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Introduction. Since their invention by Grothendieck in the 60’s, motives have
served as a guide and a source of inspiration in Arithmetic Algebraic Geometry.
However, up to the 90’s, the theory of motives was lacking a solid foundation and the
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notion of motive was an elusive one. The situation changed drastically thanks to the
work of Voevodsky and others, and we now have precise and natural mathematical
entities that deserve to be called motives.1 However, it is fair to say that the theory
of motives is still consisting of more conjectures than theorems. Perhaps this is
especially true only for “motives with rational coefficients” as our understanding of
motivic cohomology with finite coefficients has been incredibly advanced with the
solution of the Bloch–Kato conjecture by Voevodsky [52] with a crucial input of
Rost [48].

We are mainly concerned with motives and motivic cohomology with rational
coefficients. Unfortunately, in this context, breakthroughs are still to come, and,
at present, we can only dream and fantasise about how beautiful and powerful the
theory is ought to be. The goal of this article is to present a selection of conjec-
tures and open problems about motives, and to explain their significance and impact
on algebraic cycles. We hope to convey our enthusiasm and fascination about this
beautiful subject. We have not tried to be exhaustive: there are many other fasci-
nating conjectures that will not be mentioned at all. Also, we have refrained from
extending too much the web of motivic conjectures: all the conjectures that we will
discuss are folklore in one way or another.

In Section 1, we give a quick review of the theory of motives à la Voevodsky.
The reader who is familiar with this theory can jump directly to Section 2 where
we discuss the conservativity conjecture, one of the author’s favorite conjectures. In
Section 3, we discuss the vanishing conjecture for the motivic Hopf algebra; this is
different from the Beilinson–Soulé vanishing conjecture in motivic cohomology, al-
though the two conjectures are undeniably related. In Section 4, we discuss two more
conjectures around the slice filtration and the homotopy t-structure. These conjec-
tures are less established than the previous ones and should be rather considered as
open questions.

Notations and conventions. We fix a base-field k and a choice of an algebraic clo-
sure k̄/k whose Galois group is denoted by Gal(k̄/k). The symbol Λ always denotes
the commutative ring of coefficients and D(Λ) denotes the derived category of the
abelian category of Λ-modules. We are mainly interested in the case where k has
characteristic zero and where Λ = Q (and, on one occasion, where Λ = Q). There-
fore, even though some of what we will say remains valid in some greater generality,
we assume from now on that k has characteristic zero and that Λ is a Q-algebra
unless otherwise stated.

By k-variety we mean a finite type separated k-scheme. We denote by Sch/k
the category of k-varieties and by Sm/k its full subcategory consisting of smooth
k-varieties. Given a k-variety X, its Chow groups with coefficients in Λ are denoted
by CHn(X; Λ). Similarly, we denote by CHn(X,m; Λ) Bloch’s higher Chow groups
of X. Given a complex embedding σ : k ↪→ C, and a k-variety X, we denote by

1The reader might disagree with these statements. Indeed, it is possible to argue that
Grothendieck’s construction of the category of Chow motives yields a solid foundation for pure
motives just as Voevodsky’s construction of his triangulated category of motives yields a solid
foundation for mixed motives. However, it is our personal opinion that the definition of Chow
motives is ad hoc and not propitious to further structural developments in the theory of motives,
whereas Voevodsky’s construction is natural — I would even say inevitable — and its true potential
is yet to be unlocked. Let the future tell if this opinion is naive or not!
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Xan the associated complex analytic space. The singular cohomology groups of Xan

with coefficients in Λ are denoted by Hn(Xan; Λ).
By mixed Hodge structure we mean a rational graded-polarisable mixed Hodge

structure, i.e., a triple (H,W,F ) consisting of a finite dimensional Q-vectorspace
H, an increasing weight filtration W on H and a decreasing Hodge filtration F on
H ⊗ C satisfying the usual conditions (see [24, Définition 2.3.1]) and such that the
graded pieces for the weight filtration are polarisable pure Hodge structures (see [24,
Définition 2.1.15]). The category of mixed Hodge structures is denoted by MHS. We
will also consider the category of ind-objets in MHS which we denote by Ind-MHS.

An additive category is called pseudo-abelian if every projector has a kernel. In a
monoidal category, the tensor product is denoted by − ⊗ − and the internal Hom,
when it exists, is denoted by Hom(−,−). The unit objet of a general monoidal
category is denoted by 1. The dual of an object M is given by M∨ = Hom(M,1).

Acknowledgement. I thank Bruno Klingler for telling me about the Hodge-theoretic
argument used in Remark 2.34. I thank Giuseppe Ancona for pointing a missing
hypothesis in the original statement of Theorem 2.28. I also thank the referee and
Giuseppe Ancona for improving my awareness of the literature by mentioning a
few more references related to the subject of the paper. Finally, I thank Mikhail
Bondarko for an interesting exchange of emails around Conjecture 4.22.

1. Review of motives

As usual, DM(k; Λ) denotes Voevodsky’s category of motives with coefficients in
a commutative ring Λ.2 Almost everywhere in this article, the category of motives
can be used as a black box. Therefore, we will not recall its construction. Instead,
we devote this section to a list of useful facts that should help the novice reader to
grasp quickly the part of the theory that is needed later on. All these facts, except
the last one, are due to Voevodsky and al., and their proofs can be found in [53, 36].

1.1. Abstract categorical properties. The category DM(k; Λ) has, or is ex-
pected to have, formal properties analogous to those of the derived category of
ind-mixed Hodge structures D(Ind-MHS).3 In this subsection, we list some of these
properties. We will concentrate on what is known and leave the conjectures to later
sections.
Fact A — DM(k; Λ) has the structure of a closed monoidal triangulated category.
Moreover, there is a natural functor M : Sm/k −→ DM(k; Λ) which takes a smooth
k-variety X to its associated motive M(X).4

Therefore, in DM(k; Λ), we can take the cone of a morphism, the tensor product
of two objects and the internal Hom from an object with value in another one.
Moreover, we have a supply of objets in DM(k; Λ) coming from smooth k-varieties.
In this paper, objets in DM(k; Λ) will be referred to as motives. Elsewhere in the

2The knowledgeable reader will soon guess which of the variants of Voevodsky’s category of
motives we have in mind. However, just in case, we spell it out: DM(k; Λ) is the homotopy
category with respect to the stable (A1, Nis)-local model structure of the category of Tate spectra
of complexes of presheaves with transfers on the category of smooth k-varieties with values in the
category of Λ-modules. In particular, we do not impose any boundedness conditions.

3This is not totally true because of the failure of conservativity; see Remark 2.3 and Lemma 2.4.
4The functor M is naturally extendable to Sch/k but we do not need this extension in this

article.
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literature, the reader may also find the terms: mixed motives, triangulated motives,
Voevodsky motives, etc.

The unit object of DM(k; Λ) is usually denoted by Λ(0). The motive M(X)
serves as the universal homology object associated to the smooth k-variety X. For
this reason, it is sometimes called the homological motive of X by contrast to its
dual, M(X)∨, which is called the cohomological motive of X.
Notation 1.1 — We set

Λ(1) := Cone
{

M(Spec(k))
∞−→ M(P1

k)
}

[−2].

We think about Λ(1) as the reduced homology of the projective line.
The following property is imposed in the construction of DM(k; Λ).

Lemma 1.2 — The objet Λ(1) is invertible for the tensor product. Its inverse,
which is also its dual Hom(Λ(1),Λ(0)), is denoted by Λ(−1).
Notation 1.3 — As usual, we set for n ∈ Z:

Λ(n) =

{
Λ(1)⊗n if n > 0,

Λ(−1)⊗−n if n < 0.

These are the pure Tate motives. Given an objet M ∈ DM(k; Λ), we set

M(n) = M ⊗ Λ(n).

These are the Tate twists of M .
Fact B — The motive M(X) of a smooth k-variety X is a compact object of
DM(k; Λ). Moreover, DM(k; Λ) is compactly generated by the Tate twists of motives
of smooth k-varieties. In fact, it is enough to restrict to Tate twists of motives of
smooth and projective k-varieties.

We recall the meaning of compact objets and compactly generated triangulated
categories.
Definition 1.4 — Let T be a triangulated category with infinite sums.

(a) An object M ∈ T is said to be compact if for every (possibly infinite) family
(Ni)i∈I of objects in T , the obvious homomorphism⊕

i∈I

homT (M,Ni) −→ homT (M,
⊕
i∈I

Ni)

is a bijection.
(b) Let B be a set of objects in T . We say that T is compactly generated by B

if every objet in B is compact and if the following implication holds for every
object N ∈ T :[

homT (M [i], N) = 0, ∀M ∈ B and ∀i ∈ Z
]
⇒

[
N ' 0

]
.

Remark 1.5 — If T is compactly generated by B, then T coincides with its
smallest triangulated subcategory closed under infinite sums and containing the
elements of B. In other words, every objet of T can be obtained by a (possibly
infinite) iteration of cones and infinite sums from the objects belonging to B. We
leave it to the reader to contemplate the meaning of this in the case of DM(k; Λ).

The following lemma is contained in [41, Theorem 2.1].
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Lemma 1.6 — Let T be a triangulated category with infinite sums and assume
that T is compactly generated by a set of objects B. Let T co ⊂ T be the full subcat-
egory of compact objects of T . Then T co is a triangulated subcategory of T which
coincides with the smallest triangulated subcategory of T containing the elements of
B and which is pseudo-abelian.
Definition 1.7 — We denote by DMgm(k; Λ) the full subcategory of compact
objects in DM(k; Λ). The objets of DMgm(k; Λ) are called geometric motives, aka.,
constructible motives.
Remark 1.8 — By Fact B, the functor M : Sm/k −→ DM(k; Λ) factors through

DMgm(k; Λ). Moreover, by Lemma 1.6, DMgm(k; Λ) is the smallest triangulated
subcategory of DM(k; Λ) which is pseudo-abelian, is closed under Tate twists and
contains the motives of smooth projective k-varieties.
Remark 1.9 — Under the analogy between DM(k; Λ) and D(Ind-MHS), the
subcategory DMgm(k; Λ) corresponds to Db(MHS) which we identify with the tri-
angulated subcategory of D(Ind-MHS) consisting of complexes of ind-mixed Hodge
structures with finite dimensional total homology.
Fact C — An object of DM(k; Λ) is compact if and only if it is strongly dualis-
able. In particular, the tensor category DMgm(k; Λ) is rigid. Moreover, if X is a
smooth projective k-variety of pure dimension n, there is a motivic Poincaré duality
isomorphism

M(X)∨ ' M(X)(−n)[−2n].

We recall the notion of strong duality.
Definition 1.10 — Let M be a tensor category and M an object of M. We
say that M admits a strong dual if there exist an object N ∈M and maps

u : 1 −→M ⊗N and v : N ⊗M −→ 1

making the following triangles commutative

N ⊗ 1
N⊗u
// N ⊗M ⊗N

v⊗N
��

1⊗N,

1⊗M u⊗M
// M ⊗N ⊗M

M⊗v
��

M ⊗ 1.

Equivalently, N is a strong dual for M if there exists a natural isomorphism

Hom(M,−) ' N ⊗−.

We say thatM is rigid if every object ofM is strongly dualisable.

1.2. Relation with algebraic cycles. The category DM(k; Λ) bears a strong re-
lation with algebraic cycles. Let Chow(k; Λ) be the category of Chow motives with
coefficients in Λ.
Fact D — There is a fully faithful embedding Chow(k; Λ) ↪→ DMgm(k; Λ) which
is compatible with the tensor structures.

In this paper, we use the homological convention for Chow motives. Objets in
Chow(k; Λ) are given by triples (X, γ,m) where X is a smooth projective variety,
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γ ∈ CHdim(X)(X ×X; Λ) an idempotent and m ∈ Z. Morphisms are given by5

homChow(k; Λ)((X, γ,m), (Y, δ, n)) = δ ◦ CHdim(X)+m−n(X × Y ; Λ) ◦ γ.
The embedding in Fact D takes a Chow motive (X, γ,m) to the image of the idem-
potent γ acting on the Voevodsky motive M(X)(m)[2m].
Remark 1.11 — By Fact B and Lemma 1.6, we know that the pseudo-abelian
triangulated category DMgm(k; Λ) is generated by the image of the fully faithful em-
bedding Chow(k; Λ) ↪→ DMgm(k; Λ). Therefore, we can think about Voevodsky’s
category DMgm(k; Λ) as being a “triangulated envelop” of Grothendieck’s category
of Chow motives.
Definition 1.12 — Let X be a smooth k-variety. For (p, q) ∈ Z2, we set

Hp(X; Λ(q)) := homDM(k; Λ)(M(X),Λ(q)[p]).

These are the motivic cohomology groups of X. Similarly, we set

Hp(X; Λ(q)) := homDM(k; Λ)(Λ(−q)[p],M(X)).

These are the motivic homology groups of X. In the special case q = 0, these are
also known as the Suslin homology groups of X.
Fact E — There is a natural isomorphism between motivic cohomology and Bloch’s
higher Chow groups [17] with coefficients in Λ:

Hp(X; Λ(q)) ' CHq(X, 2q − p; Λ).

In particular, H2n(X; Λ(n)) coincides with the usual Chow group CHn(X; Λ) of codi-
mension n cycles.

A proof of Fact E can be found in [50]. As a special case, and thanks to [42]
and [49], one has the following relation between motivic cohomology and Milnor
K-theory [37].
Corollary 1.13 — For n > 0, we have a natural isomorphism

Hn(Spec(k); Λ(n)) ' KM
n (k)⊗ Λ

where KM
n (k) is the n-th Milnor K-theory group of the field k.

There is also a cycle-theoretic description for the motivic homology groups. To
explain this, we first recall the notion of finite correspondence which is basic in the
theory of motives à la Voevodsky.
Definition 1.14 — Let X and Y be smooth k-varieties. An elementary finite
correspondence from X to Y is an integral closed subscheme Z ⊂ X×Y such that the
projection from Z to X is finite and surjective onto a connected component of X. A
finite correspondence is a Λ-linear combination of elementary finite correspondences.
We denote by Cor(X, Y ; Λ) the Λ-module of correspondences from X to Y . When
Λ = Z, we simply write Cor(X, Y ). Clearly,

Cor(X, Y ; Λ) ' Cor(X, Y )⊗ Λ.

There is a natural composition law on finite correspondences. Moreover, smooth
k-varieties and finite correspondences form an additive category denoted by

SmCor(k; Λ).

5This formula only makes sense when X has pure dimension. Otherwise, one has to interpret
dim(X) as a locally constant function on X × Y .
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There is a natural functor Sm/k −→ SmCor(k; Λ) which is the identity on objects
and which takes a morphism of k-varieties to its graph.
Notation 1.15 — Given a pair (X,D) consisting of a smooth k-variety X and a
normal crossing divisor D =

⋃
i∈I Di, with Di irreducible, we denote by

Cor((X,D), V ; Λ)

the kernel of the homomorphism

Cor(X, V ; Λ) −→
⊕
i∈I

Cor(Di, V ; Λ).

Similarly, we denote by
Cor(U, (X,D); Λ)

the cokernel of the homomorphism⊕
i∈I

Cor(U,Di; Λ) −→ Cor(U,X; Λ).

Notation 1.16 — We denote by E1 = Spec(k[t, t−1]) the complement of the zero
section in A1 = Spec(k[t]). We consider the pair (E1, 1) and we denote by (E1, 1)n

the pair consisting of En = Spec(k[t1, t
−1
1 , . . . , tn, t

−1
n ]) and its normal crossing divisor

defined by the equation (t1 − 1) · · · (tn − 1) = 0.
For n ∈ N, we consider the algebraic simplex

∆n = Spec(k[t0, . . . , tn]/(t0 + · · ·+ tn − 1)).

Varying n, one gets a cosimplicial scheme ∆•.
Fact F — There are natural isomorphisms

Hp(X; Λ(q)) '

{
Hp+q(Cor(∆•, X × (E1, 1)q; Λ)) if q > 0,

Hp+q(Cor((E1, 1)−q ×∆•, X; Λ)) if q 6 0.

1.3. Realisations. Motives are rather abstract mathematical entities. Fortunately,
we have at our disposal realisation functors that convert a motive into more familiar
objects such as mixed Hodge structures or Galois representations. We only quote
the following result (see [29] for the compact contravariant version).
Fact G — Given a complex embedding σ : k ↪→ C, there exists a triangulated
monoidal functor

Rσ : DM(k;Q) −→ D(Ind-MHS)

which takes the motive M(X) of a smooth k-variety X to a complex of ind-mixed
Hodge structures computing the singular homology groups of Xan together with their
natural mixed Hodge structures. This functor is called the Hodge realisation.
Remark 1.17 — We will also consider a more basic realisation functor, namely
the Betti realisation

Bσ : DM(k; Λ) −→ D(Λ)

which takes the motive M(X) of a smooth k-variety X to the singular chain complex
of Xan with coefficients in Λ. When Λ = Q, the functor Bσ is, up to a natural
isomorphism, the composition of Rσ with the obvious forgetful functor.
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Remark 1.18 — Given a smooth k-variety X, we set CHdg(X) = Rσ(M(X)). It
is known that

homD(Ind-MHS)(CHdg(X),Q(q)[p])

coincides with the Deligne–Beilinson cohomology group Hp(X;QD(q)). Therefore,
the functor Rσ induces a homomorphism

Hp(X,Q(q)) −→ Hp(X;QD(q))

from motivic cohomology to Deligne–Beilinson cohomology. This is the so-called
“regulator map” which extends the classical “cycle map” on Chow groups

CHn(X;Q) −→ H2n(X;QD(n)).

This is to say that the functor Rσ encodes deep and complicated information which
are not always easy to unravel.

2. The conservativity conjecture

There are many longstanding conjectures about motives but, arguably, the most
basic one is the so-called conservativity conjecture.6

2.1. Statement and general remarks. Recall that a functor f : C −→ D is
conservative if it detects isomorphisms, i.e., a morphism α : A −→ B in C is an iso-
morphism if and only if f(α) : f(A) −→ f(B) is an isomorphism. In the triangulated
setting, f is conservative if and only if it detects the zero objects.

Fix a complex embedding σ : k ↪→ C. The conservativity conjecture states the
following.
Conjecture 2.1 — The Betti realisation functor

Bσ : DMgm(k; Λ) −→ D(Λ)

is conservative.

Remark 2.2 — Our convention that Λ is a Q-algebra is essential for Conjecture
2.1. Indeed, it is easy to construct nonzero geometric motives M ∈ DMgm(k;Z)
with zero Betti realisation. The simplest example is obtained as follows. Assume
that k contains the n-th roots of unity for some integer n > 2. Given that

homDM(k;Z)(Z(0),Z(1)[r]) =

{
0 if r 6= 1,
k× if r = 1,

we deduce that
homDM(k;Z)(Z/nZ(0),Z/nZ(1)) = µn(k).

Therefore, the choice of a generator ξ ∈ µn(k) induces a morphism in DM(k;Z)

ξ : Z/nZ(0) −→ Z/nZ(1).

It is easy to see that Bσ(ξ) is an isomorphism whereas ξ is not.
Remark 2.3 — Conjecture 2.1 has an obvious analogue in Hodge theory. In-
deed, the counterpart in Hodge theory of the restriction of the Betti realisation to
geometric motives is given by the forgetful functor

Db(MHS) −→ D(Q)

6The author is aware that “conservativity” is not an English word as much as “conservativité” is
not a French word. However, its seems that there is no better alternative for naming this conjecture.
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which is obviously conservative. In fact, more generally, the forgetful functor

D(Ind-MHS) −→ D(Q)

is also conservative; this is particularly puzzling when contrasted with the next result
which shows that the restriction to geometric motives is essential in Conjecture 2.1.
Lemma 2.4 — If k has infinite transcendence degree over its prime field, then
there are nonzero motives F ∈ DM(k;Q) such that Bσ(F ) ' 0.

Proof. Recall by Corollary 1.13 that

Hn(Spec(k);Q(n)) = KM
n (k)⊗Q

where KM
n (k) is the n-th Milnor K-theory group of the field k. Let (an)n∈N be a

family of elements in k× which are algebraically independent. For each n ∈ N, we
consider the map

an : Q(n)[n] −→ Q(n+ 1)[n+ 1]

which corresponds to an ∈ k× modulo the chain of isomorphisms

homDM(k;Q)(Q(n)[n],Q(n+ 1)[n+ 1]) ' homDM(k;Q)(Q(0),Q(1)[1])

= H1(Spec(k),Q(1))

' k× ⊗Q.

This gives an N-inductive system {Q(n)[n]}n∈N and we take F to be its homotopy
colimit:

F = hocolimn∈N Q(n)[n].

As Bσ commutes with direct sums, it also commutes with homotopy colimits of
N-inductive systems. Thus, we have

Bσ(F ) ' hocolimn∈N Bσ(Q(n)[n]) ' hocolimn∈N Q[n] ' 0.

To finish, it remains to show that F is nonzero.
More precisely, we will show that the natural map

α∞ : Q(0) −→ F

is nonzero. As Q(0) is compact, we have an identification

homDM(k;Q)(Q(0), F ) ' colimn∈N homDM(k;Q)(Q(0),Q(n)[n]).

Therefore, α∞ is zero if and only if there exists n ∈ N such that the natural map

αn : Q(0) −→ Q(n)[n]

is zero. By the identification

homDM(k;Q)(Q(0),Q(n)[n]) ' KM
n (k)⊗Q,

αn corresponds to the symbol {a0, . . . , an} ∈ KM
n (k) ⊗ Q. This symbol is nonzero

under the hypothesis that the ai’s are algebraically independent. �

Remark 2.5 — Lemma 2.4 indicates that the analogy between DM(k;Q)
and D(Ind-MHS) breaks down when dealing with “big” motives. Said differently,
DM(k;Q) is not the correct candidate for the big derived category of mixed motives.
Here is an obvious way to fix the problem.
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Definition 2.6 — We call fantom motive an objet of DM(k; Λ) whose Betti
realisation is zero.7 Fantom motives form a localising triangulated subcategory of
DM(k; Λ) that we denote by Fant. We define DM[(k; Λ) to be the Verdier quotient:

DM[(k; Λ) := DM(k; Λ)/Fant.
We call DM[(k; Λ) the category of true motives.
Remark 2.7 — The Betti realisation on DM(k; Λ) induces a Betti realisation
functor

Bσ : DM[(k; Λ) −→ D(Λ)

which is conservative by construction.
In the present state of knowledge, calling DM[(k; Λ) the category of true motives

might sound a bit pretentious. However, here is a plausible conjecture that, if true,
would justify such a terminology.
Conjecture 2.8 — Let F ∈ Fant be a fantom motive and letM ∈ DMgm(k; Λ)
be a geometric motive. Then

homDM(k; Λ)(F,M) = 0.

Remark 2.9 — As a meagre evidence, we note that Conjecture 2.8 is satisfied for
the motive F constructed in the proof of Lemma 2.4. This follows immediately from
the following well-known property of geometric motives. Given M ∈ DMgm(k; Λ),
there exists an integer n0 (depending on M) such that

homDM(k; Λ)(Λ(n)[m],M) = 0

for all n > n0 and m ∈ Z.
Proposition 2.10 — Assume Conjecture 2.8. Then the composite functor

DMgm(k; Λ) ↪→ DM(k; Λ)� DM[(k; Λ)

is a fully faithful embedding.

Proof. This is a direct consequence of the construction of the Verdier localisation. �

Corollary 2.11 — Conjecture 2.8 implies Conjecture 2.1.
Lemma 2.4 indicates that the failure of conservativity might be a phenomenon

related to big base fields. Indeed, as far as we know, there is no reason to disbelieve
the following conjecture which, if true, lies probably much deeper than Conjecture
2.1.
Conjecture 2.12 — Assume that k has finite transcendence degree over its
prime field. Then the Betti realisation functor

Bσ : DM(k; Λ) −→ D(Λ)

is conservative.
7The notion of fantom motive is independent of the choice of the complex embedding. This can

be shown using the comparison theorem between the Betti and `-adic realisations. (Here, we have
in mind a covariant triangulated functor DM(k;Q) −→ D(Q`), commuting with arbitrary direct
sums and sending the motive of a smooth k-variety X to a complex of Q`-vectorspaces computing
the `-adic homology groups H∗(X⊗k k̄;Q`). The restriction of such a functor to geometric motives
is constructed in [8] and there are standard ways to extend this to DM(k;Q) in a continuous
manner.)
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Remark 2.13 — In a way, the state of affair that we are describing is to
be expected. Indeed, the motivic cohomological dimension of a field k, whatever
this means, is expected to be trdeg(k/Q) + 1 and, in particular, should be infinite
when the transcendence degree of k over its prime field is infinite. Moreover, it is
well-known that “infinite cohomological dimension” in a Grothendieck abelian cate-
gory can prevent its (unbounded) derived category from being compactly generated.
Therefore, Fact B indicates that DM(k; Λ) is not a reasonable candidate for the
unbounded derived category of the abelian category of ind-mixed motives unless
degtr(k/Q) <∞. On the contrary, when degtr(k/Q) =∞, the category DM[(k; Λ)
is presumably not compactly generated as it was obtained by a Verdier localisa-
tion with respect to the triangulated subcategory Fant which is not expected to be
compactly generated (unless Conjecture 2.8 is totally wrong). Therefore, from this
perspective, there is no obstacles for DM[(k; Λ) being the derived category of the
abelian category of ind-mixed motives.

Another way of extending the conservativity conjecture to non-necessary geomet-
ric objets is given by the following conjecture (which, perhaps, deserves better the
status of an open question).
Conjecture 2.14 — Denote by DMeff

6n(k; Λ) 8 the smallest triangulated sub-
category of DM(k; Λ) closed under infinite sums and containing the motives M(X)
for any smooth k-variety X of dimension 6 n. Then, the Betti realisation functor

Bσ : DMeff
6n(k; Λ) −→ D(Λ)

is conservative.

2.2. Some consequences. The conservativity conjecture has many concrete con-
sequences on algebraic cycles. One of these consequences is a famous 40 years old
conjecture of Bloch on 0-cycles on surfaces.9

Proposition 2.15 — Assume Conjecture 2.1. Let X be a smooth projective
surface over an algebraically closed field k of characteristic zero. If pg(X) = 0, then
the Albanese homomorphism

CH0(X) −→ Alb(X)(k)

is injective (where Alb(X) denotes the Albanese scheme of X).10

Proof. By Roitman’s theorem [46], the kernel of the Albanese map is torsion free.
Therefore, it is enough to prove that the map

CH0(X;Q) −→ Alb(X)(k)⊗Q
is injective. Recall that pg(X) = dim(Ω2(X)) is the dimension of the space of global
(holomorphic) differential 2-forms. Thus, the condition pg(X) = 0 implies that the
Hodge structure on H2(Xan;Q) is of type (−1,−1). By the (dual of the) Lefschetz
(1, 1) Theorem, this is also equivalent to the condition that the cycle class map

NS1(X;Q) −→ H2(Xan;Q)

8The subcategories DMeff
6n(k; Λ) will be considered in more details in Subsection 4.2.

9See [22] for an interesting story about how Severi had stumbled upon the statement of the
Bloch conjecture a few decades before the conjecture was stated.

10The converse of this statement is true (unconditionally) and is a well-known theorem of Mum-
ford [38]: if the Albanese homomorphism is injective, then necessary pg(X) = 0.
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is an isomorphism. (Of course, NS1(X;Q) is the Néron–Severi group of 1-dimensional
cycles, or equivalently divisors, on X with rational coefficients.)

The motive of the surface X has a Chow–Kunneth decomposition

M(X) =
4⊕
i=0

Mi(X)[i]

such that Bσ(Mi(X)) is isomorphic to Hi(X
an;Q). Furthermore, according to [33],

M2(X) decomposes into an algebraic and a transcendental part

M2(X) = Malg
2 (X)⊕Mtr

2 (X).

The algebraic part Malg
2 (X) is given by

Malg
2 (X) = NS1(X;Q)(1)[2]

where the finite dimensional Q-vectorspace NS1(X;Q) is considered as an Artin
motive in the obvious way. The transcendental part Mtr

2 (X) determines the kernel
of the Albanese map via the formula

homDM(k;Q)(Q(0),Mtr
2 (X)) ' ker

{
CH0(X;Q)→ Alb(X)(k)⊗Q

}
.

Now, the isomorphisms

NS1(X;Q) ' H2(Xan;Q) and Malg
2 (X) ' NS1(X;Q)(1)[2]

show that
Bσ(Malg

2 (X)) ' Bσ(M2(X)) ' H2(Xan;Q).

It follows that Bσ(Mtr
2 (X)) = 0. Applying Conjecture 2.1, one deduces that Mtr

2 (X) '
0. This finishes the proof thanks to the above description of the kernel of the Al-
banese map. �

Remark 2.16 — Bloch’s conjecture for surfaces with pg = 0 has been checked
for all surfaces which are not of general type in [18]. It is also known for some
surfaces of general type admitting nice cyclic étale covers, see for example [31], [54],
[55], [15], [16], etc. Perhaps, the most intriguing surfaces with pg = 0 for which
Bloch’s conjecture seems intractable are the fake projective planes (aka., Mumford
surfaces). Recall that a fake projective plane is a smooth proper surface with the
same Betti numbers as P2 but which is not isomorphic to P2. The first example of
a fake projective plane was constructed by Mumford [39].

The conservativity conjecture applies much beyond the case of surfaces. For in-
stance, one can prove the following statement using the same reasoning as in the
proof of Proposition 2.15.
Proposition 2.17 — Assume Conjecture 2.1. Let X be a smooth projective
k-variety with algebraic cohomology, i.e., satisfying the following two conditions:

(a) for any m ∈ N, H2m+1(Xan;Q) = 0;
(b) for any m ∈ N, the cycle class map

CHm(X;Q) −→ H2m(Xan;Q)

is surjective.
Then, M(X) is a Tate motive. In particular, the cycle class maps in (b) are also
injective.
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Proof. For m ∈ Z, choose a family of elements (αm,i)i∈Im in CHm(X;Q) whose
images in singular cohomology form a basis of H2m(Xan;Q). The αm,i’s induce a
morphism in Chow(k;Q):

β : M(X) −→
⊕
m>0

⊕
i∈Im

Q(m)[2m].

Moreover, the conditions (a) and (b) of the statement implies that Bσ(β) is an
isomorphism. Applying Conjecture 2.1, we deduce that β was already an isomor-
phism. �

Remark 2.18 — The conclusion of Proposition 2.17 is reminiscent to the following
(unconditional) theorem of Jannsen (see [26] where this theorem is discussed and
generalised): if the cycle class map from the Chow ring of a smooth projective k-
variety to its singular cohomology is injective, then this cycle class map is in fact an
isomorphism and the Chow motive of X is Tate. (Here, one needs to assume that k
is algebraically closed with infinite transcendence degree.)

Here is another amusing consequence of the conservativity conjecture.
Proposition 2.19 — Assume Conjecture 2.1. Assume also that the Q-algebra

Λ is connected (i.e., has no nontrivial idempotents). Let M ∈ DMgm(k; Λ) be a
geometric motive. Then the following two conditions are equivalent:

(i) M is invertible (for the tensor product),
(ii) there exists a unique integer m such that Hi(Bσ(M)) is zero unless i = m in

which case it is an invertible Λ-module.

Proof. The implication (i) ⇒ (ii) is unconditional on Conjecture 2.1 and we leave it
to the reader. (It is here where the connectedness of Λ is used.)

To prove that (ii) ⇒ (i), we remark that (ii) implies that the natural evaluation
morphism in D(Λ)

Bσ(M)⊗ Bσ(M)∨ −→ Λ

is an isomorphism. Now, Bσ is a monoidal functor andM a is strongly dualisable mo-
tive (because it is assumed to be geometric). This implies that Bσ(M)∨ ' Bσ(M∨).
This shows that the evaluation map

M ⊗M∨ −→ Λ(0)

becomes an isomorphism after applying Bσ. By Conjecture 2.1, we are done. �

Remark 2.20 — In Proposition 2.19, it is useful to allow general coefficients
rings. Indeed, it is expected that all invertible motives in DM(k;Q) are Artin–
Tate, i.e., of the form U(n)[m] where U is an Artin motive corresponding to a
representation of Gal(k̄/k) on a 1-dimensional Q-vectorspace. (Of course, such a
representation factors through a character Gal(k̄/k) −→ {±1}.) On the contrary, it
is easy to construct invertible motives in DM(k;Q) which are not Artin–Tate; here
is an example. Let E be an elliptic curve with complex multiplication by an order
O in an imaginary quadratic extension L/Q. The motive M1(E) (corresponding to
the first singular homology group of Ean) decomposes in DM(k;L) in two parts

M1(E) = M+
1 (E)⊕M−1 (E).

The part M+
1 (E) (resp. M−1 (E)) is characterized by the property that O acts on the

L-vectorspace Bσ(M+
1 (E)) (resp. Bσ(M−1 (E))) via the embedding O ↪→ L (resp. the



14 JOSEPH AYOUB

composite embedding O ↪→ L
c→ L where c is the complex conjugation). It is easy

to show that the motives M±1 (E) are invertible.
To go further, we recall the following definitions from [34] (see also [3, §9] and [40,

Chapter 4]).
Definition 2.21 — Let C be a Q-linear pseudo-abelian tensor category. An
objet A ∈ C is said to be even (resp. odd) if

∧m(A) = 0 (resp. Sm(A) = 0) for
m large enough. An objet A ∈ C is said to be Kimura finite if it decomposes as the
direct sum of an even object and an odd object.
Proposition 2.22 — Assume Conjecture 2.1. For simplicity, assume also that

Λ is a field extension of Q. Let M ∈ DMgm(k; Λ) be a geometric motive. Then the
following conditions are equivalent.

(a) M is even (resp. odd);
(b) Hi(Bσ(M)) = 0 for i odd (resp. i even).

In particular, a motive M is Kimura finite if and only if there exists a decomposi-
tion M = Meve ⊕Modd such that the complexes Bσ(Meve) and Bσ(Modd) have their
homology in even and odd degrees respectively.

Proof. This is clear. Indeed, a complex of Λ-vectorspaces with finite dimensional
homology is even (resp. odd) if and only if its homology is in even (resp. odd)
degrees. �

Remark 2.23 — A conjecture of Kimura–O’Sullivan states that every Chow
motive is Kimura finite. This conjecture does not follow from Conjecture 2.1. How-
ever, Proposition 2.22 shows that the conjecture of Kimura–O’Sullivan follows from
the combination of Conjecture 2.1 and a weak version of the existence of a Chow–
Kunneth decomposition (see [40, Definition 6.1.1]). Using this principle, one can
deduce the following corollary.
Corollary 2.24 — Assume Conjecture 2.1.

(i) The Chow motive of a smooth projective surface is Kimura finite.
(ii) The Chow motive of a smooth hypersurface in a projective space is Kimura

finite.

The property of being Kimura finite is not closed under extensions in a trian-
gulated category. As a consequence, it is easy to produce examples of geometric
motives in DMgm(k; Λ) which are not Kimura finite. A weaker property which
behaves better in a triangulated context is the following one.
Definition 2.25 — Let C be a Q-linear pseudo-abelian tensor category. An
objet A ∈ C is said to be Schur finite if there exists an integer n ∈ N and a nonzero
projector γ ∈ Q[Σn] in the group algebra of the symmetric group Σn which acts by
zero on A⊗n.

Clearly, a Kimura finite object is also Schur finite. If C is a tensor triangulated
category obtained as the homotopy category of a stable monoidal model category,
we know by [28] that Schur finiteness has the “2 out 3” property in distinguished
triangles. In particular, a perfect complex of Λ-modules is a Schur finite object of
D(Λ). This immediately implies the following.
Proposition 2.26 — Assume Conjecture 2.1. Then any object of DMgm(k; Λ)
is Schur finite.
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We close our list of consequences of the conservativity conjecture with the following
statement.
Proposition 2.27 — Assume Conjecture 2.1. Let K be a field endowed with
a discrete valuation with residue field k of characteristic zero. Choose a uniformizer
element π ∈ K. Then the “nearby motive” functor

Ψπ : DMgm(K;Q) −→ DMgm(k;Q)

is conservative.

Proof. The functor Ψπ is analogous to the formation of the limiting mixed Hodge
structure in Hodge theory. We will not recall the construction of Ψπ here. We
direct the reader to [5, Chapitre 3], complemented by [11, Appendice 1.A], where
the theory of nearby motivic sheaves is developed; see also [12, §2.3] for a quick
recollection.

The idea of the proof of Proposition 2.27 is to use the compatibility of Ψπ with
the Betti realisation functors (see [6, §4]). This is possible when K is the fraction
field of a curve endowed with the valuation associated to a close point. However,
for more general K’s, one runs into some technical problems that are presumably
solvable with some effort. Alternatively, one can use the compatibility of Ψπ with
the `-adic realisation functors [8, §10] which holds for general K’s. Indeed, thanks
to the comparison theorem between Betti and `-adic cohomology, Conjecture 2.1
implies that the `-adic realisation functor is also conservative. �

2.3. More about conservativity and Kimura finiteness. In this subsection, we
discuss further the relation between the conservativity conjecture and the Kimura
finiteness for Chow motives. Our goal is to explain the following theorem.
Theorem 2.28 — Assume that the Standard Conjecture D is true, i.e., that
homological equivalence and numerical equivalence coincide (see [40, Chapter 3]).
Assume also that the Kimura–O’Sullivan conjecture is true, i.e., that every Chow
motive is Kimura finite. Then Conjecture 2.1 is also true.

The main ingredient we need is a beautiful construction of Bondarko [19], based on
his notion of weight structure, and generalising the construction of weight complexes
of Gillet–Soulé [27]. Given an additive category C, we denote by Kb(C) the homotopy
category of bounded complexes in C.
Proposition 2.29 — There exists a triangulated functor

W : DMgm(k;Q) −→ Kb(Chow(k;Q))

which is conservative and which makes the following triangle commutative (up to a
canonical natural isomorphism)

Chow(k;Q) //

))

DMgm(k;Q)

W
��

Kb(Chow(k;Q)).

Proof. This is essentially [19, Proposition 6.3.1 and Remark 6.3.2]. �
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There is a similar construction for mixed Hodge structures. Let CHS denotes the
full additive subcategory of Db(MHS) whose objects are the direct sums

⊕
n∈ZMn[n]

with Mn a polarisable pure Hodge structure of weight −n. By the decomposition
theorem, the mixed Hodge complex associated to a smooth projective variety lies in
CHS. Therefore, one has a commutative square

Chow(k;Q)
Rσ

//

��

CHS

��

DMgm(k;Q)
Rσ
// Db(MHS).

From [20, 21], and especially [21, Proposition 2.1.1], one gets the following.
Proposition 2.30 — There exists a triangulated functor

W : Db(MHS) −→ Kb(CHS),

which is conservative and which makes the following diagrams commutative (up to
canonical natural isomorphisms)

CHS //

%%

Db(MHS)

W
��

Kb(CHS),

DMgm(k;Q)
W
//

Rσ
��

Kb(Chow(k;Q))

Rσ
��

Db(MHS)
W

// Kb(CHS).

As a corollary, Theorem 2.28 follows from the following statement.
Lemma 2.31 — Assume that the Standard Conjecture D is true. Assume also
that the Kimura–O’Sullivan conjecture is true. Then the functor

Rσ : Kb(Chow(k;Q)) −→ Kb(CHS)

is conservative.

Proof. Consider the category Num(k;Q) of numerical motives (with rational co-
efficients). By [32], Num(k;Q) is abelian semi-simple. The Kimura–O’Sullivan
conjecture implies that the natural functor

Kb(Chow(k;Q)) −→ Kb(Num(k;Q)) = Db(Num(k;Q))

is conservative. Indeed, let M = M• be a bounded complex of Chow motives
whose image in Kb(Num(k;Q)) is acyclic. We need to show that M is also acyclic.
We argue by induction on the length of M . (If M is zero, there is nothing to
prove.) Let n ∈ Z be the smallest integer such that Mn 6= 0. We know that the
differential δ : Mn+1 −→ Mn induces a split surjective morphism in Num(k;Q).
Therefore, we may find a morphism of Chow motives η : Mn −→ Mn+1 such that
δ ◦ η − idMn is numerically equivalent to zero. By [34, Proposition 7.5], this implies
that δ ◦ η − idMn is a nilpotent endomorphism of Mn, which in turn implies that
δ ◦ η is an automorphism of Mn. Therefore, replacing η by η ◦ (δ ◦ η)−1, we may
assume that δ ◦ η = idMn . This gives a decomposition Mn+1 ' M ′

n+1 ⊕Mn. Let
M ′ = M ′

• be the complex obtained from M by replacing the portion {Mn+1 →Mn}
by {M ′

n+1 → 0}. By construction, there is a map M ′ −→ M which is a homotopy
equivalence (i.e., an isomorphism in Kb(Chow(k;Q))). We now use induction to
conclude.
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To go further, let PHS be the full subcategory of MHS consisting of pure Hodge
structures. There is a functor CHS −→ PHS which takes

⊕
n∈ZMn[n] to

⊕
n∈ZMn.

(Note that this is not an equivalence of categories!) By the Standard Conjecture D,
there is a functor Num(k;Q) −→ PHS and it is easy to see that the square

Kb(Chow(k;Q)) //

��

Db(Num(k;Q))

��

Kb(CHS) // Db(PHS)

commutes up to a natural isomorphism. As Num(k;Q) −→ PHS is clearly conser-
vative, we are done. �

Remark 2.32 — It is very unlikely that Theorem 2.28 is of any use for proving
the conservativity conjecture in general. Indeed, proving new cases of the Kimura–
O’Sullivan conjecture and/or the Standard Conjecture D by direct means seems
quite hopeless and we expect things to go in the other way round. Nevertheless, one
can use the known supply of motives for which these conjectures are known to give
some evidence for the conservativity conjecture. This gives the following result of
Wildeshaus [56, Theorem 1.12].
Corollary 2.33 — Let A ⊂ DMgm(k;Q) be the smallest triangulated subcat-
egory closed under direct summands, tensor product and duality, and containing the
motives of smooth projective curves. Then the restriction of the Betti realisation to
A is conservative.

Proof. Repeat the proof of Theorem 2.28 restricting to A and using that the Stan-
dard Conjecture D and the Kimura–O’Sullivan conjecture are known for Chow mo-
tives which are direct summands of tensor products of motives of smooth projective
curves. �

Remark 2.34 — At the time of writing, the category A is the largest subcategory
of DMgm(k;Q) for which the conservativity conjecture is known to hold. Note that
A contains a lot of objects. For example, the motive of a finite type group-scheme,
such as a semi-abelian variety, belongs to A. Nevertheless, A is still a very small
portion of DMgm(k;Q). To appreciate the gap to be filled, note that an effective
polarisable pure Hodge structure of weight 2 with Hodge number h2,0 > 2 and with
generic Mumford–Tate group does not belong to the tannakian subcategory of MHS
generated by those Hodge structures of type {(1, 0), (0, 1)}; this follows from [25,
Proposition 7.3]. Nevertheless, such weight 2 Hodge structures abound in algebraic
geometry. Indeed, using [25, Proposition 7.5] (see also [2]), it can be shown that
they appear as the middle primitive cohomology of general hypersurfaces S ⊂ P3 of
degree high enough. In particular, the motive of a general hypersurface S ⊂ P3 of
degree high enough is not in A. For a more detailed analysis, we refer the reader to
[25, §7].

3. The vanishing conjecture for the motivic period algebra

In this section we discuss a vanishing conjecture concerning the so-called motivic
period algebra. This conjecture can be stated in a very elementary way, so we
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decided to first give its statement and explain later its motivic origin and how it fits
in a broader context.

3.1. A concrete formulation. We start by introducing some notation. For n ∈ N,
we denote by Dn = Dn(o, 1) the closed unit polydisc in Cn:

Dn = {(t1, . . . , tn) ∈ Cn; |ti| 6 1, ∀1 6 i 6 n}.

We will always consider Dn as a pro-analytic variety in the obvious way, i.e., as being
the pro-system {Dn(o, r)}r>1 of open polydiscs in Cn of constant polyradius r > 1.
In particular, O(Dn) will denote the ring of overconvergent holomorphic functions on
Dn, i.e., of those functions which are given by power series in n variables converging
on Dn(o, r) for some r > 1. Note that O(Dn) is a noetherian regular ring.

As before, we fix a complex embedding σ : k ↪→ C. We consider a “semi-algebraic”
version of Dn (see [9, §2.2.4]).
Definition 3.1 — We denote by Dn

ét the pro-k-variety of étale neighbourhoods of
Dn in An. More precisely, consider the category Vét(Dn/An) whose objects are pairs
(U, u) consisting of an étale An-scheme U and a morphism of pro-analytic spaces
u : Dn −→ Uan making the following triangle commutative

Dn u
//

!!

Uan

��

Cn.

Then Vét(Dn/An) is a cofiltered category and the pro-k-variety Dn
ét is given by the

forgetful functor
Dn

ét : Vét(Dn/An) −→ Sch/k

(U, u) 7→ U.

By construction, we have a pro-étale morphism of pro-k-varieties Dn
ét −→ An.

Note the following result.
Lemma 3.2 — The pro-k-variety Dn

ét is affine (i.e., isomorphic to a pro-object
in the category of affine k-varieties) and O(Dn

ét) is isomorphic to the sub-k-algebra
of O(Dn) consisting of those overconvergent power series

f =
∑
e∈Nn

ce · te ∈ O(Dn)

which are algebraic over the field of rational functions k(t1, . . . , tn).

Proof. This is the combination of [9, Propositions 2.58 and 2.102]. �

We set
O(D∞ét ) =

⋃
n∈N

O(Dn
ét).

(In the union above, we identify O(Dn
ét) with a subset of O(Dn+1

ét ) by considering
a function of the variables (t1, . . . , tn) as a function of the variables (t1, . . . , tn+1)
which is constant with respect to tn+1.)

Next, we consider differential forms of finite co-degree on D∞ét .
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Definition 3.3 — For d ∈ N, we denote by Ω∞−d(D∞ét ) the O(D∞ét )-module
freely generated by symbols d̂tI , one for each finite subset I ⊂ Nr {0} of cardinality
d:

Ω∞−d(D∞ét ) =
⊕

I⊂Nr{0}; |I|=d

O(D∞ét ) · d̂tI .

(If I = {i1 < · · · < id}, we think about d̂tI as the differential form of infinite degree

dt1 ∧ · · · ∧ d̂ti1 ∧ · · · ∧ d̂ti2 ∧ · · · ∧ d̂tid ∧ · · ·

where the dtis have been removed for 1 6 s 6 d.) Elements of Ω∞−d(D∞ét ) are called
differential forms of co-degree d on D∞ét .
Remark 3.4 — Perhaps, a more natural way to define Ω∞−d(D∞ét ) is as follows.
One has a inductive system {Ωn−d(Dn

ét)}n>d with transition maps given by

− ∧ dtn+1 : Ωn−d(Dn
ét) −→ Ωn+1−d(Dn+1

ét ).

Then Ω∞−d(D∞ét ) is the colimit of this inductive system.

Notation 3.5 — For d ∈ N, we denote by Ω̃∞−d(D∞ét ) the subspace of Ω∞−d(D∞ét )
consisting of those differential forms that vanish at all the faces of D∞ét . More pre-
cisely, a differential form of co-degree d on D∞ét

ω =
∑

I⊂Nr{0}; |I|=d

fI · d̂tI

belongs to Ω̃∞−d(D∞ét ) if and only if fI |ti=ε = 0 for all I ⊂ N r {0} of cardinality
d, i ∈ I and ε ∈ {0, 1}. (For a function f depending on a complex variable t, the
notation f |t=c stands for the function obtained from f by substituting the variable
t by the constant c ∈ C.)
Definition 3.6 — There is an obvious de Rham differential

d : Ω∞−(d+1)(D∞ét ) −→ Ω∞−d(D∞ét )

which takes Ω̃∞−(d+1)(D∞ét ) inside Ω̃∞−d(D∞ét ). We thus obtain a complex

Peff
mot(k, σ) := Ω̃∞−•(D∞ét ),

concentrated in postive homological degrees, which is called the (effective) motivic
period algebra (aka., algebra of motivic periods).
Remark 3.7 — Contrary to what our terminology indicates, the complex Peff

mot(k, σ)
is not an algebra on the nose. The algebra structure exists only in the derived cate-
gory D(k). We refer the interested reader to [9, Proposition 2.108] for a description
of the algebra product on H0(Peff

mot(k, σ)).
We can now formulate the main conjecture of this section.

Conjecture 3.8 — The motivic period algebra Peff
mot(k, σ) has no homology

except in degree zero, i.e., Hi(Peff
mot(k, σ)) = 0 for i ∈ Z r {0}.

Remark 3.9 — In degree zero, the homology of Peff
mot(k, σ) is expected to be very

large. Indeed, there exists an “evaluation map”∫
[0,1]∞

: H0(Peff
mot(k, σ)) −→ C
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which takes the class of a co-degree zero differential form

f · d̂t∅ = f · dt1 ∧ · · · ,
with f ∈ O(Dn

ét), to the complex number
∫

[0,1]n
f . It can be shown that the image

of this evaluation map is the ring of effective periods obtained from the relative
cohomology of pairs of k-varieties. When k is a number field (or if the complex
embedding σ : k ↪→ C is generic), the evaluation map is expected to be injective;
this is the famous period conjecture of Kontsevich–Zagier (see [35] and [10]).
Remark 3.10 — There is a canonical lifting of 2πi ∈ C to a class 2πi ∈

H0(Peff
mot(k;σ)). This class can be represented by the co-degree zero differential form

d log f ∧ dt2 ∧ · · ·
where f ∈ O(D1

ét)
× is an invertible algebraic function in the variable t1 such that

f(0) = f(1) = 1 and f |[0,1] : [0, 1] −→ C× is counterclockwise simple loop around
zero. (Note that the plane C is oriented by the choice of i .) We set

Pmot(k, σ) := Peff
mot(k, σ)[(2πi)−1];

this is the (non-effective) motivic period algebra (aka., algebra of motivic periods).
For later references, we state the non-effective version of Conjecture 3.8.

Conjecture 3.11 — The non-effective motivic period algebra Pmot(k, σ) has
no homology except in degree zero, i.e., Hi(Pmot(k, σ)) = 0 for i ∈ Z r {0}.

The following statement is obvious.
Lemma 3.12 — Conjecture 3.8 implies Conjecture 3.11.

3.2. The significance of Conjecture 3.8. In this subsection, we explain the ori-
gin and significance of Conjecture 3.8. We start by recalling the weak tannakian
formalism as developed in [9, §1].
Theorem 3.13 — Let f :M−→ E be a monoidal functor between two monoidal
categories. (Everything is symmetric and unitary.) Assume the following conditions.

(i) f has a monoidal section e : E −→M, i.e., f ◦ e ' idE .
(ii) f has a right adjoint g and e has a right adjoint u.
(iii) The natural coprojection morphism

g(A′)⊗B −→ g(A′ ⊗ f(B))

is an isomorphism for all A′ ∈ E and B ∈M.
Then, we have the following conclusions.

(A) H = f(g(1E)) has a natural structure of a Hopf algebra in E.
(B) For every object M ∈ M, f(M) is naturally a left H-comodule. This gives

a monoidal functor

f̃ :M−→ coMod(H)

making the following triangle commutative

M f̃
//

f
%%

coMod(H)

��

E .
(C) H is the universal Hopf algebra satisfying (B).
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As explained in [9, §2.1.3], Theorem 3.13 can be applied to the Betti realisation.
Starting from now, we will denote by

B∗σ : DM(k; Λ) −→ D(Λ),

instead of Bσ, the Betti realisation functor. As DM(k; Λ) is compactly generated
and B∗σ commutes with infinite sums, the Brown representability theorem implies
that B∗σ has a right adjoint Bσ, ∗ (see [41, Theorem 4.1]). On the other hand, the
“Artin motive” functor

D(Λ) −→ DM(k; Λ)

is a monoidal section to B∗σ and admits a right adjoint, again by the Brown rep-
resentability theorem. Condition (iii) is also satisfied; it is an easy consequence of
rigidity, in the monoidal sense (see [9, Lemme 2.8] and the proof of [9, Proposition
2.7]).
Definition 3.14 — The Hopf algebra

Hmot(k, σ; Λ) := B∗σBσ, ∗Λ

is called the motivic Hopf algebra of k (associated to σ : k ↪→ C). Note that this is
a Hopf algebra in D(Λ).
Remark 3.15 —When Λ = Q, we simply writeHmot(k, σ) instead ofHmot(k, σ;Q).
In fact, one gains nothing by allowing more general rings of coefficients as

Hmot(k, σ; Λ) ' Hmot(k, σ)⊗ Λ.

Remark 3.16 — The motivic Hopf algebra co-acts on the singular homology
of motives. More precisely, given a motive M ∈ DM(k;Q), B∗σ(M) is naturally
a comodule over Hmot(k, σ). This co-action contains a lot of arithmetico-geometric
information. Indeed, it determines the mixed Hodge structure on the Betti homology
of M and the Galois action on the `-adic homology of M .
Conjecture 3.17 — The Hopf algebra Hmot(k;σ) has no homology except in
degree zero.
Remark 3.18 — According to Conjecture 3.17, the motivic Hopf algebra is the
coordinate ring of an honest affine group-scheme. This group-scheme is the so-called
motivic Galois group of k (associated to σ : k ↪→ C).

There is a nice interpretation of Conjecture 3.17 in terms of operations on homol-
ogy. We first make a definition.
Definition 3.19 — Assume for simplicity that the Q-algebra Λ is a field. An
operation of degree d ∈ N is a Λ-linear transformation

H0(B∗σ(M)) −→ Hd(B∗σ(M))

which is natural in M ∈ DM(k; Λ).
There are plenty of operations of degree zero. For instance, when Λ = Q`, every

element of Gal(k̄/k) induces an operation of degree zero. (Here k̄ is the algebraic clo-
sure of σ(k) in C.) On the contrary, for operations of nonzero degrees, we conjecture
the following.
Conjecture 3.20 — There are no nonzero operations of nonzero degree.
Proposition 3.21 — Conjecture 3.17 and Conjecture 3.20 are equivalent.
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Proof. Indeed, by [9, Proposition 1.32], an operation γ of degree d corresponds to a
linear form on Hmot(k, σ; Λ) of degree d, i.e., to a map

` : Hd(Hmot(k, σ; Λ)) −→ Λ.

The correspondence works as follows. Given a linear form `, the corresponding
operation is given by the composition of

H0(B∗σ(M))
ca
// H0(Hmot(k, σ; Λ)⊗ B∗σ(M))

����

Hd(Hmot(k, σ; Λ))⊗ Hd(B∗σ(M))
`⊗id
// Hd(B∗σ(M)).

(In the above diagram, ca denotes the co-action map of Hmot(k, σ; Λ) on B∗σ(M).)
Conversely, given an operation λ, the corresponding linear form is given by the
composition of

H−d(B∗σBσ, ∗Λ)
λ
// H0(B∗σBσ, ∗Λ)

cu
// Λ.

(In the above diagram, cu denotes the co-unit map of Hmot(k, σ; Λ).) The claimed
result is now clear. �

The link with the vanishing conjectures of Subsection 3.1 follows from the following
result.
Proposition 3.22 — There is a natural quasi-isomorphism of complexes of
C-vectorspaces:

Hmot(k, σ)⊗ C ' Pmot(k, σ)⊗k, σ C.

Proof. The Grothendieck comparison theorem between singular cohomology and al-
gebraic de Rham cohomology can be stated in a compact form as an isomorphism
in DM(k;Q):

(Bσ, ∗Q)⊗ C ' Ω/k ⊗k, σ C,
where Ω/k is an object representing algebraic de Rham cohomology and constructed
using the usual algebraic de Rham complexes of smooth k-varieties. This isomor-
phism induces an isomorphism in D(Q)

(B∗σBσ, ∗Q)⊗ C ' (B∗σΩ/k)⊗k, σ C.
The left-hand side isHmot(k, σ)⊗C by construction and it remains to identify B∗σΩ/k

with Pmot(k, σ). This is a computation which can be found in [9, §2.3.1]; it relies on
an approximation theorem for singular chains [9, Théorème 2.61] whose proof relies
on Popescu’s theorem [44, 45]. �

Corollary 3.23 — Conjecture 3.11 and Conjecture 3.17 are equivalent.
Remark 3.24 — As Hd(Pmot(k, σ)) = 0 for d < 0, we deduce from Proposition 3.22
that Hd(Hmot(k, σ)) = 0 for d < 0. In particular, there are no nonzero operations of
strictly negative degrees.
Remark 3.25 — There exists an effective version of the motivic Hopf algebra
which is denoted by Heff

mot(k, σ). This is only a bialgebra, i.e., it does not have an
antipode. It is defined by the same method while restricting to effective motives.
More precisely, one considers the restriction Beff, ∗

σ of the Betti realisation to the
subcategory DMeff(k;Q) of effective motives (see Definition 4.1 below). This functor
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has a right adjoint that we denote by Beff
σ, ∗. The effective motivic bialgebra is given

by
Heff

mot(k, σ) := Beff, ∗
σ Beff

σ, ∗Q.
It can be shown that Hmot(k, σ) ' Heff

mot(k, σ)[ς−1] for a canonical element ς ∈
H0(Heff

mot(k, σ)). Moreover, as in Proposition 3.22, there exists a quasi-isomorphism
of complexes of C-vectorspaces

Heff
mot(k, σ)⊗ C ' Peff

mot(k, σ)⊗k, σ C.
(Under this isomorphism, the element ς ⊗ 1 corresponds to 2πi ⊗ (2πi)−1.) In
particular, this shows that Conjecture 3.8 is equivalent to the effective version of
Conjecture 3.17, i.e., to the property that Heff

mot(k, σ) has no homology except in
degree zero.

3.3. Relation with the conjectural motivic t-structure. Conjecture 3.17 is
intimately related to the problem of constructing the so-called motivic t-structure.
The existence of the motivic t-structure is one of the most central open problems in
the theory of motives.
Conjecture 3.26 — Given a complex embedding σ : k ↪→ C, let T M>0 be the full
subcategory of DM(k; Λ) consisting of those motives M such that B∗σ(M) ∈ D>0(Λ).
Define T M<0 to be the right orthogonal to T M>0 , i.e., the full subcategory whose objects
are the N ∈ DM(k; Λ) such that

homDM(k; Λ)(M,N) = 0

for all M ∈ T M>0 . Then the following properties should hold.
(i) The pair (T M>0 , T M<0 ) is a t-structure which is independent from the choice of

the complex embedding σ.
(ii) The Betti realisation B∗σ : DM(k; Λ) −→ D(Λ) is t-exact. This is equivalent

to saying that B∗σ takes a motive in T M<0 to a complex in D<0(Λ).
(iii) Assuming that Λ is a regular ring,11 the t-structure (T M>0 , T M<0 ) restricts to

DMgm(k; Λ), i.e., the pair

(T M>0 ∩DMgm(k; Λ), T M<0 ∩DMgm(k; Λ))

is a t-structure on DMgm(k; Λ). Said differently, the truncation functors
associated to the t-structure (T M>0 , T M<0 ) preserve geometric motives.

If it exists, the t-structure of Conjecture 3.26 is called the motivic t-structure.
Remark 3.27 — It is not difficult to construct a t-structure on DM(k; Λ) which,
if Conjecture 3.26 was true, coincides with the motivic t-structure, at least after
restricting to DMgm(k; Λ) (under the assumption that Λ is regular). Indeed, let T>0

be the smallest subcategory of DM(k; Λ) closed under infinite sums, extensions and
suspensions, and containing the geometric motives whose Betti realisations belong to
D>0(Λ). Also, let T<0 be the right orthogonal to T>0. Then, by a general argument
(see for example [4, Proposition 2.1.70]), (T>0, T<0) is a t-structure, which is the
alluded candidate for the motivic t-structure. Unfortunately, with such a definition,
it is totally unclear how to establish properties (ii) and (iii) of Conjecture 3.26.

11This assumption is necessary. To see this, note that, at least when Λ is noetherian, the
canonical t-structure on D(Λ) restricts to a t-structure on the subcategory of perfect complexes if
and only if Λ is regular.
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Remark 3.28 — If k has infinite transcendence degree over its prime field,
the motivic t-structure on DM(k; Λ) degenerates. Indeed, from the definition, T M>0

contains the triangulated subcategory Fant of fantom motives (see Definition 2.6).
However, under the assumption that Λ is regular, the conservativity conjecture (i.e.,
Conjecture 2.1) implies that the restriction of the motivic t-structure to DMgm(k; Λ)
is non-degenerate. Indeed, if

M ∈ DMgm(k; Λ) ∩

(⋂
n∈N

T M>n

)
,

then necessarily B∗σ(M) = 0, and thus M = 0.

Proposition 3.29 — Conjecture 3.26 implies Conjecture 3.17.

Proof. By Remark 3.24, we know that Hmot(k, σ) ∈ D>0(Q). Therefore, we only
need to show that Hmot(k, σ) ∈ D60(Q).

Now, assuming Conjecture 3.26, we have at our disposal a t-structure on DM(k;Q)
for which B∗σ is t-exact. It follows, by a general argument, that the right adjoint
Bσ, ∗ is left t-exact, i.e., takes D60(Q) to T M60 . In particular, we have

Bσ, ∗Q ∈ T M60 .

Using again that B∗σ is t-exact, we deduce that

B∗σBσ, ∗Q ∈ D60(Q)

as needed. �

Remark 3.30 — As far as we know, the vanishing conjecture for the motivic
Hopf algebra (i.e., Conjecture 3.17) does not imply any longstanding conjecture on
algebraic cycles, as was the case for the conservativity conjecture (i.e., Conjecture
2.1). Nonetheless, we believe that this is an important conjecture for at least two
reasons. First, as explained above, the validity of Conjecture 3.17 is a necessary
condition for the existence of the motivic t-structure. But more importantly, it is
our strong believe that Conjecture 3.17 should constitute a crucial step in a future
construction of the motivic t-structure. Indeed, in [9, §2.4], we stated a conjecture,
[9, Conjecture B on page 127], which, if true, enables one to reconstruct a geometric
motive from its Betti realisation using a descent procedure. We believe that Con-
jecture 3.26 follows, modulo some routine work, from the combination of [9, §2.4,
Conjecture B] and Conjecture 3.17 (which is also [9, §2.4, Conjecture A]).

4. Homotopy t-structure, slice filtration and dimension

In this section, we will formulate some plausible conjectures around the homotopy
t-structure and the slice filtration, two standard tools in the theory of motives à la
Voevodsky. Contrary to the ones stated previously, these conjectures are not part
of the classical motivic paradise and rather originate from unexpected features of
Voevodsky’s construction of his category of motives. We will start by recalling the
basic notion of effectiveness for motives.
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4.1. Effective motives, homotopy t-structure and slice filtration. Recall that
a mixed Hodge structure is said to be effective if its Hodge numbers hp,q are zero
unless both p and q are non-negative. Unfortunately, for motives, the notion of effec-
tivity (see Definition 4.1 below) corresponds to the dual one: the dual of the Hodge
realisation of a geometric effective motive belongs to the subcategory of Db(MHS)
generated by effective mixed Hodge structures.
Definition 4.1 — We denote by DMeff(k; Λ) the smallest triangulated subcate-
gory of DM(k; Λ) closed under infinite sums and containing the homological motives
M(X) for all smooth quasi-projective k-varieties X. (The crucial point here is that
we do not allow negative Tate twists of the M(X)’s.) A motive is said to be effective
if it lies in DMeff(k; Λ).

We also denote by DMeff
gm(k; Λ) the subcategory of compact objets of DMeff(k; Λ).

This is the category of effective geometric motives.
Remark 4.2 — Almost by definition, every geometric motive M ∈ DMgm(k; Λ)
can be made effective after applying a sufficiently positive Tate twist. This is analo-
gous (or rather dual) to the fact that every mixed Hodge structure becomes effective
after a sufficiently negative Tate twist.
Remark 4.3 — One interesting feature of the category DMeff(k; Λ) is that it
admits a more concrete description than the larger DM(k; Λ). Indeed, there is a
fully faithful embedding

DMeff(k; Λ) ↪→ D(StrNis(Sm/k; Λ))

into the derived category of the abelian category StrNis(Sm/k; Λ) of Nisnevich
sheaves with transfers on Sm/k. (Recall that a Nisnevich sheaf with transfers is
a Λ-linear functor from SmCor(k; Λ) (see Definition 1.14) to the category of Λ-
modules whose restriction to Sm/k is a sheaf for the Nisnevich topology.) Moreover,
a complex of Nisnevich sheaves with transfers is in the image of this embedding if
and only if its homology sheaves are homotopy invariant. (Recall that a Nisnevich
sheaf F on Sm/k is homotopy invariant if the map F (X) −→ F (A1 ×X), induced
by the natural projection to X, is an isomorphism for every X ∈ Sm/k.) As a
consequence, one obtains the following result.
Lemma 4.4 — The canonical t-structure on D(StrNis(Sm/k; Λ)) restricts to

a t-structure on DMeff(k; Λ) called the homotopy t-structure. The heart of the
homotopy t-structure is equivalent to the category of homotopy invariant sheaves
with transfers that we denote by HI(k; Λ). (Here and in the rest of the article, the
word “sheaf” will always refer to the Nisnevich topology.)
Remark 4.5 — It is possible to extend the homotopy t-structure to the full

triangulated category of motives DM(k; Λ). The heart of this extended homotopy
t-structure is more complicated to describe. Its objects are Tate spectra12 with some
properties. We direct the interested reader to [23] where the heart of the homotopy
t-structure on DM(k;Z) is described and shown to be equivalent to the category of
Rost modules [47].
Remark 4.6 — It should be noted that the homotopy t-structure is not the

motivic t-structure of Conjecture 3.26. In fact, these two t-structures have nothing

12The notion of Tate spectra is analogous to the notion of spectra in stable homotopy theory,
see for example [1].
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in common. The homotopy t-structure does not correspond under realisations to
any classical construction. Although, the Betti realisation

Beff, ∗
σ : DMeff(k; Λ) −→ D(Λ)

is right t-exact when DMeff(k; Λ) is endowed with the homotopy t-structure, it is
very far from being left t-exact. Moreover, the homotopy t-structure does not restrict
to DMeff

gm(k; Λ). Indeed, the truncation functors with respect to the homotopy t-
structure do not preserve geometric effective motives.

For later use, we introduce the following notation.
Notation 4.7 — Given an effective motiveM ∈ DMeff(k; Λ), we denote by hn(M)
the homology objects associated to M with respect to the homotopy t-structure.
These are homotopy invariant sheaves with transfers. As a Nisnevich sheaf, hn(M)
coincides with the sheafification of the following presheaf

U ∈ Sm/k 7→ homDMeff(k; Λ)(M(U)[n],M).

Given a smooth k-variety X, we write hn(X) instead of hn(M(X)). Note that
hn(X) = 0 for n < 0 and that the group of global sections of hn(X) coincides with
the Suslin homology group Hn(X; Λ(0)) (see Definition 1.12).

We will also need the slice filtration on motives (compare with [51]).
Definition 4.8 — By the Brown representability theorem, the inclusion of

DMeff(k; Λ) into DM(k; Λ) admits a right adjoint

ν>0 : DM(k; Λ) −→ DMeff(k; Λ).

For n ∈ Z, we set
ν>n(M) := ν>0(M(−n))(n).

(Note that ν>n takes values in the subcategory DMeff(k; Λ)(n) consisting of motives
whose (−n)-th Tate twists are effective.) There are natural transformations

· · · −→ ν>n −→ ν>n−1 −→ · · · .

The system {ν>n}n∈N is called the slice filtration.
Remark 4.9 — The slice filtration does not correspond via realisations to any
classical construction. In fact, the functors ν>n are not well-behaved; see [30] for
some conditional and unconditional negative properties. In particular, it is known
that geometric motives are not preserved by these functors.

For later use, we record the following simple lemma.
Lemma 4.10 — The triangulated category DMeff(k; Λ) is monoidal and closed.
Given two effective motives M and N , we denote by Homeff(M,N) the internal hom
from M to N computed in DMeff(k; Λ). We then have the formula

Homeff(M,N) = ν>0Hom(M,N).

Proof. The fact that the tensor product of two effective motives is also effective
follows form the formula

M(X)⊗M(Y ) ' M(X × Y )
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for all X, Y ∈ Sm/k. To prove the formula for Homeff(M,N), it is enough to show
that ν>0Hom(M,−) is right adjoint to M ⊗−. Given an effective motive L, we have
the identifications

homDMeff(k; Λ)(L, ν
>0Hom(M,N)) ' homDM(k; Λ)(L,Hom(M,N))

' homDM(k; Λ)(M ⊗ L,N)

= homDMeff(k; Λ)(M ⊗ L,N).

This proves what we want. �

Proposition 4.11 — Let n > 0. For M ∈ DMeff(k; Λ), there is a natural
isomorphism

ν>0(M(−n)) ' Homeff(Λ(n),M).

Proof. Use that M(−n) = Hom(Λ(n),M). �

Remark 4.12 — Using a similar reasoning, one sees that

Beff
σ, ∗Λ ' ν>0(Bσ, ∗Λ).

The Betti realisation of the motive Beff
σ, ∗Λ is the motivic bialgebra Heff

mot(k, σ; Λ); see
Remark 3.25.

4.2. Filtration by dimension. In order to formulate our conjectures, we introduce
the following subcategories.
Definition 4.13 — For n ∈ N, we denote by DMeff

6n(k; Λ) the smallest subcat-
egory of DMeff(k; Λ) closed under infinite sums and containing the motives M(X)
for all smooth quasi-projective k-varieties X of dimension at most n.
Remark 4.14 — The categories DMeff

6n(k; Λ) are well understood for n ∈ {0, 1}.
Indeed, DMeff

60(k; Λ) is equivalent to the derived category of continuous represen-
tations of Gal(k̄/k) with coefficients in Λ (endowed with the discrete topology).
Equivalently, there is an equivalence of categories

D(Shvét(Et/k; Λ)) ' DMeff
60(k; Λ)

where Et/k is the small étale site of Spec(k). The case n = 1 is also related to classi-
cal objects, namely Deligne 1-motives. Indeed, there is an equivalence of categories

D(Ind-M1(k;Q)) ' DMeff
61(k;Q)

where M1(k;Q) is the abelian category of Deligne 1-motives up to isogeny. (In
the geometric case, this equivalence is proven in [43].) It is possible to see in these
statements some evidence, rather meagre admittedly, for the existence of the motivic
t-structure (see Conjecture 3.26).

We note the following fact which shows that the situation is really very nice when
n ∈ {0, 1}.
Proposition 4.15 — For n ∈ {0, 1}, the inclusion of DMeff

6n(k; Λ) into
DMeff(k; Λ) admits a left adjoint. When n = 0, this left adjoint is denoted by

Lπ0 : DMeff(k; Λ) −→ DMeff
60(k; Λ).

When n = 1, this left adjoint is denoted by

LAlb : DMeff(k; Λ) −→ DMeff
61(k; Λ).
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Proof. This is proven in [13]. See also [14] where the geometric case is treated using
a different approach. �

Remark 4.16 — For a geometric effective motive M ∈ DMeff
gm(k; Λ), one has the

following formula

LAlb(M) = Homeff
(
Homeff(M,Λ(1)),Λ(1)

)
.

This formula was taken as a definition in [14, §5].
Remark 4.17 — Contrary to right adjoints, the existence of left adjoints is often
a nontrivial property. In fact, the functors Lπ0 and LAlb are very nice and they do
correspond to classical constructions in Hodge theory. For instance, as the notation
indicates, LAlb is somehow a “derived” version of the Albanese variety.
Remark 4.18 — The situation becomes quickly extremely complicated starting
form n = 2. Indeed, there is no known description of DMeff

62(k; Λ) using classical
objects. Conjecturally, DMeff

62(k; Λ) should be the derived category of the abelian
category of mixed 2-motives whose existence is out of reach (but see [7] for an
attempt). There are also negative results. For instance, it is shown in [13, §2.5] that
the inclusion of DMeff

62(k;Q) into DMeff(k;Q) cannot have a left adjoint (at least
if k has infinite transcendence degree). Nevertheless, we will offer in Subsection 4.3
below two positive conjectures shedding light on the possibility of some beautiful
structures in the theory of algebraic cycles.

We will also need the following related notion. (Recall Notation 4.7 for the sig-
nificance of h0(X).)
Definition 4.19 — Let F be an object of HI(k; Λ), i.e., a homotopy invariant
sheaf with transfers. We say that F in n-generated if there exists a surjection in
HI(k; Λ): ⊕

i∈I

h0(Xi)� F

where the Xi’s have dimensions at most n. We say that F is n-presented if there
exists an exact sequence in HI(k; Λ):⊕

j∈J

h0(Yj) −→
⊕
i∈I

h0(Xi) −→ F −→ 0

where the Xi’s and Yj’s have dimensions at most n. (Above, we do not assume that I
nor J is finite.) We denote by HI6n(k; Λ) the full subcategory of HI(k; Λ) consisting
of n-presented homotopy invariant sheaves with transfers.
Remark 4.20 — In [13], an n-presented homotopy invariant sheaf with transfers
was called an n-motivic sheaf. It is also conjectured in loc. cit. that the notions of
n-generated and n-presented are equivalent (see [13, Conjecture 1.4.1 and Lemma
1.4.3]).
Remark 4.21 — It is maybe useful to explain the idea of Definition 4.19 in

a geometrically meaningful case. A basic example of an object in HI(k;Q) is the
Nisnevich sheaf CHd(X;Q) associated to the presheaf

CHd(X ×−;Q) : U ∈ Sm/k 7→ CHd(X × U ;Q).
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This makes sense for any k-variety X but, for simplicity, we will assume that X
is smooth and proper. Saying that CHd(X;Q) is n-generated amounts to saying
the following. Every family of codimension d cycles on X parametrised by a quasi-
projective smooth variety U is, up to rational equivalence and maybe after shrinking
U , obtained from a family of codimension d cycles on X parametrised by a quasi-
projective smooth variety V of dimension at most n by pulling-back along a finite
correspondence from U to V (in the sense of Definition 1.14). In fact, knowing that
CHd(X;Q) is n-generated implies that there exists a denumbrable family (Sα)α of
smooth and projective varieties of dimension at most n, and codimension d-cycles
Zα ⊂ Sα ×X, such that the induced map⊕

α

CH0(Sα;Q) −→ CHd(X;Q)

is universally surjective (i.e., remains surjective after extending the base field, say
to C). Such properties are very nice and this is perhaps the next best thing to hope
for, knowing the failure of representability of Chow groups in general [38].

4.3. The conjectures. In this last subsection, we will formulated two conjectures
describing the behaviour of the homotopy t-structure and the slice filtration with
respect to the filtration by dimension on the category of motives.
Conjecture 4.22 — The endofunctor Homeff(Λ(1),−) of DMeff(k; Λ) takes
the subcategory DMeff

6n(k; Λ) to the subcategory DMeff
6n−1(k; Λ).

Remark 4.23 — The endofunctor Homeff(Λ(1)[1],−) is also known as Voevodsky’s
contraction and is usually denoted by (−)−1. Voevodsky’s contraction is indeed a
remarkable operation. A notable property is that (−)−1 is exact with respect to
the homotopy t-structure. The above conjecture is simply saying that Voevodsky’s
contraction sends DMeff

6n(k; Λ) to DMeff
6n−1(k; Λ).

Remark 4.24 — Using that

Homeff(Λ(1),−)◦m ' Homeff(Λ(m),−)

we see that, under Conjecture 4.22, Homeff(Λ(m),−) induces a functor

Homeff(Λ(m),−) : DMeff
6n(k; Λ) −→ DMeff

6n−m(k; Λ)

(with the convention that DMeff
6r(k; Λ) = 0 for r < 0).

The following proposition gives some (meagre) evidence for Conjecture 4.22.
Proposition 4.25 — Let n ∈ N and M ∈ DMeff

6n(k; Λ). Then

Homeff(Λ(m),M) ∈ DMeff
6n−m(k; Λ)

for all m > n− 1. (In particular, Homeff(Λ(m),M) = 0 if m > n+ 1.)

Proof. We will assume that m ∈ {n, n−1}. Indeed, the case m > n+ 1 follows from
the case m = n and the first equivalence of categories in Remark 4.14 using the easy
fact that the contraction of an étale-locally constant sheaf is zero.

It is enough to treat the case where M = M(X) with X a smooth projec-
tive k-variety of pure dimension n. Recall that the strong dual of M is given by
M(−n)[−2n]. It follows that (Poincaré motivic duality)

M ' Homeff(M,Λ(n)[2n]).
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But we have natural isomorphisms

Homeff(Λ(m),Homeff(M,Λ(n))) ' Homeff(M,Homeff(Λ(m),Λ(n)))

' Homeff(M,Λ(n−m)).

Therefore, we are left to check that

Homeff(M,Λ(0)) ∈ DMeff
60(k; Λ) and Homeff(M,Λ(1)) ∈ DMeff

61(k; Λ).

We split the argument accordingly in two parts.
Part 1: The category DMeff

60(k; Λ) is monoidal closed; we denote by Homeff
60(−,−)

its internal Hom. Also, the functor Lπ0 of Proposition 4.15 is monoidal. Given an
effective motive L, we thus have the following isomorphisms

homDMeff(k; Λ)(L,Hom
eff(M,Λ(0)))

' homDMeff(k; Λ)(L⊗M,Λ(0))

' homDMeff
60(k; Λ)(Lπ0(L⊗M),Λ(0))

' homDMeff
60(k; Λ)(Lπ0(L)⊗ Lπ0(M),Λ(0))

' homDMeff
60(k; Λ)(Lπ0(L),Homeff

60(Lπ0(M),Λ(0)))

' homDMeff(k; Λ)(L,Hom
eff
60(Lπ0(M),Λ(0))).

This shows that Homeff(M,Λ(0)) is isomorphic to Homeff
60(Lπ0(M),Λ(0)), and there-

fore belongs to DMeff
60(k; Λ) as wanted.

Part 2: The subcategory DMeff
61(k; Λ) is not closed under the tensor product.

Nonetheless, it has a natural monoidal structure; its tensor product −⊗1− is given
by

M ⊗1 N := LAlb(M ⊗N)

where LAlb is the left adjoint to the obvious inclusion (see Proposition 4.15).
With this monoidal structure, the functor LAlb : DMeff(k; Λ) −→ DMeff

61(k; Λ)
is monoidal (see [14, Proposition 7.1.2]).

We denote by Homeff
61(−,−) the internal Hom relative to the monoidal structure

on DMeff
61(k; Λ). A similar computation as in part 1 shows that Homeff(M,Λ(1))

is isomorphic to Homeff
61(LAlb(M),Λ(1)), and therefore belongs to DMeff

61(k; Λ) as
wanted. �

Proposition 4.26 — Assume Conjecture 4.22. Let M ∈ DMeff
gm(k; Λ) be an

effective geometric motive. Then Homeff(M,−) preserves DMeff
6n(k; Λ), i.e., if N

belongs to DMeff
6n(k; Λ), then so is Homeff(M,N).

Proof. One reduces to the case where M = M(X) with X smooth and projective of
pure dimension d. Recall that M∨ = M(X)(−d)[−2d] is the strong dual of M . We
thus have the following isomorphisms

Hom(M,N) 'M∨ ⊗N ' Hom(Λ(d),M ⊗N)[−2d].

Applying ν>0, we deduce that

Homeff(M,N) ' Homeff(Λ(d),M ⊗N)[−2d].
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Now, as M ∈ DMeff
6d(k; Λ) and N ∈ DMeff

6n(k; Λ), we see that

M ⊗N ∈ DMeff
6n+d(k; Λ).

Applying Conjecture 4.22, the result follows. �

Our second conjecture concerns the homotopy t-structure.
Conjecture 4.27 — The homotopy t-structure on DMeff(k; Λ) restricts to

a t-structure on DMeff
6n(k; Λ) for any n ∈ N. Moreover, the heart of the homo-

topy t-structure on DMeff
6n(k; Λ) is the category HI6n(k; Λ) of n-presented homotopy

invariant sheaves with transfers.
Remark 4.28 — As said before, an effective motiveM ∈ DMeff(k; Λ) is a complex
of sheaves with transfers on Sm/k. We denote by hr(M) the homology sheaves of
M ; these are objects of HI(k; Λ). Conversely, any object of HI(k; Λ) is itself an
effective motive in an obvious way. This is said, we can rephrase the first assertion
in Conjecture 4.27 as the following implication:[

M ∈ DMeff
6n(k; Λ)

]
⇒

[
hr(M) ∈ DMeff

6n(k; Λ), ∀r ∈ Z
]
.

Also, the second assertion in Conjecture 4.27 gives the following equality

HI6n(k; Λ) = HI(k; Λ) ∩DMeff
6n(k; Λ).

Said differently, a homotopy invariant sheaf with transfers is n-presented if and only
if it belongs to DMeff

6n(k; Λ).
Lemma 4.29 — Conjecture 4.27 holds when n 6 1.

Proof. This is proven in [13]. �

Proposition 4.30 — Assume Conjectures 4.22 and 4.27. Let X be a smooth
k-variety. Then, for n ∈ N, CHn(X;Q) is n-presented.

Proof. Let X be a smooth compactification of X whose complement is a normal
crossing divisor with irreducible components Di, for i ∈ I. There exists an exact
sequence of homotopy invariant sheaves with transfers⊕

i∈I

CHn−1(Di;Q) −→ CHn(X;Q) −→ CHn(X;Q) −→ 0.

Therefore, it is enough to prove the claim under the assumption that X is smooth
and projective. Also, we may assume that X has pure dimension d. Of course, we
only need to consider the case n 6 d.

Using duality, we have for U ∈ Sm/k:

CHn(X × U ;Q) ' homDM(k;Q)(M(X)⊗M(U),Q(n)[2n])

' homDM(k;Q)(M(U),M(X)⊗Q(n− d)[2n− 2d])

' homDM(k;Q)(M(U)[2d− 2n],Hom(Q(d− n),M(X)))

' homDMeff(k;Q)(M(U)[2d− 2n],Homeff(Q(d− n),M(X))).

This shows that CHn(X;Q) coincides with h2d−2nHom
eff(Q(d − n),M(X)). Using

the combination of Conjecture 4.22 and Conjecture 4.27, we are done. �
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Remark 4.31 — Thanks to Lemma 4.29, the conclusion of Proposition 4.30 is
known for n = 0, 1. (It is also known for n = dim(X) for obvious reasons.) The
case n = 2 is already extremely interesting but also, unfortunately, completely out
of reach.
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