

Consider now the morphisms tm : Qm
n

// (Bn)m and t′m : Q′m
n

// (B′
n)m .

They are both finite, and induce isomorphisms on the generic fibers. We have the
following commutative diagram:

(tm)s∗Υ(en)m◦tmI
(a)

//

βtm

��

(tm)s∗Ψ(en)m◦tmI

βtm

��
Υ(en)mI // Ψ(en)mI

(b)
// Ψen

.

(1)

The two vertical arrows are the transformations βtm of Definition 3.4 modulo the
identification (tm)η = id. As tm is a finite map, these two arrows are invertible.
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By Lemma 4.14, we know that the horizontal arrows labeled (a) and (b) are also
invertible. Thus we are done with the first case. The second case is settled using
exactly the same argument. �

The proof of Proposition 4.15 gives a more precise statement. It computes exactly
the motives Ψen

I and Ψe′nI. Indeed in the diagram (1) we have Υ(en)m◦tmI = I. It
follows that:

• Ψen
I = (tn)s∗I,

• Ψe′nI = (t′n)s∗I.

These are Artin 0-motives and they are constructible. Theorem 3.8 then applies to
give us the following:

Theorem 4.16 — For any quasi-projective f , the functor Ψf takes constructible
motives of SH(Xη) to constructible motives of SH(Xs).

Later on, we will need the following result:

Theorem 4.17 — Let f : X // A1
k be a finite type morphism. For any

constructible object A ∈ SH(Xη) there exists an integer N such that the natural

morphism: Υfm(em)∗ηA // Ψf (A) is an isomorphism for non zero m divisible by

N .

Proof. Note that for every non-zero n, the family of functors (Υfn(en)η)f is a spe-

cialization system over A1 and the obvious morphisms Υfn(en)∗η // Ψf give a

morphism of specialization systems. The conclusion of the theorem follows from
Proposition 4.15 and a refined version of Theorem 3.9. Indeed, suppose that in 3.9

we only knew that spen
I // sp′en

I and spe′nI // sp′e′nI are invertible for n divid-

ing a fixed number N . Then it is still possible to conclude that spf(A) // sp′f(A)

is invertible for A "coming" from varieties with semi-stable reduction over BN . For
more details, see the third chapter of [3]. �

4.4. Pseudo-monoidal structure. We continue our study of the functors Ψf by
constructing a pseudo-tensor structure on them. We denote A• ⊗ A• the bicosim-
plicial Gm-scheme (or its associated motive) obtained by taking fiber products over
Gmk. We will denote (A ⊗ A)• the cosimplicial object obtained from A• ⊗ A• by

restricting to the diagonal ∆ // ∆ × ∆ . We have the following lemma:

Lemma 4.18 — The cosimplicial scheme (A ⊗ A)• is the one obtained from
Lemma 4.2 applied to the following diagram in Sm/Gm:

[Gm
id

7−→ Gm]
∆3 // [Gm × Gm × Gm

pr1

7−→ Gm] [Gm
id

7−→ Gm]
(x,1,1)
oo

where ∆3 is the diagonal embedding.
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Let m : A• // (A⊗A)• be the morphism of cosimplicial objects induced by

the commutative diagram

[Gm
id

7−→ Gm]
∆ // [Gm × Gm

pr1

7−→ Gm]

(x,y,y)

��

[Gm
id

7−→ Gm]
(x,1)

oo

[Gm
id

7−→ Gm]
∆3 // [Gm × Gm × Gm

pr1

7−→ Gm] [Gm
id

7−→ Gm].
(x,1,1)
oo

We make the following definition:

Definition 4.19 — Let f : X // A1
k be a morphism. We define a bi-natural

transformation m : Υf (−) ⊗ Υf(−
′) // Υf(−⊗−′) by the composition

Tot i∗j∗Hom(A•,−) ⊗ Tot i∗j∗Hom(A•,−′)

��
Tot [i∗j∗Hom(A•,−) ⊗ i∗j∗Hom(A•,−′)]

��
Tot i∗j∗[Hom(A•,−) ⊗ Hom(A•,−′)]

Tot i∗j∗Hom(A• ⊗A•,−⊗−′)

∼(a)
��

Tot i∗j∗Hom((A⊗A)•,−⊗−′)

Hom(m,−)
��

Tot i∗j∗Hom(A•,−⊗−′)

where the arrow labelled (a) is the identification of the homotopy colimit of a bisim-
plicial object with the homotopy colimit of its diagonal.

One checks (as in chapter III of [3]) that:

Proposition 4.20 — The bi-natural transformation m of the above definition
makes Υf into a pseudo-monoidal functor. Moreover the natural transformation

χf = i∗j∗ // Υf is compatible with the pseudo-monoidal structures.

Note that the above proposition defines a "χ-module" structure on Υ in the sense
that there exists a binatural transformation

m′ : χf(−) ⊗ Υf(−
′) // Υf (−⊗−′)

which is nothing but the composition of the canonical morphism χ // Υ with
the morphism of the definition. It is easy to check that m′ is given by the following
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composition:

i∗j∗−⊗Tot i∗j∗Hom(A•,−′)

��
Tot i∗j∗−⊗ i∗j∗Hom(A•,−′) // Tot i∗j∗(−⊗ Hom(A•,−′))

��
Tot i∗j∗Hom(A•,−⊗−′).

Corollary 4.21 — For any object A in SH(Xη) the composition

Υf(A) Υf(A) ⊗ I // Υf(A) ⊗ ΥfI // Υf (A)

is the identity.

Proof. Consider the commutative diagram

Υf(A) Υf(A) ⊗ I // Υf(A) ⊗ ΥfI // Υf (A)

Υf(A) // Υf(A) ⊗ f ∗
s χidI //

(a)

OO

Υf (A) ⊗ χf I //

OO

Υf (A)

where the arrow labelled (a) is the one induced from the canonical splitting: χidI →
ΥidI = I. So we need only to check that the composition of the bottom sequence is
the identity. For this we can use the description of the "χ-module" structure given
above. Going back to the definition of Υ, we see that it suffices to check that the
composition

χfB // χfB ⊗ f ∗
s i∗j∗I // χfB ⊗ χf I // χfB

is the identity for B ∈ SH(Xη). This is an easy exercise. �

In order to extend the pseudo-monoidal structure from Υ to Ψ we use the following
lemma:

Lemma 4.22 — With the notations of paragraph 4.3, we have a commutative
diagram of binatural transformations

Υf(−) ⊗ Υf (−
′) //

��

Υfn(en)∗η(−) ⊗ Υfn(en)∗η(−
′)

��

Υf (−⊗−′) // Υfn(en)∗η(−⊗−′) ∼ // Υfn(en)∗η(−) ⊗ (en)∗η(−
′).

Proof. Going back to the definitions we see that we must check the commutativity
of the corresponding diagram of cosimplicial objects

(A⊗A)• // diag[(en)∗ηA
• ⊗ (en)∗ηA

•] // (en)∗η(A⊗A)•)

A• //

OO

(en)∗ηA
•

OO
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This diagram is obviously commutative. �

Lemma 4.22 allows us to define a bi-natural transformation

Ψf(−) ⊗ Ψf(−
′) // Ψf (−⊗−′)

by taking the colimit of the bi-natural transformations

Υfn(en)∗η(−) ⊗ Υfn(en)∗η(−
′) // Υfn(en)∗η(−⊗−′).

We have:

Theorem 4.23 — For every f : X // A1
k , the functor Ψf is naturally a

pseudo-monoidal functor. Furthermore, the morphisms

χf // Υf
// Ψf

are natural transformations of pseudo-monoidal functors.

We have the following important result:

Theorem 4.24 — Let F be an object of SH(η). Then for any f : X // A1
k

and any object A of SH(Xη), the composition:

Ψf(A) ⊗ f ∗
s Ψid(F ) // Ψf(A) ⊗ Ψff

∗
η F // Ψf(A ⊗ f ∗

η F )

is an isomorphism. In particular, Ψid is a monoidal functor.

Proof. We will apply Theorem 3.9 to a well chosen morphism between two special-
ization systems. These specialization systems are (see Example 3.9):

(1) Ψ(a), given by the formula: Ψ
(a)
f (A) = Ψf (A) ⊗ f ∗

s ΨidF ,

(2) Ψ(b), given by the formula: Ψ
(b)
f (A) = Ψf(A ⊗ f ∗

η F ).

One sees immediately that the composition in the statement of the theorem defines

a morphism of specialization systems: Ψ(a) // Ψ(b) . Note also that Ψ
(a)
f and Ψ

(b)
f

both commute with infinite sums. So by Theorem 3.9, we only need to consider the
two special cases:

• f = en and A = I,
• f = e′n and A = I.

The proofs in these two cases are similar to the proof of Proposition 4.15. We will
concentrate on the first case and use the notations in the proof of 4.15. Recall that

we denoted tm : Qm
n

// (Bn)m the normalization of (Bn)m. We can suppose that

F is of finite type. By Theorem 4.17 we can choose a sufficiently divisible m such
that:

• Ψen
(I) ⊗ (en)∗sΨid(F ) ' Υ(en)m(I) ⊗ ((en)m)∗sΥid(em)∗η(F )

' (tm)s∗Υ(en)m◦tm(I) ⊗ ((en)m)∗sΥid(em)∗η(F ),
• Ψen

(I) ⊗ Ψen
(en)∗ηF ' Υ(en)m(I) ⊗ Υ(en)m(em)∗η((en)m)∗ηF

' (tm)s∗Υ(en)m◦tm(I) ⊗ (tm)s∗Υ(en)m◦tm(em)∗η((en)m)∗ηF
• Ψen

(I ⊗ (en)∗ηF ) ' Υ(en)m(em)∗η(I ⊗ ((en)m)∗ηF )
' (tm)s∗Υ(en)m◦tm(em)∗η(I ⊗ ((en)m)∗ηF ).
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Denoting by f the smooth morphism (en)m ◦ tm, we end up with the following
problem: is the composition

ΥfI ⊗ f ∗
s ΥidF // Υf I ⊗ Υff

∗
η F // Υf(I ⊗ f ∗

η F )

invertible? This is indeed the case by Corollary 4.21. �

4.5. Compatibility with duality. It is a well-known fact that in étale cohomology
the nearby cycles functors commute with duality (see for example [15]). We extend
this result to the motivic context. We first specify our duality functors.

Definition 4.25 — Let f : X // A1
k . We define two duality functors Dη

and Ds on SH(Xη) and SH(Xs) by:

(1) Dη(−) = Hom(−, f !
ηI),

(2) Ds(−) = Hom(−, f !
sI).

(The "extraordinary inverse image" operation (−)! is constructed in the first chapter
of [3].)

Remark 4.26 — Note that Dη differs by a Tate twist and a double suspension from
the usual duality functor on SH(Xη). Indeed we used f !

ηI instead of the dualising

motive (q ◦ fη)
!I (where q is the projection of Gm to k).

We define for any f : X // A1
k a natural transformation δf : ΨfDη

// DsΨf

in the following way:

(1) First note that for an object A ∈ SH(Xη) there is a natural pairing

A ⊗ Dη(A) // f !
ηI.

(2) We define a pairing Ψf(A) ⊗ ΨfDη(A) // f !
sI by the following composi-

tion:

Ψf(A) ⊗ ΨfDη(A) // Ψf(A ⊗ DηA) // Ψff
!
ηI

// f !
sΨfI = f !

sI. (2)

(3) Using adjunction, we get from the above pairing the desired natural mor-

phism δf : ΨfDη(A) // DsΨf(A) .

Theorem 4.27 — When A is constructible in SH(Xη) , the morphism

δf : ΨfDη(A) // DsΨf(A)

is an isomorphism.

Proof. Once again the proof is based on Theorem 3.9. First note that when A is
constructible, DηDη(A) = A (by [3], chapter II). Thus we only need to prove that the

natural transformation δ′f : Ψf
// DsΨfDη is an isomorphism when evaluated on

constructible objects. Note that δ′f is nothing but the second adjoint deduced from
the pairing (2). Now we have two specialization systems: Ψ and DsΨDη and a
morphism δ′? between them. Using Theorem 3.9 we only need to check the theorem
when f = en or e′n and A = I. This is done using the same method as in the proof
of Proposition 4.15. For more details, the reader can consult the third chapter of
[3]. �
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4.6. The monodromy operator. In this section, we construct the monodromy
operator on the unipotent part of the nearby cycles functors Υf . In order to do this
we will work in DMQ(−). Note that one extends our definition of the specialization
systems Υ and Ψ from SH(−) to DM(−) by using the same definitions. The main
result of this paragraph is:

Theorem 4.28 — Let f : X // A1
k be an A1-scheme. There exists a natural

(in A) distinguished triangle in the triangulated category of motives with rational
coefficients DMQ(Xs) :

Υf(A)(−1)[−1] // χf (A) // Υf(A)
N // Υf(A)(−1).

We call N the monodromy operator. Moreover, when A is of finite type, this operator
is nilpotent.

Our strategy is as follows: we introduce a new specialization system log on
DMQ(−) for which we can easily construct a monodromy sequence. Then we con-

struct a morphism of specialization system log // Υ and prove that it is an

isomorphism.
The specialization system log is defined using a pro-motive Log called the loga-

rithmic pro-motive. To define Log we first need the motivic Kummer torsor:

Definition 4.29 — The motivic Kummer torsor is the object K of DM(Gm)
defined up to a unique isomorphism by the distinguished triangle

ZGm(1) // K // ZGm(0)
θ // ZGm(1)[1]

where θ is the motivic fundamental class of Definition 4.1.

Remark 4.30 — The uniqueness of the motivic Kummer torsor follows from the
vanishing of the group homDM(Gm)(Z(0) ⊕ Z(1)[1], Z(1)) = H1,0(k) ⊕ H0,−1(k) (see
[40]). Indeed, let a be an automorphism of the above triangle which is the identity
on Z(1) and Z(0). To prove that a is the identity, we look at id − a. This gives a
morphism of distinguished triangles

Z(1) //

0
��

K //

ε

��

Z(0)

0
��

e //

u
~~

Z(1)[1]

0
��

Z(1) // K // Z(0)
e // Z(1)[1].

It is easy to see that ε factors through some morphism u. To show our claim, it
suffices to prove that the group homDM(Gm)(Z(0),K) is zero. For this we look at the
exact sequence of hom groups in DM(Gm):

hom(Z(0), Z(1)) −→ hom(Z(0),K) −→ hom(Z(0), Z(0)) −→ hom(Z(0), Z(1)[1]).

Because hom(ZGm(0), ZGm(1)) is zero, we only need to show the injectivity of

Z = hom(ZGm(0), ZGm(0)) // hom(ZGm(0), ZGm(1)[1]) = Γ(Gm, O×).

This morphism sends 1 ∈ Z to the class of the variable π ∈ k[π, π−1]. The desired
injectivity follows from the fact that this element is non-torsion.

Remark 4.31 — When the base field is a number field, there is a way to think
about K as an extension of Tate motives in some abelian sub-category of DM(Gm).
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Indeed, the Beilinson-Soulé conjecture is known for Gmk and all its points when k
is a number field. It is then possible to define a motivic t-structure on the sub-
category of Tate-motives over Gmk. We will use this (non-elementary) point of view
to simplify the proofs of Lemmas 4.36 and 4.45. Note that these two lemmas admit
elementary proofs that can be found in the third chapter of [3].

Definition 4.32 — For n ∈ N, we define the object Logn of DMQ(Gm) by

Logn = Symn(K)

where Symn is the symmetric n-th power. This object is called the n-th logarithmic
motive.

Remark 4.33 — The definition of the logarithmic motive Logn only makes sense
after inverting some denominators. Indeed, the projector Symn is given by

1

|Σn|

∑

σ∈Σn

σ

where Σn is the n-th symmetric group.

Remark 4.34 — Logarithmic motives, or at least their realizations, are well–
known objects in the study of Beilinson’s conjectures and polylogarithms. Lemmas
4.35, 4.36 and 4.45 are surely well-known.

Lemma 4.35 — Let n and m be integers. We have two canonical morphisms:

• αn,n+m : Logn(m) // Logn+m

• βn+m,m : Logn+m // Logm

Moreover, if l is a third integer, we have: αn+m,n+m+l ◦ αn,n+m = αn,n+m+l and
βm+l,l ◦ βn+m+l,m+l = βn+m+l,l. We also have a commutative square

Logn+m(l) //

��

Logn+m+l

��
Logm(l) // Logm+l.

Proof. Consider the Q-algebras Q[Σn] and Q[Σm] as sub-algebras of Q[Σn+m] corre-
sponding to the partition n+m. In Q[Σn+m] we have three projectors: Symn, Symm

and Symn+m with the relations:

Symn.Symm = Symm.Symn Symn+m = Symn+m.Symn = Symn+m.Symm.

We then see immediately that Symn+mK is canonically a direct factor of SymnK ⊗
SymmK. On the other hand, we have natural morphisms:

• Q(m) // SymmK ,

• SymnK // Q(0) .

We get the desired morphisms by taking the compositions:

• Q(m) ⊗ SymnK // SymmK ⊗ SymnK // Symn+mK ,

• Symn+mK // SymmK ⊗ SymnK // SymmK ⊗ Q(0) .

We leave the verification of the two identities and the commutativity of the square
to the reader (see [3], chapter III). �
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Lemma 4.36 — There is a canonical distinguished triangle

Logn(m + 1)
α // Logn+m+1

β // Logm // Logn(m + 1)[+1].

Proof. We have chosen to give a short and simple proof of Lemma 4.36 based on a
non-elementary result, rather than a complicated and self-contained one (see [3] for
an elementary proof). The non-elementary result we shall use is the existence of an
abelian category MTM(Gm) of mixed Tate motives over Gm, which is the heart of
a motivic t-structure on the sub-category of DM(Gm) generated by Q(i) for i ∈ Z.
Of course, MTM(Gm) is known to exist only when the base field is a number field.
So we first construct our distinguished triangle when our base field is Q and then
extend it to arbitrary field of characteristic zero by taking its pull-back.

Let us first prove that β ◦ α is zero. It clearly suffices to prove that for any two
subsets I and J of E = {1, . . . , n + m + 1} of respective cardinality n and m, the
composition

K⊗I ⊗ Q(1)⊗E−I // K⊗E // K⊗J ⊗ Q(0)⊗E−J

is zero. But this is indeed the case, because (E − I) ∩ (E − J) is always nonempty.
The next step will be to prove that the sequence:

0 // Logn(m + 1)
α // Logn+m+1

β // Logm // 0

is a short exact sequence in MTM(Gm). This will imply our statement.
One can easily see that α is injective and β surjective. So we have to prove

exactness at the middle term. For this, we use the fact that MTM(Gm) is a neutral
Tannakian Q-linear category and all its non-zero objects have a strictly positive
dimension (given by the trace of the identity). So to prove the exactness at the
middle term we only need to show that

dim(Logn+m+1) = dim(Logn) + dim(Logm).

But this is true because dim(Logl) = l+1, which is an easy consequence of dim(K) =
2. �

By Lemma 4.35, the logarithmic motives define a pro-object in the category of
mixed Tate motives over Gm. This pro-object

(Logn+1 → Logn)n

will be denoted by Log. We will use this particular case of 4.36 to get our monodromy
sequence:

Corollary 4.37 — There is canonical pro-distinguished triangle

Logn−1(1) // Logn // Q(0) // Logn−1(1)[1]

in DMQ(Gm).

We make the following definition:
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Definition 4.38 — Given an A1
k-scheme f : X // A1

k and an object A ∈

SH(Xη), we define

logf(A) = Colimn χfHom(f ∗
ηLogn, A).

The arguments used in the proof of Proposition 4.8 show that this formula extends
to a specialization system log.

Proposition 4.39 — For any f , there is a natural distinguished triangle

logf(A)(−1)[−1] // χf(A) // logf(A) N // logf (A)(−1).

Proof. This is clear from Corollary 4.37. �

To obtain the first part of Theorem 4.28 from Proposition 4.39 we need to compare
the two specialization systems Υ and log. We do this in three steps: Step 1. If E•

is a cosimplicial object in an additive category we will denote by cE• the usual
complex associated to it (by taking the alternating sum of the faces). Given a
complex K = K• in some additive category, we denote K≤n the complex obtained
by replacing the objects K i by a zero object for all i ≥ n. Given a smooth X-scheme
U let us simply denote by X (and not Qtr(X)) the Nisnevich sheaf of Q-vector spaces
with transfers represented by X. Consider the complexes of sheaves with transfers
cA≤n. We have canonical morphisms

cA≤n+1 // cA≤n

that give a pro-object (cA≤n)n∈N.
First remark that (cA≤1) maps naturally to the motivic Kummer torsor. Indeed,

we take the morphism induced by the morphisms of complexes

cA≤1 ' [id : Gm → Gm]
∆−(x,1)

// [pr1 : Gm × Gm → Gm]

��

K ' [id : Gm → Gm]
θ // [pr1 : Gm × (Gm, 1) → Gm]

where the two horizontal arrows are the first and only non-zero differentials of cA≤1

and K. This canonical morphism will be denoted by γ1. By composing with the

obvious morphisms (cA≤n) // (cA≤1) we get for n ≥ 1 canonical morphisms

γ1 : (cA≤n) // K.

Passing to the symmetric powers, we get morphisms

γr : Symr(cA≤n) // Logr .

Using the obvious morphism: (cA≤n) // Q(0) we can define in the same way as

for Log a pro-object structure on (Symr(cA≤n))r∈N, and the family (γr) becomes a

morphism of pro-objects for n ≥ 1. Given a morphism of k-schemes f : X // A1 ,

we get from (γr) a natural transformation

logf
// Colimn,r i∗j∗Hom(f ∗

η Symr(cA≤n),−). (3)
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Step 2. Let us denote by (A⊗r)• the cosimplicial object obtained by taking self
products of A in the category of cosimplicial Gm-schemes. There is an action of Σr

on (A⊗r)•, so that the symmetric part (SymrA)• can be defined in the category of
cosimplicial sheaves of Q-vector spaces. Using the projection A // Gm , we get

a pro-object of cosimplicial sheaves ( (Symr+1A)• // (SymrA)• )r. As in the first

step, we consider the complexes c(SymrA)≤n and c(A⊗r)≤n. We have an obvious Σr-

equivariant morphism: (cA≤n)⊗r // c(A⊗r)≤n . Passing to the symmetric part,

we get morphisms

Symr(cA≤n) // c(SymrA)≤n

of N×N-pro-objects. This induces for any A1-scheme f : X // A1 a natural
transformation

Colimn,r i∗j∗Hom(f ∗
η c(SymrA)≤n,−)

��

Colimn,r i∗j∗Hom(f ∗
η Symr(cA≤n),−).

(4)

Lemma 4.40 — The natural transformation (4) is an isomorphism.

Proof. It suffices to fix r and to prove that the natural transformation:

Colimn i∗j∗Hom(f ∗
η c(SymrA)≤n,−)

��

Colimn i∗j∗Hom(f ∗
η Symr(cA≤n),−)

is invertible. This natural transformation is a direct factor of

Colimn i∗j∗Hom(f ∗
η c(A⊗r)≤n,−) // Colimn i∗j∗Hom(f ∗

η (cA≤n)⊗r,−).

Let us show that the latter is invertible. The left hand side is nothing but the total
space of the simplicial space

i∗j∗Hom(f ∗
η (A⊗r)•,−).

The right hand side is the total space of the r-simplicial space

i∗j∗Hom(f ∗
η (A• ⊗ · · · ⊗ A•),−)

and the morphism we are looking at is the one induced from the identification of
i∗j∗Hom(f ∗

η (A⊗r)•,−) with the restriction of i∗j∗Hom(f ∗
η (A•)⊗r,−) to the diagonal

inclusion of categories ∆ // ∆ × · · · × ∆ . But it is a well–known fact that the
total space of an r-simplicial object is quasi-isomorphic to the total space of its
diagonal. �

Step 3. Using Lemma 4.40 and the two natural transformations (3) and (4), we

get for any k-morphism f : X // A1
k a natural transformation

logf
// Colimn,r i∗j∗Hom(f ∗

η c(SymrA)≤n,−). (5)
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Now consider the diagonal embedding of cosimplicial schemes A• // (A⊗r)• . One

easily sees that it is Σr-equivariant. So it factors uniquely through

A• // (SymrA)•.

This gives us a morphism of pro-objects

cA≤n // c(SymrA)≤n

and a natural transformation of functors

Colimn,r i∗j∗Hom(f ∗
η c(SymrA)≤n,−)

��

Colimn i∗j∗Hom(f ∗
η cA≤n,−) = Υf .

Composing with (5), we finally get the natural transformation

γf : logf
// Υf .

We leave the verification of the following lemma to the reader:

Lemma 4.41 — The family of natural transformations (γf) is a morphism of
specialization systems. Moreover, we have a commutative triangle

χ //

  @
@@

@@
@@

@
log

γ

��
Υ.

The rest of this section is mainly devoted to the proof of the following result:

Proposition 4.42 — The morphism γ : log // Υ is an isomorphism.

We break up the proof into several lemmas, which are of independent interest:

Lemma 4.43 — For every non-zero natural number n, the composition

Q // χen
Q // Υen

Q

is an isomorphism.

Proof. This is a generalization of Proposition 4.9 that holds when working in DMQ(−).
We repeat exactly the same proof of 4.9, replacing everywhere A• with (en)∗ηA

•. We
end up with the following problem: is the morphism

Q // Tot(Gm×̃Gm,(en)η
k)

invertible in DMQ(k) ? The difference with 4.9 is that the cobar cosimplicial object
on the right hand side is the one obtained by applying Lemma 4.2 to

Gm

(en)η // Gm k
1oo .

To answer this question, we look at the obvious morphism of cosimplicial objects

Gm×̃Gm,(en)η
k // Gm×̃Gmk
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and check that it is level-wise an A1-weak equivalence (up to torsion). On the level
i this morphism is given by

(en)η × id×i : Gm
i+1 // Gm

i+1.

It is well–known that elevation to the n-th power on Gm induces the identity on Q

and multiplication by n on Q(1)[1] modulo the decomposition M(Gm) ' Q⊕Q(1)[1]
in DMQ(k). �

Lemma 4.44 — The motives K and (en)∗ηK are isomorphic.

Proof. Indeed, the motive (en)∗ηK corresponds to the extension

Q(1) // (en)∗ηK // Q(0)
n.θ // Q(1)[1].

We have a commutative square

Q(0)
θ // Q(1)[1]

×n
��

Q(0)
n.θ // Q(1)[1]

which we extend into a morphism of distinguished triangles

Q(1) //

×n

��

K //

a
��

Q(0)
θ // Q(1)[1]

×n

��
Q(1) // (en)∗ηK // Q(0)

n.θ // Q(1)[1].

The morphism a is clearly invertible. �

Lemma 4.45 — Denote by q the projection Gm
// k . For every n ∈ N, there

is a canonical distinguished triangle which splits:

Q(n + 1)[1] // q#Logn // Q(0) //

Moreover, the diagram

Q(n + 2)[1] //

0
��

q#Logn+1 //

��

Q(0) //

Q(n + 1)[1] // q#Logn // Q(0) //

is a morphism of distinguished triangles.

Proof. This is a well-known fact to people working on Polylogarithms. The simplest
way to prove it is to work over a number field and in the abelian category of mixed
Tate motives MTM(Gm). We gave an elementary proof in the third chapter of [3].
We use the finite filtration: Logn−i(i) ⊂ Logn to produce a spectral sequence of
mixed Tate motives

Ei,j
1 = hi+j

M q#Q(i) +3 hi+j
M q#Logn

where h•
M is the truncation with respect to the motivic t-structure. We have:

• hr
Mq#Q(i) = 0 except for r = −1, 0,
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• h−1
Mq#Q(i) = Q(i + 1) and h0

Mq#Q(i) = Q(i).

So our spectral sequence on MTM(k) looks like:

// i

OO j

•
Q(0)

•
Q(1)

•
Q(1)

•
Q(2)

•
Q(2)

•
Q(3)

•
Q(n − 1)

•
Q(n)

•
Q(n)

•
Q(n + 1)

//

//

//

//

It is easy to show that the non-zero differentials of the E1-page are the identity.
Indeed they are given by

h−1
Mq#Q(i) // h−1

Mq#Q(i + 1)[+1]

where Q(i) // Q(i+1)[1] is the motivic fundamental class Q(0) // Q(1)[1]

twisted by Q(i) (due to Lemma 4.36). So it suffices to compute the restriction of q#θ :

q#Q(0) // q#Q(1)[1] to Q(1)[1]. By definition q#θ is the diagonal embedding

Gm
// Gm × (Gm, 1) .

This shows that q# induces the identity on Q(1)[1]. In particular, our spectral
sequence degenerates at E2 and the only nonzero terms that we get are Q(0) and
Q(n + 1). This proves the lemma. �

Corollary 4.46 — For every nonzero natural number n, the composition

Q // χen
Q // logen

Q

is an isomorphism.

Proof. Due to Lemma 4.44, it suffices to consider the case n = 1. Once again we
apply the argument in the proof of Proposition 4.9. We end up with the following
question: Is the morphism

Q // Colimn Hom(p#Logn, Q)

an isomorphism? The answer is yes by Lemma 4.45. �
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Lemma 4.43 and Corollary 4.46 together imply that for any n, the morphism

logen
Q // Υen

Q

is an isomorphism. This proves Proposition 4.42 by applying Theorem 3.9, part 2.
We have proved the first part of Theorem 4.28. For the nilpotency of N , first remark
that due to Lemma 4.43 and Theorem 3.8 we know that Υf sends constructible
objects to constructible objects. So we can apply the following general result:

Proposition 4.47 — Let S be a scheme of finite type over a field k of char-
acteristic zero. Let A and B be constructible objects in DM(S). Then for N large
enough, the groups homDM(S)(A, B(−N)[∗]) are zero.

Proof. One may assume that A is the motive of a smooth S-scheme f : U // S .
Then we see that

hom(A, B(−N)[∗]) = hom(ZU , f ∗B(−N)[∗]) = hom(Z, (πU )∗f
∗B(−N)[∗])

with πU the projection of U to k. Thus it suffices to consider the case where A =
Z and B ∈ DMct(k). Denoting D = Hom(−, Z) the duality operator, we have:
hom(Z, B(−N)[∗]) = hom(D(B), Z(−N)[∗]). We finally see that it suffices to prove
that for a smooth variety V over k we have hom(V, Z(−N)[∗]) = 0 for N large
enough. But by the cancellation theorem of Voevodsky [38], we know that we can
take any N ≥ 1. �

5. Conservation conjecture. Application to Schur finiteness of

motives

5.1. The statement of the conjecture. Recall that a category C is pointed if
it has an initial and a terminal object that are isomorphic (via the unique map
between them). The initial and terminal objects will be called zero objects. Usually

a functor F : C1
// C2 between two abstract categories is said to be conservative

if it detects isomorphisms, that is, an arrow f is an isomorphism if and only if F (f)
is an isomorphism. For our purposes, it will be more convenient to say that a functor
F : C1

// C2 between two pointed categories is conservative if it detects the zero

objects. That is, an object A ∈ C1 is zero if and only if F (A) is zero. When F
is a triangulated functor between two triangulated categories, then the two notions
coincide. In general, they are quite different.

Conjecture 5.1 — Let S be the spectrum of a geometric DVR of equi-
characteristic zero. We denote as usual η and s the points of S, and we fix a

uniformizer π ∈ Γ(S, OS). Then the functor ΨidS
: DMct

Q(η) // DMct
Q(s) is

conservative.

Remark 5.2 — We do not know if it is reasonable to expect that the functor

ΨidS
: DMct(η) // DMct(s) is conservative without killing torsion.

Remark 5.3 — One can also ask if ΨidS
: SHct

Q(η) // SHct
Q(s) is conservative.

When (−1) is a sum of squares in OS this is equivalent to 5.1. Indeed, by Morel [27]
the category SHQ(k) decomposes into a direct product of triangulated categories
DMQ(k)⊕?(k) where ?(k) is zero if and only if (−1) is a sum of squares in k. When
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(−1) is not a sum of squares in OS, the functor ΨidS
may fail to be conservative for

obvious reasons. Indeed, one can prove that ΨidS
is compatible with the decompo-

sition: SHQ(−) = DMQ(−)⊕?(−). In particular, for a base S such that (−1) as a
sum of squares over s but not over η, the functor ΨidS

takes the non-zero subcategory
?(η) to zero.

The main reason why one believes in the conservation conjecture is because it is
a consequence of the conservation of the realization functors. Indeed, assuming that

the `-adic realization functor R` : DMct
Q(−) // D+(−, Q`) (see [19]) is conserva-

tive for fields it is easy to deduce conjecture 5.1 using the commutative diagram (up
to a natural isomorphism)

DMct
Q(η)

Ψ //

R`

��

DMct
Q(s)

R`

��
D+(η, Q`)

Ψ // D+(s, Q`)

that expresses the compatibility of our motivic nearby cycles functor with the clas-
sical `-adic one.

Indeed, the functor Ψ on the level of continuous Galois modules is nothing but a
forgetful functor which associates to a Gal(η̄/η)-module the Gal(s̄/s)-module with
the same underlying Q`-vector space obtained by restricting the action using an
inclusion Gal(s̄/s) ⊂ Gal(η̄/η). The latter inclusion is obtained using the choice of
a uniformizer (in equi-characteristic zero).

Maybe it is worth pointing that our conservation conjecture is weaker than the
conservation of the realizations, which seems out of reach for the moment. Fur-
thermore, the statement of 5.1 is completely motivic. So we hope it is easier to
prove.

5.2. About the Schur finiteness of motives. Let us first recall the notion of
Schur finiteness due to Deligne (see [7]). Let (C,⊗) be a Q-linear tensor category.
For an object A of C, the n-th symmetric group Σn acts on A⊗n = A ⊗ · · · ⊗ A. By
linearity, we get an action of the group algebra Q[Σn] on A⊗n. If C is pseudo-abelian,
then for any idempotent p of Q[Σn] we can take its image in A⊗n obtaining in this
way an object Sp(A) ∈ C.

Definition 5.4 — An object A of C is said to be Schur finite if there exists an
integer n and a non-zero idempotent p of the algebra Q[Σn] such that Sp(A) = 0.

This notion is a natural generalization of the notion of finite dimensionality of
vector spaces. Indeed a vector space E is of finite dimension if and only if for some

n ≥ 0, the n-th exterior product
n

ΛE is zero. The notion of Schur finiteness makes
sense in many contexts. One can speak about Schur finiteness of mixed motives
in DMQ(k). For more about this notion the reader can consult [22]. Another
finiteness notion of the same spirit is the Kimura finiteness (see [21]). One of the
reasons why Schur finiteness is more flexible than Kimura finiteness is the following
striking result, proved in [22]:

Lemma 5.5 — Suppose given a distinguished triangle in DMQ(k):

A′ // A // A′′ // A[+1] .
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If two of the three objects A, A′ and A′′ are Schur finite, then so is the third6.

It is conjectured that any constructible object of DMQ(k) is Schur finite. For
Kimura finiteness one can at most hope that this property holds for pure objects of
DMQ(k), that is, objects coming from the fully faithful embedding (see [40])

Chow(k)Q
// DMQ(k)

where Chow(k) is the category of Chow motives. The problem is that Lemma 5.5
fails for Kimura finiteness. Lots of unsolved problem would follow if one could prove
that some motives are Schur or Kimura finite. For an overview, the reader may
consult [1], [12] and [21]. Let us only mention the Bloch conjecture7 for surfaces
with pg = 0. Unfortunately, the only way we know to construct Schur finite motives
is by the following proposition (see [21]):

Proposition 5.6 — If C is a smooth k-curve then its motive M(C) is Schur
(even Kimura) finite.

It formally follows from Lemma 5.5 and the above proposition that all objects of
the triangulated tensor subcategory DMAbelian

Q (k) of DMct
Q(k) generated by motives

of curves are Schur finite. It is remarkable that there is not a single motive that
does not belong to DMAbelian

Q (k) for which Schur finiteness has been established.
One of the applications of the theory of vanishing cycles is the following reduction:

Proposition 5.7 — Suppose that k is of infinite transcendence degree over
Q. To show that every constructible object of DMQ(k) is Schur finite, it suffices
to check that for any n ∈ N, and any general8 smooth hypersurface H of Pn+1

k , the
motive M(H) is Schur finite.

In the rest of the paragraph we give a proof of 5.7. We work under the assumption
that the motive M(H) is Schur finite whenever H is a general smooth hypersurface
of some Pr

k. Remark that if k′ is another field and H ′ is a general hypersurface of Pr
k′

then the motive M(H ′) is Schur finite in DMQ(k′). Indeed, one can replace k′ by
an extension so that H ′ is isomorphic to the pull-back of H along some morphism

Spec(k′) // Spec(k) .

The subcategory DMct
Q(k) of constructible motives is generated (up to Tate twist

and direct factors) by motives M(X) with X a smooth projective variety (see [40]).
By Lemma 5.5, we need only to check that these motives are Schur finite. We argue
by induction on the dimension of X.

Let n be the dimension of X. Denote DMct
Q(k)≤n−1 the triangulated subcategory

of DMct
Q(k) generated by motives of smooth projective varieties of dimension ≤ n−1

and their Tate twists. By induction, the objects of DMct
Q(k)≤n−1 are Schur finite.

Let X ′ be a smooth (possibly open) k-variety birational to X. Using:

6This property is not specific to DMQ(k). It holds for any triangulated Q-linear tensor category
T coming from a monoidal Quillen model category (see [11]).

7Actually it is not clear that the Bloch conjecture follows from the Schur finiteness of the motives
of surfaces, but it does follow from their Kimura finiteness. For more information the readers can
consult [23].

8Here "general" means that the coefficients of the equation of H are algebraically independent
in k.
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• Resolution of singularities (see [14]) and the weak factorization theorem (see
[41]),

• The blow up with smooth center formula for motives (see [40]),
• The Gysin distinguished triangle for the complement of a smooth closed

subscheme (see [40]),

one sees that the motive of X is obtained from the motive of X ′ and some objects of
DMct

Q(k)≤n−1 by successive fibers and cofibers. It follows that the Schur finiteness
of X is equivalent to the Schur finiteness of X ′.

We would like to deform X to a smooth hypersurface. This is impossible in general
but we have:

Lemma 5.8 — There exists a projective flat morphism f : E // A1
k = Spec(k[π])

such that:

(1) E is smooth,
(2) The generic fiber of f is a general smooth hypersurface in Pn+1

k(π),

(3) E0 = f−1(0) is a reduced normal crossing divisor,
(4) The fiber E0 contains a branch D which is birational to X.

Proof. The variety X is birational to a possibly singular hypersurface X0 ⊂ Pn+1
k of

degree d. By taking a general pencil of degree d hypersurfaces passing through X0

we get a flat morphism f ′ : E ′ // A1
k , such that:

• The generic fiber of f ′ is a general smooth hypersurface in Pn+1
k(π),

• The fiber E ′
0 is the reduced scheme X0.

By pulling back the family f ′ along the elevation to the m-th power em : A1
k

(−)m

// A1
k

(for some sufficiently divisible m) and resolving singularities we get by [29] a mor-

phism f : E // A1
k with semi-stable reduction. This f has the properties (1)-(3).

Property (4) for f follows immediately from the fact that f ′ is smooth in the neigh-
borhood of the generic point of X0. �

Let η = Spec(k(π)) be the generic point of A1
k, and denote by s its zero section.

The motive M(Eη) ∈ DMQ(η) is Schur finite. Let us denote by Ψ : DMQ(η) // DMQ(s)

our nearby cycles functor. By Theorem 4.24 this functor is monoidal. It follows that
the motive Ψ(M(Eη)) ∈ DMQ(s) is Schur finite. Proposition 5.7 is a consequence
of the following result (which we state with integral coefficients):

Lemma 5.9 — Let f : E // A1 be a flat projective morphism of relative

dimension n. Suppose that E is smooth, and that Es = f−1(s) is a reduced normal
crossing divisor. Let us write Es = D1∪· · ·∪Dr, where Di are the smooth branches.
We let D0

i be the open scheme of Di defined by Di−∪j 6=iDj. There is a distinguished
triangle in DM(s):

⊕iM(D0
i )

// Ψ(M(Eη)) // N //

with N in the triangulated subcategory DMct(s)≤n−1 ⊂ DMct(s) generated by Tate
twists of motives of smooth projective varieties with dimension less than n − 1.



THE MOTIVIC NEARBY CYCLES AND THE CONSERVATION CONJECTURE 37

Proof. The main ingredient in the proof of this lemma is Theorem 3.11. We first

work on Es and then push everything down using fs!. Let w : ∪iD
0
i

// Es be the

obvious inclusion, and denote c : C // Es the complement. We have an exact

triangle in DM(Es):

w!w
∗ΨfZ // ΨfZ // c∗c

∗ΨfZ .

Because f is projective, we have fs!Ψf = Ψfη!. To show what we want, it suffices to
prove that:

• fη!Z is up to a twist M(Eη),
• fs!w!w

∗ΨfZ equals ⊕iM(D0
i ) up to a twist,

• fs!c∗c
∗ΨfZ is in the subcategory DMct(s)≤n−1.

The first point is easy. Indeed we have fη!Z = fη#Z(−n)[−2n] = M(Eη)(−n)[−2n]
because f is smooth (see [3], chapter I). The second point follows in the same way,
using the equality w∗ΨfZ = Z∪iD0

i
and smoothness of ∪iD

0
i . For the last point, it

suffices to prove that c∗ΨfI is in the triangulated subcategory of DMct(C) generated
by objects of the form t∗I(m) where t : Z // C is a closed immersion, Z smooth
and m an integer.

To do this, we need some notations. For non-empty I ⊂ [1, r] we denote CI =

∩i∈IDi the closed subscheme of Es and cI : CI
// Es its inclusion. For J ⊂ I we

let cI,J : CI
// CJ be the obvious inclusions. When card(I) ≥ 2, the subscheme

CI is inside C. In this case, we call dI : CI
// C the inclusion. Note also the

following commutative diagrams:

D0
i

vi // Di
ui // Es

DI

cI,i

OO

cI

>>}}}}}}}}

for i ∈ I.
The dI : CI

// C for card(I) = 2 form a cover by closed subsets of C. By a
variant of the Mayer-Vietoris distinguished triangle for covers by closed subschemes
(see [3], chapter II), one proves that any object A ∈ DM(C) is in the triangulated
subcategory generated by the set of objects

{dI∗d
∗
IA | I ⊂ [1, r] and card(I) ≥ 2}.

To finish the proof, we will show that for ∅ 6= I ⊂ [1, r] the object c∗IΨf I is in the
triangulated subcategory generated by the set of objects

{(cK,I)∗Z(m) | I ⊂ K ⊂ [1, r] and m ∈ Z}.

Using Theorem 3.11 one has: c∗IΨfI ' c∗I,iu
∗
i Ψf I ' c∗I,ivi∗I. It is well-known that

vi∗I is in the triangulated subcategory generated by (cK,i)∗I(−m) for K ⊂ [1, r]
containing i and m an integer. This implies our claim. �

Remark 5.10 — The proof of Proposition 5.7 gives the following more pre-
cise statement: the category DMct(k) is generated by the motives Ψid(M(H)), H a
general hypersurface of Pn+1

k(π). This fact is interesting for its own sake.



38 JOSEPH AYOUB

For instance, using the Chow-Kunneth decomposition for smooth hypersurfaces
M(H) = Q(0)[0] ⊕ · · · ⊕ Q(n)[2n] ⊕ h̃M

n (H)[n] we conclude that DMct
Q(k) can be

generated by the motives Ψid(h̃
M
n (H)). Note that these generators have the following

nice properties:

• They are in the heart of the conjectural motivic t-structure i.e. the realiza-
tions of Ψid(h̃

M
n (H)) are concentrated in degree zero.

• They are equipped with a non-degenerate pairing

Ψid(h̃
M
n (H)) ⊗ Ψid(h̃

M
n (H)) // Q(2n)

inducing an isomorphism Ψid(h̃
M
n (H)) ' D(Ψid(h̃

M
n (H)))(2n) where D =

Hom(−, Q) is the duality functor.
• They are conjecturally Kimura finite (and not simply Schur finite).

5.3. The conservation conjecture implies the Schur finiteness of motives.

A way to prove the Schur finiteness of objects in DMct
Q(k) is to prove the conservation

conjecture. Indeed:

Proposition 5.11 — Assume conjecture 5.1. Then every constructible motive
of DMQ(k) is Schur finite.

Proof. We have seen in 5.7 that to check the Schur finiteness of constructible motives,
one only needs to consider the motive of a general smooth hypersurface of some
projective space. Let H ⊂ Pn+1 be a general smooth hypersurface of degree d. One

can find a projective flat morphism f : E // A1
k such that E0 = f−1(0) is a

Fermat hypersurface and E1 = f−1(1) is H.
It is well known that the motive of a Fermat hypersurface is a direct factor of

the motive of a product of projective smooth curves. It follows from Proposition
5.6 that M(E0) is Schur finite. Fix Sp, a non-zero projector of Q[Σm] such that
SpM(E0) = 0.

Let us consider for ? ∈ {0, 1} the vanishing cycles functors

Ψ? : DMQ(η) // DMQ(?).

We know that Ψ?(M(Eη)) = M(E?) and that Ψ? is monoidal. We have

Ψ0(SpM(Eη)) = SpΨ0(M(Eη)) = SpM(E0) = 0.

The conservation of Ψ0 tell us that SpM(Eη) = 0. Applying Ψ1, we get:

0 = Ψ1(SpM(Eη)) = SpΨ1(M(Eη)) = SpM(E1) = Sp(M(H)).

This proves that the motive of H is Schur finite. �

Remark 5.12 — The proof of the above proposition was suggested to us by
Kimura. Our original proof was more complicated and very similar to the proof of
Proposition 5.7. It was by induction on the degree d. The idea was to degenerate
a hypersurface of degree d to the union of two hypersurface of degree d − 1 and 1.
This original proof was more elementary as it did not use Proposition 5.6.
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5.4. Some steps toward the Conservation conjecture. In this final paragraph,
we shall explain some reductions of the conservation conjecture. With our definition
of Ψ, it seems too difficult to study the conservation conjecture. Our first result says
that the conservation of Ψ is equivalent to the conservation of a simpler functor Φ
already introduced in the beginning of section 4.

Let us recall the definition of the functor Φ. As in paragraph 4.3, we call en :

A1
k

// A1
k the elevation to the n-th power. We let η be the generic point of A1

k

and s its zero section. We consider the commutative diagrams

ηn
j //

(en)η

��

A1
k

en

��

s
ioo

η
j // A1

k s.
ioo

We then define Φ(A) = Colimn∈N× i∗j∗(en)∗ηA for every object A of DMQ(η).

Proposition 5.13 — The following two statements are equivalent:

• The functor Ψ : DMct
Q(η) // DMct

Q(s) is conservative,

• The functor Φ : DMct
Q(η) // DMct

Q(s) is conservative.

Proof. Indeed, let A be a finite type object of DMQ(η). Replacing A by a (en)∗ηA
with n sufficiently divisible ((en)∗η is a conservative functor), we may assume by
Theorem 4.17 (and its variant for Φ and χ) that:

• Ψ(A) = Υ(A),
• Φ(A) = χ(A) = i∗j∗(A).

By the monodromy Theorem 4.28 we have a distinguished triangle

Υ(A)(−1)[−1] // χ(A) // Υ(A)
N // Υ(A)(−1).

Now, suppose that χ(A) = 0. Then N is an isomorphism. But we know by the
same theorem that N is nilpotent (because A is of finite type). This means that

the zero map of Υ(A) // Υ(A)(−m) is an isomorphism for sufficiently divisible

m. This of course implies that Υ(A) is zero. On the other hand, if χ(A) = 0 one
sees that Υ(A) = 0 by looking at the definition of Υ(A). Thus we have proved the
equivalence

Ψ(A) = 0 ks +3 Φ(A) = 0 .

This clearly implies the statement of the proposition. �

One can go further and prove that the conservation of Φ is a consequence of the
conservation of a very concrete functor φ defined on the level of homotopy sheaves
with transfers. Before doing this, we need to introduce a t-structure on DMeff(k)
and DM(k).

Definition 5.14 — 1- The category DMeff(k) is equipped with a natural t-
structure called the homotopy t-structure. The heart of this t-structure is denoted
by HI(k). The objects of HI(k) are the homotopy invariant Nisnevich sheaves with
transfers on Sm/k (see [40]). 2- The category DM(k) is equipped with a natural
t-structure also called the homotopy t-structure. The heart of this t-structure is
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denoted by HIM(k). The objects of HIM(k) are modules on the the Milnor K-theory
spectrum KM

∗ ; we shall call them A1-homotopy modules. The category HIM(k) is
equivalent to the category of Rost modules by a result of Deglise [4].

Let us briefly explain what an A1-homotopy module is. An A1-homotopy mod-
ule is a collection (Fi)i∈Z of homotopy invariant sheaves with transfers on Sm/k

together with assembly isomorphisms Fi
∼ // Hom(KM

1 , Fi+1) . They are in some

sense analogous to topological spectra, where the topological spheres are replaced
by the Milnor K-theory sheaves.

Let us return to our specialization functors. The reason why the homotopy t-
structure is interesting for the conservation conjecture is the following result, ob-
tained in the second and third chapters of [3]:

Lemma 5.15 — The two functors Φ, Ψ : DM(η) // DM(s) are right t-exact

with respect to the homotopy t-structures.

This is a little bit surprising, because in étale cohomology or in Betti cohomology,
these two functors turn out to be left exact with respect to the canonical t-structures.
Of course, the point is that the homotopy t-structure is specific to motives and does
not correspond via realization to any reasonable t-structure in the étale or the Betti
context. Another way to say this is that the homotopy t-structure is not the dreamt
of motivic t-structure.

Corollary 5.16 — Let φ : HIM(η) // HIM(s) be the functor defined

by φ(−) = τ≤0(Φ(−)) with τ≤0 being the truncation with respect to the homotopy
t-structure. Then φ is a right exact functor between abelian categories.

There is a natural notion of finite type and finitely presented objects in HIM(k).
The subcategory of finite type objects9 in HIM(k) is denoted by HIMtf(k). We
conjecture that:

Conjecture 5.17 — Suppose that k is of characteristic zero. The functor

φ : HIM
tf
Q(η) // HIMQ(s) is conservative.

The conservation of φ implies the conservation of Φ. Indeed, if A is a constructible
object then hi(A) = 0 for i small enough (where hi means the homology object
of A with respect to the homotopy t-structure). So if A is non zero, we can as-
sume that h0(A) 6= 0 and hi(A) = 0 for i < 0. The constructibility of A implies
that h0(A) is of finite type (and even finitely presented). But then we would have
φ(h0(A)) = h0(Φ(A)). Thus if Φ(A) = 0, then h0(A) would be zero, contradicting
our assumption that A is non zero. It is also possible to consider the effective version

Φeff : DMeff(η) // DMeff(s) of Φ. We can still prove that Φeff is right exact. We

let φeff : HI(η) // HI(s) be the induced functor on the hearts. We think that it

is easy to show that the functor φ is conservative (on objects of finite type and ratio-
nal coefficients) if and only if its effective version φeff is conservative (on objects of
finite type and rational coefficients). Such a reduction could be interesting. Indeed,
the functor φeff is rather explicit and defined on sheaves. Unfortunately, we do not

know how to prove that φeff : HI
tf
Q(η) // HIQ(s) is conservative. We should also

9Warning: this category is not abelian. Indeed, kernels are not necessarily of finite type.
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say that Srinivas gave us a counterexample to the conservation of φeff for fields of
positive characteristic. We end by recalling his example.

Example 5.18 — Let e : E // B be the universal family of elliptic curves over
a field of positive characteristic k. Fix s ∈ B such that the fiber Es is super-singular.
Then define the relative surface S/B by a desingularization of (E ×B E)/(Z/2Z)
where the group Z/2Z is acting by: (x, y) 7−→ (−x,−y). Finally let η be the generic
point of B. Then it is known that:

• CH0(Sη) is infinite dimensional (in the sense of Mumford),
• Ss is a uniruled surface.

In particular, the reduced Suslin homology sheaf h̃0(Sη) is non-zero, but h̃0(Ss) = 0.
Now, it is expected that φeff(h0(Sη)) = h0(Ss). This means that φeff kills the non-zero

object h̃0(Sη) (which is of finite type).
Consequently, any proof of 5.1 via the functor φeff should use in a non-trivial way

the assumption that the base field is of characteristic zero.
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