The direct extension theorem

Joseph Ayoub

25th March 2004

Abstract

The problem of group extension can be divided into two sub-problems. The first is to find all the possible extensions of H by K. The second is to find the different ways a group G can arise as an extension of H by K. Here we prove that the direct product $H \times K$ can arise as an extension of H by K in an essentially unique way: that is the direct extension. I would like to thank Yacine Dolivet for drawing my attention to the direct "extension theorem", Anne-Marie Aubert as well as Charles-Antoine Louet for their support and Robert Guralnick for suggesting me better proofs of propositions 2.3 and 3.1

Contents

1	Statement of the theorem	2
2	A few preliminary general results2.1Subgroups of a direct product $G = H.K$ 2.2Coprime direct factors of a finite group G 2.3Strongly decomposable subgroups of G	2 2 2 3
3	Two special cases of the theorem 3.1 The case of commutative groups 3.2 The case where $G' = G$	3 3 4
4	A few preliminary lemmas	4
5	The proof of the theorem	5
6	Some additional remarks	6
	NOTATIONS:	
	• 1: is the identity group	
	• G, H, K, L will denote finite groups	
	• $H \leq G$: " <i>H</i> is a subgroup of <i>G</i> "	
	• $H < G$: "H is a subgroup of G distinct from G"	
	• $H \trianglelefteq G$: " <i>H</i> is a normal subgroup of <i>G</i> "	

- $\mathcal{Z}(G)$: is the center of G
- G': is the derived group of G
- Card(G) or |G|: is the order of the finite group G

1 Statement of the theorem

In this paper, we prove the following theorem, which we call the "direct extension" theorem.

THEOREM 1.1 — Let G, H and K be three finite groups. If G and $H \times K$ are isomorphic, then every group extension $1 \longmapsto H \longmapsto G \longmapsto K \longmapsto 1$ is a direct extension.

We may reformulate the theorem as follows.

THEOREM 1.2 — Let G = H.K be a decomposition of the finite group G into direct factors and H_0 be a normal subgroup of G. Assume that H_0 and H are isomorphic, as well as G/H_0 and K. Then H_0 is a direct factor of G (that is, there exists $K_0 \leq G$ such that $G = H_0.K_0$ and $H_0 \cap K_0 = 1$).

We use the latter statement of the theorem in the proof. Assume that the theorem does not hold, then there is counter-example $(G = H.K; H_0)$, which is minimal with respect to Card G. We shall derive a contradiction from the existence of G.

2 A few preliminary general results

In this section, G is any finite group, not necessarily the group that appears in the theorem.

2.1 Subgroups of a direct product G = H.K

We give here some useful simple results:

PROPOSITION 2.1 — Let L be a subgroup of G, which we do not assume to be normal, and G = H.K a decomposition of G into direct factors. Assume that $H \subseteq L$. Then $L = H.(L \cap K)$. In particular, H is a direct factor of L.

PROOF — It is clear that $H.(L \cap K) \subseteq L$. Now, every $l \in L$ may be written l = h.k, with $h \in H$ and $k \in K$. $H \subseteq L$, which shows that $h \in L$. Thus $k \in L \cap K$ and $l \in H.(L \cap K)$. **Q.E.D.**

PROPOSITION 2.2 — Let G = H.K be a decomposition of G into direct factors. Then G' = H'.K' and $\mathcal{Z}(G) = \mathcal{Z}(H).\mathcal{Z}(K)$.

PROOF — The first assertion comes from the following formula $[h_1.k_1, h_2.k_2] = [h_1, h_2].[k_1, k_2]$ which is true for $h_i \in H$ and $k_i \in K$. The second assertion is trivial. **Q.E.D.**

2.2 Coprime direct factors of a finite group G

In this paragraph, we make use of the famous Remak-Krull-Schmidt theorem on the decomposition of finite groups into indecomposable direct factors.

DEFINITION 2.1 — Let A and B be two finite groups. A and B are said to be factor coprime if no non-trivial direct factor of A is isomorphic to a direct factor of B.

PROPOSITION 2.3 — Let A and B be two direct factors of the finite group G. Assume that A and B are factor coprime. Then $A \cap B = 1$ and A.B is a direct factor of G.

PROOF — Let K = AB. We show that $K = A \times B$ (and this implies that $G = K \times L$ some L, for let e and f be projections of G onto A and B resp., then the map $e + f : G \mapsto K$ defined by (e + f)(g) = e(g)f(g) is a homomorphism since the images of e and f commute and the image is K and $(e + f)^2 = e + f$ (since ef = fe = 0)).

Write $K = A \times C$, then by Remak-Krull-Schmidt, since B is a direct factor of K, B is isomorphic to a direct summand of C and since $|C| = |B : A \cap B|$, B and C are isomorphic. It follows that the projection map from B to C is onto, whence $B = \{(f(c), c); c \in C\}$ for some homomorphism $f : C \longmapsto A$ and since B is normal, f(c) is in the center of A and so $K = A \times B$ as well. **Q.E.D.**

COROLLARY 1 — Let G = B.C be a decomposition of G into direct factors. Let A be a direct factor of G, such that A and B are coprime. Then the projection of A onto C is a direct factor of G.

PROOF — We know that *B*.*A* is a direct factor of *G*. But $B.A = B.p_C(A)$, where p_C is the projection onto *C* with respect to *B*. This shows that $p_C(A)$ is a direct factor of *B*.*A*, hence also of *G*. **Q.E.D.**

2.3 Strongly decomposable subgroups of G

In this paragraph, we define the concept of strongly decomposable subgroups, and show two propositions that will be needed later on.

DEFINITION 2.2 — Let G be a finite group and D a subgroup of G. D is said to be strongly decomposable in G if $D = (H \cap D).(K \cap D)$ for every decomposition G = H.K of G into direct factors.

PROPOSITION 2.4 — If D is strongly decomposable in G, then for every decomposition $G = H_1...H_m$ of G into direct factors we have $D = (H_1 \cap D)...(H_m \cap D)$. Furthermore, if D is a normal subgroup of G, $G/D = ((H_1.D)/D)...((H_m.D)/D)$ is a decomposition of G/D into direct factors.

PROOF — We start with the proof of the first part of the statement. Consider a fixed decomposition $G = H_1...H_m$ of G into direct factors. It is easy to see that $D = (H_1 \cap D)...(H_m \cap D)$ is equivalent to the following statement : for all $d = h_1...h_m \in D$ with $h_i \in H_i$, $h_i \in D$. Let $d = h_1...h_m \in D$. As D is strongly decomposable in G, $D = (H_i \cap D).((H_1...H_{i+1}...H_m) \cap D)$ for all $1 \leq i \leq m$. But then $h_i \in H_i \cap D$.

Assume now that D is normal in G. We have $G/D = ((H_1.D)/D)...((H_m.D)/D)$. Since $(H_i.D)/D \simeq H_i/(H_i \cap D)$, it is true that

$$|(H_1.D)/D| \times \ldots \times |(H_m.D)/D| = (\frac{|H_1|}{|H_1 \cap D|}) \times \ldots \times (\frac{|H_m|}{|H_m \cap D|}) = |G|/|D| = |G/D|,$$

which shows that $G/D = ((H_1.D)/D)...((H_m.D)/D)$ is necessarily a decomposition of G/D into direct factors. This completes the proof of our statement. **Q.E.D.**

PROPOSITION 2.5 — If T is a normal subgroup of G such that $T' = T \cap G'$, then T' is strongly decomposable in G.

PROOF — Let G = L.M be a decomposition of G into direct factors. Write $T = (\overline{A}, A; \overline{B}, B)_{\varphi}$. Clearly $T \subseteq \overline{A}.\overline{B}$, so $T' \subseteq \overline{A}'.\overline{B}'$. But T is a normal subgroup of G so according to paragraph 2.1 $\overline{A}' \subseteq A$ and $\overline{B}' \subseteq B$. Thus, using $A.B \subseteq T$, we get the following chain of inclusions:

$$T' \subseteq \overline{A}'.\overline{B}' \subseteq (A.B) \cap G \subseteq T \cap G' = T'.$$

These inclusions are then necessarily equalities, so we have $T' = \overline{A}' \cdot \overline{B}' = (T' \cap L) \cdot (T' \cap M)$. This shows that the subgroup is strongly decomposable. **Q.E.D.**

3 Two special cases of the theorem

In this section, we prove the theorem in the two special cases:

- G is a commutative group,
- G', the derived subgroup of G, is equal to G.

As in part 2, G stands for any finite group.

3.1 The case of commutative groups

We show the following result wich is a special case of [4] or [5]:

PROPOSITION 3.1 — Let G be a commutative finite group and G = H.K a decomposition of G into direct factors. Let H_0 be a subgroup of G, such that H and H_0 are isomorphic, as well as G/H_0 and K. Then H_0 is a direct factor of G.

PROOF — Actually, me only need to assume that H is abelian. Consider the obvious map $r : \hom(G, H_0) \mapsto \hom(H_0, H_0)$. Since H_0 is abelian, the sets $\hom(-, H_0)$ are abelian groups and r is a group homomorphism. The kernel of r is $\hom(G/H_0, H_0)$ so that we have an exact sequence of abelian groups:

$$0 \longmapsto \hom(G/H_0, H_0) \longmapsto \hom(G, H_0) \longmapsto \hom(H_0, H_0)$$

Since $G = H \times K$, we have $\hom(G, H_0) = \hom(H, H_0) \times \hom(K, H_0)$ so that:

$$|\hom(G, H_0)| = |\hom(H, H_0)||\hom(G/H_0, H_0)|$$

and we see that r is onto. So there is a homomorphism $f: G \mapsto H_0$ that is the identity on H_0 . The kernel of f give the desired complement. **Q.E.D.**

3.2 The case where G' = G

PROPOSITION 3.2 — Let G be a finite group such that G is equal to the derived group G' and G = H.Ka decomposition of G into direct factors. Let $H_0 \trianglelefteq G$ be isomorphic to H and such that G/H_0 is isomorphic to K. Then H_0 is a direct factor of G.

PROOF — Consider a minimal counter-example $(G = H.K; H_0)$.

We show that H_0 is strongly decomposable in G. $H'_0 = H_0$ because H_0 is isomorphic to H and G' = H'.K' = H.K. It follows that $H'_0 = H_0 \cap G = H_0 \cap G'$. Proposition 2.5. then gives the result.

Moreover, H_0 does not contain a non-trivial direct factor of G. It is an exercise to show that, proceeding in rather the same way as in lemma 3.1.

Now, let $G = H_1...H_m.K_1...K_n$ be a decomposition of G into indecomposable direct factors such that $H = H_1...H_m$ and $K = K_1...K_n$. As H_0 is strongly decomposable in G, proposition 2.4 shows that

$$G/H_0 \simeq (H_1/(H_1 \cap H_0)) \times ... \times (H_m/(H_m \cap H_0)) \times (K_1/(K_1 \cap H_0)) \times ... \times (K_n/(K_n \cap H_0)).$$

But none of the $H_i/(H_i \cap H_0)$ and none of the $K_j/(K_j \cap H_0)$ are trivial. So $G/H_0 \simeq K$ contains at least n + m indecomposable direct factors in a decomposition into irreducible direct factors. We deduce that $n + m \leq n$, and $m \leq 0$. We have reached a contradiction and out proposition is proved. **Q.E.D.**

We have shown that if $(G = H.K; H_0)$ is a counter-example to the theorem, then 1 < G' < G. It is the starting point of our proof of the theorem.

4 A few preliminary lemmas

From now on, $(G = H.K; H_0)$ is our minimal counter-example to the theorem. A few lemmas follow, which are useful to describe H'_0 and $\mathcal{Z}(H_0)$ in G.

LEMMA 4.1 — We have the following properties.

1.
$$H'_0 = H_0 \cap G'$$
,

- 2. There exists $M \leq G$ such that $G = M.H_0$ and $M \cap H_0 = H'_0$,
- 3. G/H'_0 and G/H' are isomorphic, as well as M/H'_0 and K,
- 4. $G/H'_0 = (H_0/H'_0).(M/H'_0)$ is a decomposition of G/H'_0 into direct factors.

In what follows, we fix a subgroup M once and for all, which complies with point 3 of lemma 4.1. We now prove the lemma.

PROOF — Let us start with point 1. Clearly G' = H'.K' is a decomposition of G' into direct factors. Therefore $G'/H' \simeq K' \simeq (G/H_0)'$. But $(G/H_0)' = (G'.H_0)/H_0 \simeq G'/(H_0 \cap G')$. It follows that Card $H_0 \cap G' = \text{Card } H' = \text{Card } H'_0$. But $H'_0 \subseteq H_0 \cap G'$, so the two subgroups are actually equal.

To show point 2, notice two things. First, $G/G' = (HG'/G').(KG'/G') \simeq (H/H') \times (K/K')$. Then $(G/G')/((H_0.G')/G') \simeq (G/(H_0.G')) \simeq ((G/H_0)/(G'.H_0)/H_0) = (G/H_0)/(G/H_0)' \simeq K/K'$. As G/G' is commutative, we may use part 3 to show that there exists a normal subgroup M of G containing G' such that $G/G' = ((H_0.G')/G').(M/G')$ is a decomposition of G/G' into direct factors. This proves point 2.

We now proceed to prove the two last statements. $G/H'_0 = (H_0/H'_0).(M/H'_0)$ is a decomposition into direct factors. Moreover $M/H'_0 \simeq (G/H'_0)/(H_0/H'_0) \simeq G/H_0 \simeq K$, and $H_0/H'_0 \simeq H/H'$. So G/H'_0 and G/H' are isomorphic. **Q.E.D.**

We now state a corollary of the above lemma, which is crucial in the proof of the "direct extension" theorem.

COROLLARY 1 — H'_0 is strongly decomposable in G.

PROOF — It is an immediate consequence of proposition 2.5 and the above lemma. Q.E.D.

The corollary shows that taking the quotient by H'_0 is compatible with any decomposition of G into direct factors. More precisely, if G = L.M is a decomposition of G into direct factors then $G/H'_0 = ((L.H'_0)/H'_0).((M.H'_0)/H'_0)$ is also a decomposition into direct factors.

LEMMA 4.2 — We have the following properties:

1.
$$\mathcal{Z}(H_0) = H_0 \cap \mathcal{Z}(G),$$

- 2. $\mathcal{Z}(H_0)$ is a direct factor of $\mathcal{Z}(G)$,
- 3. $\mathcal{Z}(M/H'_0) = (M \cap (\mathcal{Z}(G).H_0))/H'_0.$

PROOF $-\mathcal{Z}(H_0) \simeq \mathcal{Z}(H)$ and $\mathcal{Z}(K) \simeq \mathcal{Z}(G)/\mathcal{Z}(H)$. But $\mathcal{Z}(K) \simeq \mathcal{Z}(G/H_0) \supseteq (\mathcal{Z}(G).H_0)/H_0 \simeq \mathcal{Z}(G)/(H_0 \cap \mathcal{Z}(G))$. Therefore $|H_0 \cap \mathcal{Z}(G)| \ge |\mathcal{Z}(H)| = |\mathcal{Z}(H_0)|$. But we know that $H_0 \cap \mathcal{Z}(G) \subseteq \mathcal{Z}(H_0)$. Hence the equality of the two groups. We have also achieved $\mathcal{Z}(G/H_0) = (\mathcal{Z}(G).H_0)/H_0$. This completes the proof of the first point.

For point number 2, notice that $\mathcal{Z}(G)/\mathcal{Z}(H_0) = \mathcal{Z}(G)/(H_0 \cap \mathcal{Z}(G)) \simeq (\mathcal{Z}(G).H_0)/H_0 = \mathcal{Z}(G/H_0)$. As G is not equal to its center, it follows from the minimality of G that $\mathcal{Z}(H_0)$ is a direct factor of $\mathcal{Z}(G)$. To prove the 3rd point, consider the natural isomorphism $\sigma : M/H'_0 \longmapsto G/H_0$. We have

 $\mathcal{Z}(M/H_0') = \sigma^{-1}((\mathcal{Z}(G).H_0)/H_0) = \{x.H_0' \in M/H_0'/x.H_0 \in (\mathcal{Z}(G).H_0)/H_0\}$

$$= \{x.H'_0/x \in \mathcal{Z}(G).H_0, x \in M\} = ((\mathcal{Z}(G).H_0) \cap M)/H'_0.$$

Hence the announced result. **Q.E.D.**

LEMMA 4.3 — H_0 does not contain a direct factor of G other than 1. Similarly, H_0 is not contained in a direct factor of G other than G.

PROOF — The first statement is left as an exercise. We prove the second one, which is as simple as the first one.

Let G = L.N be a decomposition of G into direct factors. Assume N > 1 and $H_0 \subseteq L$. Clearly $G/H_0 = (L/H_0).((N.H_0)/H_0)$ is a decomposition of G/H_0 into direct factors. Since $K \simeq G/H_0$, $N \simeq (N.H_0)/H_0$ is isomorphic to a direct factor of K. We may therefore assume that $N \subset K$. We may then write $G/N \simeq H \times K/N$. But $H \simeq (H_0.N)/N$, and $(G/N)/((H_0.N)/N) \simeq (G/H_0)/((N.H_0)/H_0) \simeq K/N$, because $(N.H_0)/H_0$ is a direct factor of G/H_0 which is isomorphic to N. It follows that $(H_0.N)/N$ is a direct factor of G/N, using minimality of G. Thus we have a normal subgroup P of G containing N such that $G = (H_0.N).P$ with $(H_0.N) \cap P = N$. It is now clear that $G = H_0.P$ is a decomposition of G into direct factors. That contradicts our assumption on G. Q.E.D.

5 The proof of the theorem

We may now proceed with the actual proof of our theorem.

PROPOSITION 5.1 — H contains no non-trivial commutative direct factor.

PROOF — Again *ab absurdo*. Let A be a non-trivial commutative direct factor of H_0 , which exists since $H \simeq H_0$. We know that $G/H'_0 = (H_0/H'_0).(M/H'_0)$ is a decomposition of G/H'_0 into direct factors. It is easy to see that $(A.H'_0)/H'_0$ is a direct factor of H_0/H'_0 and hence also of G/H'_0 . Thus there exists a direct factor N/H'_0 of G/H'_0 which contains M/H'_0 and is a supplementary subgroup of $(A.H'_0)/H'_0$. But G = A.N is then a decomposition of G into direct factors since $(A.H'_0) \cap N = H'_0$ and it follows that $A \cap N \subseteq A \cap H'_0 = 1$ (since A is a commutative direct factor of H_0). We have shown that $A \subset H_0$ is also a direct factor of G. This contradicts lemma 4.3. Q.E.D.

PROPOSITION 5.2 — If L is a non-commutative direct factor of G, then $L \cap H'_0 > 1$.

PROOF — Ab absurdo. Let L be a non-commutative direct factor of G such that $L \cap H'_0 = 1$. We may suppose that L is indecomposable. Then as H'_0 is strongly decomposable in G, $(L.H'_0)/H'_0$ is a direct factor of G/H'_0 isomorphic to L. But L and H_0/H'_0 are coprime because L is a non-commutative indecomposable group and H_0/H'_0 is commutative. Then $((L.H_0)'/H'_0).(H_0/H'_0)$ is a direct factor of G/H'_0 by proposition 2.3.

Now let $H'_0 \leq P \leq G$, such that $G/H'_0 = ((L.H'_0)/H'_0).(H_0/H'_0).(P/H'_0)$ be a decomposition of G/H'_0 into direct factors. Then we have $G = L.(P.H_0)$ and $L \cap (P.H_0) = L \cap (L.H'_0) \cap H_0 = L \cap H'_0 = 1$. We have reached a contradiction since this implies that $P.H_0$ is a direct factor of G distinct from G and containing H_0 . Q.E.D.

PROPOSITION 5.3 — If A is a commutative direct factor of G then $H_0 \cap A = 1$

PROOF — Consider $H_0.A \subset G$. Clearly $\mathcal{Z}(H_0).A \subset \mathcal{Z}(G)$ and $\mathcal{Z}(H_0)$ is a direct factor of $\mathcal{Z}(G)$ (by lemma 4.2). Proposition 2.2 shows that there exists B a supplementary of $\mathcal{Z}(H_0)$ in $\mathcal{Z}(H_0).A$. It follows that $H_0.A=H_0.B$ with $H_0 \cap B = \mathcal{Z}(H_0) \cap B = 1$. Thus H_0 is a direct factor of $H_0.A$. In the same way, A is a direct factor of $H_0.A$ because it is a direct factor of G. But according to proposition 5.1 H_0 and A are coprime. Therefore $H_0 \cap A = 1$, using once again proposition 2.3. Q.E.D.

We may now prove the theorem. Clearly K is non-commutative, otherwise, $H_0 \cap K = 1$, because of the above proposition, and we would then have $G = H_0.K$. This shows that K contains at least one non-commutative indecomposable direct factor.

Let \mathcal{X} be the class up to isomorphism of an indecomposable non-commutative direct factor of K of minimal order. If L is a direct factor of G which is a member of \mathcal{X} then $L' \subset H'_0$. That is true because $L/(L \cap H'_0)$ is isomorphic to a direct factor of $G/H'_0 \simeq (H_0/H'_0) \times K$. But $L \cap H'_0 > 1$ according to the corollary of proposition 5.2, which shows that all the indecomposable direct factors of $L/(L \cap H'_0)$ have strictly less elements than a member of \mathcal{X} . By construction of \mathcal{X} , all the indecomposable direct factors of $L/(L \cap H'_0)$ are commutative, so $L/(L \cap H'_0)$ is itself commutative. We have shown that $L' \subseteq H'_0$.

Let N be a direct factor of G isomorphic to a direct product of members of \mathcal{X} . Also assume that N is maximal in that respect. It now suffices to prove that N is isomorphic to a direct factor of H_0 (for then one can find a bigger such N), and we will have shown that a counter-example to our theorem cannot exist.

Clearly $N' \subseteq H'_0$. H_0/H'_0 is a subset of the center of G/H'_0 because it is a commutative direct factor of that group. Likewise, $(N.H'_0)/H'_0$ is a commutative direct factor of G/H'_0 because $N' \subseteq H'_0$. Therefore $(N.H_0)/H_0 \subseteq \mathcal{Z}(G/H'_0) = (H_0/H'_0).(((\mathcal{Z}(G).H_0) \cap M)/H'_0)$ (by lemma 4.2). So $H_0.N \subset H_0.\mathcal{Z}(G)$.

Now $H_0.\mathcal{Z}(G) = H_0.S$, where S is a supplementary of $\mathcal{Z}(H_0)$ in $\mathcal{Z}(G)$. Clearly $H_0 \cap S = 1$ and therefore H_0 is a direct factor of $H_0.\mathcal{Z}(G) \supset H_0.N$. We have shown that H_0 is a direct factor of $H_0.N$ and that its supplementary is commutative. On the other hand, N is a direct factor of G and thereby also of $H_0.N$. We now use the Remak-Krull-Schmidt theorem on $H_0.N$. Notice that N has no non-trivial commutative direct factors to obtain that N is isomorphic to a direct factor of H_0 . This is precisely what we have striven to show. Our theorem is now proven.

6 Some additional remarks

1. The theorem no longer holds if G is infinite. We give a simple counter-example. Let $G = (\mathbb{Z}/p.\mathbb{Z})^{\mathbb{N}} \times (\mathbb{Z}/p^2.\mathbb{Z})^{\mathbb{N}}$, H (resp. K) the subgroup of G consisting of all pairs (f,g) such that $f : \mathbb{N} \longrightarrow \mathbb{Z}/p.\mathbb{Z}$ and $g : \mathbb{N} \longmapsto \mathbb{Z}/p^2.\mathbb{Z}$ with f(2n) = g(n) = 0 (resp. f(2n+1) = 0).

Take H_0 the subgroup of G consisting of all pairs (f, g) with g(2n) = 0 and $g(2n+1) \in p.\mathbb{Z}/p^2.\mathbb{Z}$.

Clearly, G = H.K and $H \cap K = 1$. Moreover H_0 is not a direct factor of G. But $H \simeq H_0 \simeq (\mathbb{Z}/p.\mathbb{Z})^{\mathbb{N}}$ and $K \simeq G/H_0 \simeq (\mathbb{Z}/p.\mathbb{Z})^{\mathbb{N}} \times (\mathbb{Z}/p^2.\mathbb{Z})^{\mathbb{N}}$.

2. The following statement does not hold: "Let G be a finite group. If there exists a split extension $1 \longmapsto H \longmapsto G \longmapsto K \longmapsto 1$ then any extension $1 \longmapsto H \longmapsto G \longmapsto K \longmapsto 1$ also splits".

We give a counter-example. Let A, B, C and D be four groups, each one of them isomorphic to $\mathbb{Z}/p.\mathbb{Z}$, and e_A a generator of A. A acts on $B \times C$ by $\phi : k.e_A \longmapsto [(b,c) \longmapsto (b,c+k.b)]$.

Set $G = (A \ltimes_{\phi} (B \times C)) \times D$. Clearly $B \times C$ is a normal subgroup of G, with $A \times D$ a supplementary subgroup. This defines a split extension $1 \longmapsto (\mathbb{Z}/p.\mathbb{Z})^2 \longmapsto G \longmapsto (\mathbb{Z}/p.\mathbb{Z})^2 \longmapsto 1$.

However $C \times D$ is in the center of G and $G/(C \times D)$ is isomorphic to $(\mathbb{Z}/p.\mathbb{Z})^2$. On the other hand $C \times D$ cannot have a supplementary because as it is in the center, the semi-direct product would be trivial and G and $(\mathbb{Z}/p.\mathbb{Z})^4$ would be isomorphic. So $1 \longmapsto (\mathbb{Z}/p.\mathbb{Z})^2 \longmapsto G \longmapsto (\mathbb{Z}/p.\mathbb{Z})^2 \longmapsto 1$ is an extension which does not split.

BIBLIOGRAPHY:

- 1. Group Theory I: Michio Suzuki
- 2. Group Theory : W.R. Scott
- 3. Maximal Subgroups of Direct Products: Jacques Thèvenaz
- 4. Miyata Takehiko: Note on direct sumands of modules. J. Math. Kyoto Univ. 7 1967 65-69.
- 5. *Guralnick Robert*: Roth's theorems and decomposition of modules. Linear Algebra Appl. 39 (1981), 155-165.