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Abstract. Let k be a field endowed with a complex embedding σ : k ↪→ C, and let Gmot be the
associated motivic Galois group. The goal of this paper is to prove that Gmot admits a natural
manifestation in anabelian geometry. Roughly speaking, we prove that Gmot coincides with the
automorphism group of the functor X 7→ π

geo
1 (X) sending a k-variety X to the geometric completion

of its topological fundamental group. This can be considered as a motivic version of the Ihara–
Matsumoto–Oda Conjecture for Galois groups, greatly expanded and proven by Pop. In a sequel to
this paper, we will develop the parallel story for the `-adic realisation.

Contents

Introduction 2
Around the classical Ihara–Matsumoto–Oda conjecture 2
Description of the main results 6
Notation and conventions 10
1. Motives, realisation and the motivic Galois group 12
1.1. Motivic sheaves 12
1.2. The Betti realisation 16
1.3. Motivic Galois group, I. The general case 23
1.4. Motivic Galois group, II. The Betti case 31
1.5. The fundamental sequence 37
1.6. Constructible sheaves of geometric origin 46
2. The main theorem for constructible sheaves 56
2.1. Universal Voevodsky pullback formalisms 56
2.2. The first main theorem 60
2.3. A complement to the first main theorem 67
3. Monodromic specialisation, stratification and exit-path 71
3.1. Regularly stratified varieties and deformations to normal cones 71
3.2. Monodromic specialisation, I. Definition and basic properties 78
3.3. Logarithmicity and tameness at the boundary 86
3.4. Some∞-categorical constructions 96
3.5. Monodromic specialisation, II. Functoriality 107
3.6. An exit-path theorem 117
4. The main theorem for local systems 124
4.1. Stratification, constructibility and cdh descent 124

Key words and phrases. Anabelian geometry, motive, Betti realisation, motivic Galois group, (motivic) fundamen-
tal group.

The author is partially supported by the Swiss National Science Foundation (SNF), project 200020_178729.
1



4.2. An application of the exit-path theorem 128
4.3. Motivic exit-path spaces 137
4.4. The second main theorem 146
References 155

Introduction

Our aim in this introduction is twofold. Firstly, we recall a few facts surrounding the classical
Ihara–Matsumoto–Oda Conjecture, which is now a theorem of Pop [Pop19]. These facts will be
of no use in the main body of the paper, but help putting our results into perspective. Secondly, we
present a rough form of our main results.

Around the classical Ihara–Matsumoto–Oda conjecture.
Let k be a field and fix a separable closure k/k of k. Given a geometrically connected k-variety

X and a geometric point x → X over k, one has the well-known short exact sequence of profinite
groups

1→ π ét
1 (X, x)→ π ét

1 (X, x)→ G(k/k)→ 1, (0.1)

where G(k/k) is the Galois group of k, π ét
1 (X, x) is the étale fundamental group of X and π ét

1 (X, x) =

π ét
1 (X ⊗k k, x) is the étale fundamental group of X ⊗k k; see [SGA71, Exposé IX, Théorème 6.1].

The short exact sequence (0.1) defines an action of G(k/k) on π ét(X, x) by outer automorphisms,
i.e., a morphism of groups

ρ̃X : G(k/k)→ Out(π ét
1 (X, x)) =

Aut(π ét
1 (X, x))

Inn(π ét
1 (X, x))

. (0.2)

In fact, the morphisms ρ̃X are compatible with morphisms of k-varieties. To phrase this compat-
ibility precisely, we introduce the category fiGrppf of profinite groups up to inner automorphisms.
It is obtained from the category Grppf of profinite groups by identifying the arrows that differ by
inner automorphisms; explicitly, if H and G are profinite groups, then

hom›Grppf
(H,G) = G\homGrppf

(H,G),

where G is acting by conjugation on the set of morphisms from H to G. Using this category, the
aforementioned compatibility can be summarised as follows.

(i) As an object of fiGrppf , the profinite group π ét
1 (X, x) is independent of the choice of x up to

a canonical isomorphism and we may denote it simply by π ét
1 (X).

(ii) Let Sch0/k ⊂ Sch/k be the category of geometrically connected k-varieties. The assign-
ment X 7→ π ét

1 (X) extends naturally into a functor

π ét
1 : Sch0/k →fiGrppf . (0.3)

(iii) The group G(k/k) acts on the functor π ét
1 by invertible natural transformations; this action

is given on X ∈ Sch0/k by the morphism ρ̃X in (0.2).
In particular, we obtain a morphism of groups

ρ̃ : G(k/k)→ Aut(π ét
1 ). (0.4)
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More generally, given any subcategory V ⊂ Sch0/k, we obtain a morphism of groups

ρ̃V : G(k/k)→ Aut(π ét
1 |V). (0.5)

We have the following remarkable theorem of Pop, see [Pop19, Theorem 2.7].

Theorem 0.1 (Pop). Assume that k has characteristic zero and let V = Sm0/k be the subcategory
of smooth k-varieties in Sch0/k. Then ρ̃V is an isomorphism.

Remark 0.2. In the 80’s, Ihara asked whether the morphism ρ̃, or some closely related variant, was
an isomorphism for k = Q and, in the 90’s, Matsumoto and Oda conjectured that this was indeed
the case. In an unpublished manuscript, Pop gave a positive answer to Ihara’s question. Soon
after, he developed a new approach for proving much finer versions of the Ihara–Matsumoto–Oda
Conjecture; the new approach was finally published in [Pop19]. Further refinements were obtained
later by Topaz [Top18] and Silberstein [Sil13]. In the present paper, we will not be concerned with
these finer versions. However, for the benefit of the interested reader, we mention the following.

• By [Pop19, Theorem 2.7], Theorem 0.1 holds true in positive characteristic if the étale
fundamental groups π ét

1 (X) are replaced by their tame quotients.
• A version of Theorem 0.1 holds true if the étale fundamental groups π ét

1 (X) are replaced by
their maximal pro-` abelian-by-central quotient and Sm0/k by much smaller subcategories.
See [Pop19, Theorem 2.6] for a precise statement.
• A version of [Pop19, Theorem 2.6] holds true for the maximal mod-` abelian-by-central

quotients of the π ét
1 (X)’s. See [Top18, Theorems A & B] for precise statements.

• When k = Q and X is a well-chosen geometrically integral algebraic surface with generic
point η, the morphism

ρ̃η : G(Q/Q)→ Out(π ét
1 (η))

is already an isomorphism, see [Sil13, Theorem 3].
• Finally, a p-adic analytic version of Theorem 0.1 was proven by André based on Pop’s

solution of the Ihara–Matsumoto–Oda conjecture; see [And03, Theorem 9.2.2].

In this paper, we will prove a motivic analogue of Theorem 0.1. In fact, strictly speaking, our
main theorem is a motivic analogue of a variant of Theorem 0.1, and we start by explaining what
this variant is about. To do so, we need a digression.

Given a noetherian scheme X, we denote by Πét(X) the étale fundamental groupoid of X. Recall
that Πét(X) is a category enriched in profinite sets. The objects of Πét(X) are the geometric points
of X and, given two geometric points x0 → X and x1 → X, the profinite set of maps from x0 to
x1 in Πét(X) is denoted by π ét

1 (X, x0, x1). It is the set of natural isomorphisms between the fiber
functors associated to x0 and x1 on the category of locally constant étale sheaves with finite stalks
on X. For more details, see [SGA71, Exposé V, §5 & 7]. In fact, the fundamental groupoid has
better functorial properties than the fundamental group. Indeed, let Grpdpf be the strict 2-category
of groupoids enriched in profinite sets. Then, there is a strict 2-functor

Πét : Sch/k → Grpdpf (0.6)

sending a k-variety X to the fundamental groupoid Πét(X) = Πét(X ⊗k k) of its base change to k.
This 2-functor lifts and extends the functor π ét

1 in (0.3). More precisely, the following holds.
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(i) Let Grpd0
pf be the full sub-2-category of Grpdpf whose objects are the connected groupoids.

Then, there is an obvious functor

Grpd0
pf →

fiGrppf

exhibiting fiGrppf as the 1-categorical truncation of Grpd0
pf .

(ii) There is a commutative triangle

Sch0/k Πét
//

π ét
1 ##

Grpd0
pf

��fiGrppf .

There is also an action of the Galois group G(k/k) on the 2-functor Πét in (0.6), lifting and
extending the action ρ̃ in (0.3). We now describe this action with some details. To fix ideas, we
first recall what it means to give an automorphism of a 2-functor.

Recollection 0.3. We denote by Aut(Πét) the monoidal category of automorphisms of the strict
2-functor Πét. An object of this category consists of a pair of families ((ξX)X, (α f ) f ) where:

• for an object X in Sch/k, ξX is an equivalence of the groupoid Πét(X) respecting the enrich-
ment in profinite sets,
• for a morphism f : Y → X in Sch/k, α f is a natural transformation

α f : ξX ◦ Πét( f )→ Πét( f ) ◦ ξY

which is necessarily invertible.
The α f ’s are required to be compatible with composition in the obvious way: if f : Y → X and
g : Z → Y are two composable morphisms in Sch/k, the following diagram commutes

ξX ◦ Πét( f ◦ g)
α f◦g

// Πét( f ◦ g) ◦ ξZ

ξX ◦ Πét( f ) ◦ Πét(g)
α f
// Πét( f ) ◦ ξY ◦ Πét(g)

αg
// Πét( f ) ◦ Πét(g) ◦ ξZ.

An arrow ε : ((ξX)X, (α f ) f ) → ((ξ′X)X, (α′f ) f ) in Aut(Πét) is a family of natural transformations
(εX : ξX → ξ′X)X such that for every f : Y → X, the following square commutes

ξX ◦ Πét( f )
α f
//

εX

��

Πét( f ) ◦ ξY

εY

��

ξ′X ◦ Πét( f )
α′f
// Πét( f ) ◦ ξ′Y .

The monoidal structure on Aut(Πét) is given by composing functors and natural transformations:

((ξX)X, (α f ) f ) ◦ ((ξ′X)X, (α′f ) f ) = ((ξX ◦ ξ
′
X)X, (α f ξ

′
X ◦ ξXα

′
f ) f ).

Clearly, every object of Aut(Πét) is left and right invertible for this tensor product. Thus, Aut(Πét)
is a (possibly noncommutative) Picard groupoid.
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It is easy to check that there is a morphism of Picard groupoids

ρ : G(k/k)→ Aut(Πét) (0.7)

sending an element σ ∈ G(k/k) to the pair ((ξX)X, (α f ) f ) with:

• for X in Sch/k, ξX is the autoequivalence of Πét(X ⊗k k) induced by the automorphism
idX ⊗ Spec(σ−1) of the scheme X ⊗k k = X ×Spec(k) Spec(k),
• for f : Y → X in Sch/k, α f is the identity natural transformation obtained by applying the

strict 2-functor Πét to the equality

( f × idSpec(k)) ◦ (idY × Spec(σ−1)) = (idX × Spec(σ−1)) ◦ ( f × idSpec(k)).

This said, we obtain a natural variant of the Ihara–Matsumoto–Oda question.

Question 0.4. Is the functor ρ in (0.7), or some closely related variant, an equivalence?

We will prove in this paper that a closely related version of the functor ρ is indeed an equivalence
of Picard groupoids. We refer the reader to Corollary 4.48 for a precise statement.

Remark 0.5. The truncation functor Grpd◦pf →
fiGrppf induces a morphism of Picard groupoids

Aut(Πét|V)→ Aut(π ét
1 |V)

for any subcategory V ⊂ Sch0/k, and it is easy to check that the triangle

G(k/k)
ρV
//

ρ̃V %%

Aut(Πét|V)

��

Aut(π ét
1 |V)

is commutative. Unfortunately, this morphism of Picard groupoids is not a priori essentially sur-
jective on objects: given a compatible family of outer automorphisms of the π ét

1 (X)’s, for X ∈ V,
there is an obstruction for lifting the family into an object of the Picard groupoid Aut(Πét|V). Thus,
a positive answer to Question 0.4 does not formally imply a positive answer to the original Ihara–
Matsumoto–Oda question. In particular, as far as we can see, the results obtained in this paper
cannot be used to reprove some of Pop’s results in [Pop19].

Before we start discussing our main results in the motivic setting, we need to move a small
step further from the original Ihara–Matsumoto–Oda Conjecture. In fact, this extra step is merely
cosmetical; it is based on the following observation.

Observation 0.6. The fundamental groupoid Πét(X) of a scheme X carries exactly the same in-
formation as the multi-Galois category E(X) of locally constant étale sheaves on X with finite
stalks. Indeed, E(X) is equivalent to the category of covariant functors from Πét(X) to the category
Setfin of finite sets (respecting the enrichment in profinite sets on Πét(X)) and, conversely, Πét(X)
is equivalent to the groupoid of fiber functors on E(X). More generally, we have a fully faithful
2-functor

Fun(−,Setfin) : (Grpdpf)
op → CATex

to the 2-category of categories and exact functors.
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Thus, instead of considering the 2-functor Πét in (0.6), one could consider the 2-functor

E : (Sch/k)op → CAT (0.8)

sending a k-variety X to the category E(X) = E(X ⊗k k). It follows immediately from the above
observation that we have a canonical equivalence of Picard groupoids

Aut(Πét) ' Aut(E) (0.9)

and hence also a morphism of Picard groupoids

ρ : G(k/k)→ Aut(E). (0.10)

The latter can be described as follows: it sends an element σ ∈ G(k/k) to the family of pullback
functors ((idX × Spec(σ))∗)X. This said, Question 0.4 is equivalent to the following.

Question 0.7. Is the functor ρ in (0.10), or some closely related variant, an equivalence?

It is precisely Question 0.7 that we will generalise and answer in this paper. In fact, this formu-
lation of Question 0.4 suggests immediately many variants where the categories of locally constant
étale sheaves with finite stalks are replaced by similar ones such as:

• the entire étale topoi;
• categories of étale local systems with coefficients in a finite ring;
• categories of étale sheaves with coefficients in a finite ring.

At this stage, we may state a precise theorem about the 2-functors

E(−; Λ) : (Sch/k)op → CAT and F(−; Λ) : (Sch/k)op → CAT

sending a k-variety X to the categories E(X; Λ) and F(X; Λ) of étale local systems and étale sheaves
on X ⊗k k with coefficients in a finite ring Λ.

Theorem 0.8. Assume that k has characteristic zero and that Λ is connected. Then, the natural
functors of Picard groupoids

G(k/k)→ Aut(E(−; Λ)) and G(k/k)→ Aut(F(−; Λ))

are equivalences.

Remark 0.9. Theorem 0.8 will be obtained as a consequence of our motivic Theorems 2.10 and
4.37 combined with rigidity for torsion étale motives. See Corollaries 2.14 and 4.48. We also
expect that there is a direct proof which is entirely parallel to the proofs of our motivic theorems;
see Remark 2.15. Such a direct proof should also work for the 2-functor F : (Sch/k)op → CAT
sending a a k-variety X to the étale topos of X ⊗k k.

Description of the main results.
We fix a field k endowed with a complex embedding σ : k ↪→ C. In this paper, we are mainly

concerned with variants of Questions 0.4 and 0.7 where the Galois group G(k/k) is replaced with
the motivic Galois group Gmot(k, σ). In fact, we first prove a variant of Theorem 0.8 for Gmot(k, σ),
and then derive from it a statement which is more in the spirit of Question 0.7; this latter statement
has a translation in terms of fundamental groupoids.

In the reminder of the introduction, we treat Gmot(k, σ) as an affine group scheme defined over
Q for the sake of simplicity. (In the main body of the paper, Gmot(k, σ) will be considered also
over deeper bases, such as the sphere spectrum, and, more importantly, we shall keep track of its
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natural derived structure, although the said structure is conjectured to be trivial.) The short exact
sequence (0.1) admits a motivic version, at least generically and up to a caveat. Indeed, let K/k be
a finitely generated extension in which k is algebraically closed, and let Σ : K ↪→ C be a complex
embedding extending σ. Let U be the pro-k-variety of open neighbourhoods of the generic point
of a smooth model of K, and let Uan be the associated analytic pro-variety. Note that Σ determines
a compatible system of base points in Uan. By [Ayo14c, Théorèmes 2.34 & 2.57], we have the
following exact sequence of affine group schemes over Q:

π
alg
1 (Uan,Σ)→ Gmot(K,Σ)→ Gmot(k, σ)→ 1, (0.11)

where π
alg
1 (Uan,Σ) is the pro-algebraic completion of the pro-discrete topological fundamental

group of the analytic pro-variety U. The caveat here is that this sequence is not exact on the
left (unless the extension K/k is trivial). Nevertheless, we obtain a short exact sequence

1→ π
geo
1 (U,Σ)→ Gmot(K,Σ)→ Gmot(k, σ)→ 1 (0.12)

if we define πgeo
1 (U,Σ) to be the image of the morphism π

alg
1 (Uan,Σ) → Gmot(K,Σ). This yields an

action of Gmot(k, σ) by outer automorphisms on the affine group scheme πgeo
1 (U,Σ). Letting K vary,

it is possible to formulate a generic analogue of the original Ihara–Matsumoto–Oda Conjecture for
Gmot(k, σ), but we will not do so here.

Instead, we move directly towards a motivic analogue of Question 0.7. For this, we need to
understand precisely the Tannakian category which gives rise to πgeo

1 (U,Σ). By construction, we
have a surjection of affine group schemes

π
alg
1 (Uan,Σ)� π

geo
1 (U,Σ). (0.13)

Since πalg
1 (Uan,Σ) is the fundamental group of the Tannakian category LS(Uan;Q)♥ of local systems

of Q-vector spaces on Uan, we may think of πgeo
1 (U,Σ) as the fundamental group of a Tannakian

subcategory LSgeo(U;Q)♥ ⊂ LS(Uan;Q)♥ whose objects we call local systems of geometric origin.
It turns out that, more generally, there is a good notion of sheaves of geometric origin over any
k-variety, which specialises to the aforesaid one for the pro-k-variety U. Given a k-variety X, a
constructible sheaf on Xan is of geometric origin if it belongs to the smallest abelian subcategory
closed under extensions and containing the sheaves of the form Rn f an

∗ Q, for n ∈ N and f : Y → X a
proper morphism. Deriving and closing up under colimits, one obtains the∞-category Shgeo(X;Q).
(See Definition 1.88, and Theorems 1.93 and 1.107.) By construction, these∞-categories are stable
by pullback, which yields a functor

Shgeo(−;Q) : (Sch/k)op → CAT∞. (0.14)

In fact, we prove in Subection 1.6 that the ∞-categories Shgeo(X;Q), for X ∈ Sch/k, are actually
stable by the six operations on constructible sheaves. This is a nontrivial fact and a key ingredient
in the proof of the next statement, which is our first main result.

Theorem 0.10. There is a natural equivalence of H-groups

Gmot(k, σ)(Q)
∼
−→ Auteq(Shgeo(−;Q)) (0.15)

from the discrete group ofQ-rational points of Gmot(k, σ)(Q) to the space of autoequivalences of the
functor Shgeo(−;Q) considered as an object of the ∞-category of CAlg(CAT∞)-valued presheaves
on Sch/k.
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Remark 0.11. Of course, we will also give a similar interpretation of the Λ-points of Gmot(k, σ)
for any (classical) Q-algebra Λ: Gmot(k, σ)(Λ) is equivalent to the space of autoequivalences of the
functor Shgeo(−; Λ), sending X ∈ Sch/k to the ∞-category of sheaves of Λ-modules of geometric
origin. However, it is worth mentioning that our main theorem is even more precise. Indeed, the
motivic Galois group Gmot(k, σ) carries a natural derived structure which we expect to be trivial,
but this property has not been justified so far. Similarly, the right hand side of (0.15) is the global
section of a derived group stack Auteq(Shgeo(−;Q)). Our main theorem matches Gmot(k, σ) and
Auteq(Shgeo(−;Q)) with their natural derived structures. We refer the reader to Theorem 2.10 for
a precise statement.

Remark 0.12. An interesting byproduct of the proof of Theorem 0.10 is the following. The action
of Gmot(k, σ) on the functor Shgeo(−;Q) can be used to construct a new six-functor formalism
whose underlying pullback formalism is given by the functor

Shgeo(−;Q)Gmot : (Sch/k)op → CAT∞, (0.16)

sending a k-variety X to the ∞-category Shgeo(X;Q)Gmot of fixed objets in Shgeo(X;Q) for the ac-
tion of Gmot(k, σ). The usual Betti realisation functor for motives, factors through Shgeo(−;Q)Gmot

yielding a morphism of six-functor formalisms

R : MSh(−;Q)→ Shgeo(−;Q)Gmot . (0.17)

(Here and below, MSh(X;Q) is the ∞-category of motivic sheaves on X.) It is expected that R
yields an equivalence when restricted to the sub-∞-categories of constructible objects on both
sides. In view of the main result of [CG17], objects in Shgeo(X;Q)Gmot are entitled to be called Nori
motivic sheaves. This gives a new construction of an abelian category of Nori motivic sheaves
with the expected relation to the triangulated categories of motivic sheaves à la Voevodsky. See
[Ara13], [Ara20], [Ivo17] and [IM19] for other approaches.

The proof of Theorem 0.10 is extraordinary simple! It relies on the following two ingredients.
(1) A motivic description of the functor Shgeo(−;Q).
(2) The universality of the functor MSh(−;Q) as an object in the ∞-category of Voevodsky

pullback formalisms.
The second ingredient is a recent result of Drew–Gallauer [DG20]. Roughly speaking, it is the
property that the functor MSh(−;Q) is initial when viewed as an object of a certain ∞-category
of functors satisfying enough of the six-functor formalism; see also Theorem 2.5. To describe the
first ingredient, we note that the Betti realisation yields a natural transformation

B∗ : MSh(−;Q)→ Shgeo(−;Q). (0.18)

Let B ∈ MSh(k;Q) be the algebra object representing singular cohomology of motives; this is
the image of Q by the functor B∗ : ModQ → MSh(k;Q), right adjoint to B∗. Applying a general
∞-categorical construction, we obtain a natural transformation‹B∗ : MSh(−;B)→ Shgeo(−;Q) (0.19)

factoring B∗. Here, for X ∈ Sch/k, we denote by MSh(X;B) the ∞-category of B-modules in
MSh(X;Q). The motivic description of Shgeo(−;Q) is the content of the following statement.

Theorem 0.13. The morphism ‹B∗ in (0.19) is an equivalence.
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A closely related variant of Theorem 0.13 was announced by Drew in [Dre18]; see the paragraph
“Forthcoming and future work” in the introduction of loc. cit. The fully faithfulness part is an old
observation due to Cisinski–Déglise, which is a direct consequence of the compatibility of the Betti
realisation with the six operations; see Lemma 1.95 and Remark 1.97. The essential surjectivity
of these functors relies on Deligne’s semi-simplicity theorem [Del71, Théorème 4.2.6], but we
offer another proof, avoiding Hodge theory and relying instead on results about the motivic Galois
group, namely [Ayo14c, Théorèmes 2.34 & 2.57].

Using the above two ingredients, we get the following chain of equivalences of H-spaces:

Self-Map(Shgeo(−;Q)) ' Self-Map(MSh(−;B))

' Self-Map

MSh(−;Q)
↓

MSh(−;B)


id

' lim
f :Y→X∈(Sch/k)tw

Map

MSh(X;Q)
↓

MSh(X;B)
,

MSh(Y;Q)
↓

MSh(Y;B)


f ∗

.

The subscripts “id” and “ f ∗” refer to taking the fibers at the points

id ∈ End(MSh(−;Q)) and f ∗ ∈ Map(MSh(X;Q),MSh(Y;Q))

respectively. Also, the self-mapping spaces are taken in the ∞-categories of CAlg(PrL)-valued
presheaves on Sch/k, for the first two, and on ∆1 × Sch/k for the third one. Finally, the mapping
spaces after the limit are taken in CAlg(PrL)∆1

. This said, we may use [Lur17, Theorem 4.8.5.21],
to continue the above chain of equivalences as follows

' lim
f :Y→X∈(Sch/k)tw

MapPrCAlg((MSh(X;Q),B|X), (MSh(Y;Q),B|Y)) f ∗

' lim
f :Y→X∈(Sch/k)tw

MapCAlg(MSh(Y;Q))(B|Y ,B|Y)

' MapCAlg(MSh(k;Q))(B,B)

' Gmot(k, σ)(Q).

This finishes our sketch of proof of Theorem 0.10. For more details, we refer the reader to the
proof of Theorem 2.10 where we actually use a slightly different argument.

In the remainder of the introduction, we briefly explain how to derive from Theorem 0.10 a
similar statement about the action of the motivic Galois group on categories of local systems of
geometric origin. For X ∈ Sch/k, we denote by LSgeo(X;Q) the full sub-∞-category of Shgeo(X;Q)
spanned by dualizable objects.1 Clearly, an autoequivalence of Shgeo(X;Q) restricts to an autoe-
quivalence of LSgeo(X;Q), which gives a map

Auteq(Shgeo(−;Q))→ Auteq(LSgeo(−;Q)). (0.20)

To construct a map in the opposite direction, it is enough to find a recipe for constructing the
functor Shgeo(−;Q) from the functor LSgeo(−;Q). This is not unreasonable since a constructible
sheaf of geometric origin on X can be obtained by gluing local systems of geometric origin on the
strata of some stratification of X. To produce such a recipe, we need to extend the functoriality of
the categories LSgeo(−;Q) in order to allow monodromic specialisation functors. For more details,
we refer the reader to Section 3. Then, we need to show that these extra functorialities do not mess

1We use ‘dualizable’ to mean ‘strongly dualizable’.
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the autoequivalences of the functor LSgeo(−;Q). At the end, we are able to justify the following
statement, which is our second main result; see Theorem 4.37.

Theorem 0.14. There is a natural equivalence of H-groups

Gmot(k, σ)(Q)
∼
−→ Auteq(LSgeo(−;Q)) (0.21)

from the discrete group ofQ-rational points of Gmot(k, σ)(Q) to the space of autoequivalences of the
functor LSgeo(−;Q) considered as an object of the∞-category of CAlg(CAT∞)-valued presheaves
on Sm/k.

Notation and conventions.

∞-Categories. We freely use the language of∞-categories as developed in Lurie’s books [Lur09a],
[Lur17] and [Lur18]. The reader familiar with the content of these books will have no problem
understanding our notation pertaining to higher category, higher algebra and higher algebraic ge-
ometry, which are often very close to those in loc. cit. Nevertheless, we list below some of the
notations and conventions we frequently use.

As usual, we employ the device of Grothendieck universes, and we denote by Cat∞ the ∞-
category of small∞-categories, and CAT∞ the∞-category of but possibly large∞-categories. We
denote by CATL

∞ (resp. CATR
∞) the wide sub-∞-category of CAT∞ spanned by functors which are

left (resp. right) adjoints. Similarly, we denote by PrL (resp. PrR) the ∞-categories of presentable
∞-categories and left (resp. right) adjoint functors. We denote by PrL

ω ⊂ PrL (resp. PrR
ω ⊂ PrR)

the sub-∞-category of compactly generated ∞-categories and compact-preserving functors (resp.
functors commuting with filtered colimits).

We denote by S the∞-category of spaces and by Sp the∞-category of spectra. The latter admits
a natural t-structure (Sp≥0,Sp≤0) with Sp≥0 the sub-∞-category of connective spectra.

Given an∞-category C, we denote by MapC(x, y) the mapping space between two objects x and
y in C. We denote by EquiC(x, y) ⊂ MapC(x, y) the subspace of equivalences between x and y. We
also write Self-MapC(x), instead of MapC(x, x), for the self-mapping space of an object x of C.
Similarly, we write AuteqC(x), instead of EquiC(x, x), for the space of autoequivalences of x.

Given two ∞-categories C and D, we denote by Fun(C,D) the ∞-category of functors from
C to D. If C is small, we denote by P(C) = Fun(Cop,S) the ∞-category of presheaves on C

and by y : C → P(C) the Yoneda embedding. More generally, we write Psh(C,D) instead of
Fun(Cop,D) if we want to consider a contravariant functor from C to D as a D-valued presheaf
on C. If C is endowed with a topology τ, we denote by F

(∧)
τ (C) ⊂ P(C) the full sub-∞-category

of τ-(hyper)sheaves and by Lτ : P(C) → F
(∧)
τ (C) the (hyper)sheafification functor. Similarly, we

denote by Shv(∧)
τ (C;D) the full sub-∞-category of Psh(C;D) of D-valued τ-(hyper)sheaves.

A symmetric monoidal ∞-category is a coCartesian fibration C⊗ → Fin∗ such that the induced
functor (ρi

!)i : C〈n〉 →
∏

1≤i≤n C〈1〉 is an equivalence for all n ≥ 0. (Recall that Fin∗ is the category
of finite pointed sets, 〈n〉 = {1, . . . , n} ∪ {∗} and ρi : 〈n〉 → 〈1〉 is the unique map such that
(ρi)−1(1) = {i}.) The fiber C⊗

〈1〉 over 〈1〉 is called the underlying ∞-category, and is simply denoted
by C. The∞-category of commutative algebras in C⊗ is denoted by CAlg(C). If A ∈ CAlg(C), we
denote by ModA(C) the∞-category of A-modules.

By Lurie’s straightening construction, a symmetric monoidal category can be considered as a
commutative algebra in CAT×∞. We use this to identify the ∞-category of symmetric monoidal
∞-categories with CAlg(CAT∞). Similarly, the ∞-categories PrL and PrL

ω underly symmetric
10



monoidal ∞-categories PrL,⊗ and PrL,⊗
ω . A symmetric monoidal ∞-category is said to be pre-

sentable (resp. compactly generated) if it belongs to CAlg(PrL) (resp. CAlg(PrL
ω)).

Algebraic Geometry. If k is a field, we use “k-variety” as a shorthand for “k-scheme of finite type”.
If σ : k ↪→ C is a complex embedding, we denote by Xan the complex analytic variety associated
to a k-variety X. If we need to specify the role of σ, we write Xσ-an.

Unless otherwise stated, schemes will be assumed quasi-compact and quasi-separated. Given
a scheme S , we denote by Sch/S the category of finite type S -schemes. We denote by Sm/S ⊂
Sch/S and Ét/S ⊂ Sch/S the full subcategories of smooth and étale S -schemes respectively. When
S is the spectrum of a commutative ring R, we write Sch/R instead of Sch/Spec(R), and similarly
in the smooth and étale case. These categories are typically endowed with the étale topology,
which we abbreviate by “ét”. We usually denote by − ×S − (resp. − ×R −) the direct product on
Sch/S (resp. Sch/R). If k is a fixed base field, we often write − × − instead of − ×k −.

Given a scheme S , we denote by An
S the n-dimensional relative affine space over S . If S is the

spectrum of a commutative ring R, we write An
R instead of An

Spec(R). If a base field k is fixed, we
even writeAn instead ofAn

k . Similarly, we denote by Pn
S the n-dimensional relative projective space

over S , and use similar shorthands when S is the spectrum of a commutative ring or a fixed base
field.

Motivic and ordinary sheaves. In this paper, we will depart from well-established notations in mo-
tivic homotopy theory: given a scheme X, we denote by MSh(X) the Morel–Voevodsky∞-category
of motivic sheaves on X in the étale topology. This is usually denoted by SHét(X), or similarly.
Given Λ ∈ CAlg(Sp), we denote by MSh(X; Λ) the ∞-category of Λ-modules in MSh(X). Ob-
jects of MSh(X; Λ) will be called motivic sheaves with coefficients in Λ. More generally, if A is a
commutative algebra MSh(S ) and X is an S -scheme, we denote by MSh(X; A) the ∞-category of
A-modules in MSh(X). (Here we use the symmetric monoidal functor given by pullback along the
structural morphism X → S .)

Similarly, given a complex analytic variety (or, more generally, any topological space) W, we
denote by Sh(W) the∞-category Shv(Op(W);Sp) of Sp-valued sheaves on the site of opens in W.
Given Λ ∈ CAlg(Sp), we denote by Sh(W; Λ) the ∞-category of Λ-modules in Sh(W) which we
call sheaves on W with coefficients in Λ. The full sub-∞-category of Sh(W; Λ) of local systems is
denoted by LS(W; Λ).

If X is a k-variety, with k a field endowed with a complex embedding σ : k ↪→ C, we denote by
Shct(X; Λ) the ind-completion of the ∞-category of sheaves on Xan which are constructible with
respect to the analytification of a stratification of X. (We warn the reader that this is not a full
sub-∞-category of Sh(Xan; Λ).) We denote by Shgeo(X; Λ) the full sub-∞-category of Shct(X; Λ)
consisting of those sheaves which are of geometric origin. If we need to specify the role of σ, we
write Shσ-ct(X; Λ) and Shσ-geo(X; Λ). If Λ is the sphere spectrum, we omit it from the notation, and
write simply Shct(X) and Shgeo(X). The Betti realisation functor induces an exact functor

B∗X : MSh(X; Λ)→ Shgeo(X; Λ).

With X as above, we denote by L̂S(X; Λ) the full sub-∞-category of Shct(X; Λ) generated under
colimits by LS(Xan; Λ). We denote by LSgeo(X; Λ) the subcategory of LS(Xan; Λ) consisting of
those local systems which are of geometric origin. Then, we denote by L̂Sgeo(X; Λ) the full sub-
∞-category of Shgeo(X; Λ) generated under colimits by LSgeo(X; Λ).
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Galois and fundamental groups. Let k be a field. Given a separable closure k/k of k, we denote
by G(k/k) the absolute Galois group of k; this is a profinite group. If σ : k ↪→ C is a complex
embedding, we denote by Gmot(k, σ) the motivic Galois group of k. This is naturally an affine
derived group scheme. More precisely, it is the spectrum of a derived Hopf algebra Hmot(k, σ)
which is concentrated in positive homological degrees.

If W is a connected paracompact complex analytic variety and w ∈ W a point, we denote by
π1(W,w) the fundamental group of W and π

alg
1 (W,w) its pro-algebraic completion over Q. Said

differently, πalg
1 (W,w) is the fundamental group of the Tannakian category LS(W;Q)♥ neutralised

by the fiber functor at w. If X is a connected k-variety and x ∈ Xan is a complex point of X, we
denote by πgeo

1 (X, x) the fundamental group of the Tannakian category LSgeo(X;Q)♥ neutralised by
the fiber functor at x. If we need to specify the role of σ, we write πσ-geo

1 (X, x).

1. Motives, realisation and the motivic Galois group

In this section, we recast the construction of the motivic Galois group, introduced in [Ayo14b]
and revisited in [Ayo17a], using the language of ∞-categories. We also review some basic facts
from [Ayo14b, Ayo14c] and relate them to the notion of local systems of geometric origin. All the
results contained in this section are more or less known, but not always available in the generality
we want to consider in this paper. The reader familiar with this material may skip this section and
refer to it when needed.

1.1. Motivic sheaves.
In order to streamline the notation in the paper, we will depart from well-established notations

in motivic homotopy theory and write MSh(X) for the Morel–Voevodsky ∞-category of motivic
sheaves on X in the étale topology. This ∞-category is usually denoted by SHét(X), or similarly,
in the literature. We will also write MSh(X; Λ) for the ∞-category of motivic sheaves with co-
efficients in a commutative ring spectrum Λ ∈ Sp. In this subsection, we recall the construction
of these ∞-categories and review their basic properties. We also review the Betti realisation of
motivic sheaves. We start by recalling some general facts.

Notation 1.1. Given a small ∞-category C, we denote by P(C) the ∞-category of S-valued
presheaves on C. (As usual, S is the ∞-category of Kan complexes.) If C is endowed with a
Grothendieck topology τ, we denote by F

(∧)
τ (C) the full sub-∞-category of P(C) spanned by the

τ-(hyper)sheaves. More generally, if D is another ∞-category, we denote by Psh(C;D) the ∞-
category of D-valued presheaves on C and by Shv(∧)

τ (C;D) its full sub-∞-category spanned by
τ-(hyper)sheaves. When D = ModΛ is the ∞-category of Λ-modules for some commutative ring
spectrum Λ ∈ CAlg(Sp), we write Psh(C; Λ) and Shv(∧)

τ (C; Λ) instead. There are obvious functors

Λ(−) : P(C)→ Psh(C; Λ) and Λτ(−) : F(∧)
τ (C)→ Shv(∧)

τ (C; Λ), (1.1)

induced by the unique colimit-preserving functor S → ModΛ sending the one-point space to Λ. We
also denote by Λ(−) and Λτ(−) the composition of the functors in (1.1) with the Yoneda embedding
and its (hyper)sheafified version (which fails to be an embedding in general).

Remark 1.2. Let D⊗ be a symmetric monoidal∞-category with underlying∞-category D. Apply-
ing [Lur09a, Proposition 3.1.2.1] to the coCartesian fibration D⊗ → Fin∗, we deduce that

Fun(Cop,D⊗) ×Fun(Cop,Fin∗) Fin∗ → Fin∗
12



defines a symmetric monoidal∞-category Psh(C;D)⊗ whose underlying∞-category is Psh(C;D).
By [Lur17, Proposition 2.2.1.9], if the symmetric monoidal ∞-category D⊗ is presentable, then
Shv(∧)

τ (C;D) underlies a unique symmetric monoidal∞-category Shv(∧)
τ (C;D)⊗ such that the (hy-

per)sheafification functor
Lτ : Psh(C;D)→ Shv(∧)

τ (C;D)
lifts to a symmetric monoidal functor. These considerations apply with D⊗ = Mod⊗Λ the symmetric
monoidal ∞-category of Λ-modules (with Λ ∈ CAlg(Sp) as above). The resulting symmetric
monoidal ∞-categories are denoted by Psh(C; Λ)⊗ and Shv(∧)

τ (C; Λ)⊗ respectively. The functors
Λ(−) and Λτ(−) in (1.1) lift naturally to symmetric monoidal functors.

Remark 1.3. Let Λ ∈ CAlg(Sp) be a commutative ring spectrum. By [Lur09a, Proposition 5.5.3.6
& Remark 5.5.1.6], the ∞-categories Psh(C; Λ) and Shv(∧)

τ (C; Λ) are presentable. They are gen-
erated under colimits by their objects Λ(X) and Λτ(X), for X ∈ C. In fact, the objects Λ(X) are
compact, so that Psh(C; Λ) is compactly generated. More is true: the symmetric monoidal ∞-
categories Psh(C; Λ)⊗ and Shv(∧)

τ (C; Λ)⊗ are presentable and, if C has finite products, Psh(C; Λ)⊗

is even compactly generated.

Remark 1.4. If Λ is set to be the sphere spectrum S ∈ Sp, we write Psh(C) and Shv(∧)
τ (C) instead

of Psh(C;S) and Shv(∧)
τ (C;S). Said differently, Psh(C) and Shv(∧)

τ (C) are the ∞-categories of Sp-
valued presheaves and τ-(hyper)sheaves respectively. In fact, this will be a general notational
convention in the paper: given some ∞-categories depending on a commutative ring spectrum Λ,
we simply remove “Λ” from the notation to indicate that Λ is set to be the sphere spectrum S ∈ Sp.
It is worth recalling that Psh(C) is tensored over Sp⊗ and that, by [Lur17, Proposition 4.8.1.17],
the∞-category Psh(C; Λ) is equivalent to the∞-category of Λ-modules in Psh(C). Thus, we have
an equivalence

Psh(C) ⊗ModΛ ' Psh(C; Λ)
where the tensor product is taken in PrL,⊗. The same applies to the∞-category Shv(∧)

τ (C; Λ).

As usual, for a scheme S , we denote by Sm/S the category of smooth S -schemes which we
endow with the étale topology abbreviated by “ét”. We also denote by An

S the n-dimensional
relative affine space.

Definition 1.5. Let S be a scheme and Λ ∈ CAlg(Sp) a commutative ring spectrum. We denote
by MSheff(S ; Λ) the full sub-∞-category of Shv∧ét(Sm/S ; Λ) spanned by those étale hypersheaves
which are A1-invariant. (Recall that a presheaf F is A1-invariant if, for every X ∈ Sm/S , the
projection map p : A1

X → X induces an equivalence p∗ : F(X) ' F(A1
X).)

Remark 1.6. The sub-∞-category MSheff(S ; Λ) is the localisation of Shv∧ét(Sm/S ; Λ) with respect
to the collection of maps of the form Λét(A1

X) → Λét(X), for X ∈ Sm/S , and their desuspensions.
In particular, the obvious inclusion admits a left adjoint

LA1 : Shv∧ét(Sm/S ; Λ)→MSheff(S ; Λ). (1.2)

The ∞-category MSheff(S ; Λ) is stable and, by [Lur17, Proposition 2.2.1.9], it underlies a unique
symmetric monoidal ∞-category MSheff(S ; Λ)⊗ such that LA1 lifts to a symmetric monoidal func-
tor. Moreover, the symmetric monoidal∞-category MSheff(S ; Λ)⊗ is presentable.

Definition 1.7. Let S be a scheme and Λ ∈ CAlg(Sp) a commutative ring spectrum. We denote by
TS (or simply T is S is clear from the context) the image by the functor LA1 in (1.2) of the cofiber
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of the split inclusion Λét(S ) → Λét(A1
S r 0S ) induced by the unit section. With the notation of

[Rob15, Definition 2.6], we set

MSh(S ; Λ)⊗ = MSheff(S ; Λ)⊗[T−1
S ].

Thus, there is a morphism Σ∞T : MSheff(S ; Λ)⊗ → MSh(S ; Λ)⊗ in CAlg(PrL), sending TS to a
⊗-invertible object, and which is initial for this property. We denote by Ω∞T the right adjoint of Σ∞T .

Notation 1.8. Let X be a smooth S -scheme. We set

Meff(X) = LA1(Λét(X)) and M(X) = Σ∞T Meff(X) = Σ∞T LA1(Λét(X)).

These are objects of MSheff(S ; Λ) and MSh(S ; Λ). The object M(X) is called the homological
motive associated to X.

Notation 1.9. We denote by Λ (or ΛS ) the monoidal unit of MSh(S ; Λ)⊗. For n ∈ N, we denote by
Λ(n) the image of T⊗n

S [−n] by Σ∞T , and by Λ(−n) the ⊗-inverse of Λ(n). For n ∈ Z, we denote by
M 7→ M(n) the Tate twist given by tensoring with Λ(n).

Lemma 1.10. Let S be a scheme and Λ ∈ CAlg(Sp) a commutative ring spectrum. The symmetric
monoidal ∞-category MSheff(S ; Λ)⊗ is presentable and its underlying ∞-category is generated
under colimits, and up to desuspension and negative Tate twists when applicable, by the motives
M(eff)(X) with X ∈ Sm/S .

Proof. See [AGV20, Lemma 2.1.20]. �

Under some mild hypotheses, Lemma 1.10 can be strengthened as in the next proposition. We
refer the reader to [AGV20, Definition 2.4.8] for the notion of Λ-cohomological dimension when
Λ is connective. Below, we extend this notion to nonconnective ring spectra by declaring that Λ-
cohomological dimension is equal to the τ≥0Λ-cohomological dimension. Also, we will say that a
scheme is Λ-good if it is (τ≥0Λ, ét)-good in the sense of [AGV20, Definition 2.4.14].

Proposition 1.11. Let k be a field of finite virtual Λ-cohomological dimension and S a k-variety.
Then the symmetric monoidal ∞-category MSh(eff)(S ; Λ)⊗ is compactly generated and its under-
lying ∞-category is generated under colimits, and up to desuspension and negative twists when
applicable, by the objects M(eff)(X) with X ∈ Sm/S assumed Λ-good.

Proof. This is particular case of a more general result; see for example [AGV20, Proposition 2.4.22
& Remark 2.4.23]. �

Proposition 1.12. Let S be a scheme and Λ ∈ CAlg(Sp) a commutative ring spectrum. The
assignment X 7→MSh(eff)(X; Λ)⊗ extends naturally into a functor

MSh(eff)(−; Λ)⊗ : (Sch/S )op → CAlg(PrL). (1.3)

Proof. We refer to [Rob15] for the construction of the functor MSh(eff)(−; Λ)⊗ in (1.3). �

Notation 1.13. Let f : Y → X be a morphism in Sch/S . The image of f by the functor
MSh(eff)(−; Λ)⊗ in (1.3) is the symmetric monoidal functor

f ∗ : MSh(eff)(X; Λ)⊗ →MSh(eff)(Y; Λ)⊗

whose underlying functor, also denoted by f ∗, is called the inverse image functor. The latter has a
right adjoint f∗, called the direct image functor.
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The functor MSh(−; Λ)⊗ in (1.3) is an example of what we shall call a Voevodsky pullback
formalism. (In [Ayo07a, §1.4.1], up to the monoidal structure, this was called a stable homotopy
2-functor. A closely related notion is that of a coefficient system; see [Dre18, Definition 5.3] and
[DG20].)

Definition 1.14. Let S be a quasi-compact and quasi-separated scheme. A Voevodsky pullback
formalism over S is a functor

H⊗ : (Sch/S )op → CAlg(CATst
∞)

sending a finite type S -scheme X to a symmetric monoidal stable ∞-category H(X)⊗ and a mor-
phism f : Y → X of finite type S -schemes to a symmetric monoidal functor f ∗ : H(X)⊗ → H(Y)⊗

such that the following conditions are satisfied. (Below, we also write f ∗ : H(X) → H(Y) for the
functor underlying f ∗.)

(1) H(∅) is equivalent to the final∞-category with one object and one morphism.
(2) For every morphism f : Y → X in Sch/S , the functor f ∗ admits a right adjoint f∗. More-

over, given a Cartesian square

Y ′
g′
//

f ′
��

Y
f
��

X′
g
// X,

with g smooth, the exchange morphism g∗ f∗ → f ′∗g
′∗ is an equivalence.

(3) If f : Y → X is a smooth morphism in Sch/S , the functor f ∗ admits a left adjoint f].
Moreover, for A ∈ H(X) and B ∈ H(Y), the obvious map f]( f ∗(A) ⊗ B) → A ⊗ f](B) is an
equivalence.

(4) If i : Z ↪→ X is a closed immersion in Sch/S , the functor i∗ is fully faithful. Moreover, if
j : U ↪→ X is the complementary open immersion, then the pair (i∗, j∗) is conservative.

(5) If X is a k-variety and p : A1
X → X the obvious projection, then p∗ is fully faithful.

(6) If X is a k-variety and s : X ↪→ A1
X a section to the morphism p in (5), then the endofunctor

p] ◦ s∗ is an equivalence.

We say that the Voevodsky pullback formalism H⊗ is presentable if it factors through the ∞-
category CAlg(PrL, st).

Proposition 1.15. The functor MSh(−; Λ) in (1.3) is a presentable Voevodsky pullback formalism.

Proof. All the axioms in Definition 1.14 are direct consequences of the construction, except for
axiom (4) which is a reformulation of the Morel–Voevodsky localisation theorem [MV99, §3.2,
Theorem 2.21]. For a fully detailed exposition, see [Ayo07b, §4.5.2 & 4.5.3]. For a modern
treatment of the Morel–Voevodsky localisation theorem, see [Hoy18, §1]. �

Remark 1.16. A Voevodsky pullback formalism gives rise to a full six-functor formalism as ex-
plained in [Ayo07a, Ayo07b]. More precisely, the axioms of Definition 1.14 imply the proper base
change theorem, which can be used to define the exceptional adjunction

f! : H(Y)� H(X) : f !

for every morphism f : Y → X in Sch/S .
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1.2. The Betti realisation.
In this subsection, we recall the construction of the Betti realisation following [Ayo10]. Given

a complex analytic variety V , we denote by AnSm/V the category of smooth complex analytic V-
varieties which we endow with the classical topology, abbreviated by “cl”. Unless otherwise stated,
the notion of (hyper)sheaf on AnSm/V is always taken with respect to the classical topology. As
usual, we denote by Dn

V the n-dimensional relative polydisc.

Definition 1.17. Let V be a complex analytic variety and Λ ∈ CAlg(Sp) a commutative ring
spectrum. We denote by AnSheff(V; Λ) the full sub-∞-category of Shv∧cl(AnSm/V; Λ) spanned by
those hypersheaves which are D1-invariant. (Recall that a presheaf F is D1-invariant if, for every
W ∈ AnSm/V , the projection map p : D1

W → W induces an equivalence p∗ : F(W) ' F(D1
W).)

As explained in Remark 1.6, the ∞-category AnSheff(V; Λ) underlies a presentable symmetric
monoidal∞-category AnSheff(V; Λ)⊗ and we have a symmetric monoidal functor

LD1 : Shv∧cl(AnSm/V; Λ)⊗ → AnSheff(V; Λ)⊗ (1.4)

whose underlying functor is left adjoint to the obvious inclusion.

Definition 1.18. Let V be a complex analytic variety and Λ ∈ CAlg(Sp) a commutative ring
spectrum. We denote by TV (or simply T is V is clear from the context) the image by the functor
LD1 in (1.4) of the cofiber of the split inclusion Λcl(S )→ Λcl(D1

S r 0S ) induced by the unit section.
With the notation of [Rob15, Definition 2.6], we set

AnSh(V; Λ)⊗ = AnSheff(V; Λ)⊗[T−1
V ].

Thus, there is a morphism Σ∞T : AnSheff(V; Λ)⊗ → AnSh(V; Λ)⊗ in CAlg(PrL), sending TV to a
⊗-invertible object, and which is initial for this property. We denote by Ω∞T the right adjoint of Σ∞T .

The ∞-categories introduced above are equivalent to much simpler ones. To state this, we
introduce a notation.

Notation 1.19. Let W be a topological space and Λ ∈ CAlg(Sp) a commutative ring spectrum. We
denote by Sh(W; Λ)⊗ the symmetric monoidal∞-category of sheaves on W with coefficients in Λ.
In formulas, we set

Sh(W; Λ) = Shv∧cl(Op(W); Λ)

with (Op(W), cl) the site of opens in W with the classical topology, aka., the open cover topology.

Proposition 1.20. Let V be a complex analytic space and Λ ∈ CAlg(Sp) a commutative ring
spectrum. Then, the obvious functors

Sh(V; Λ)
ι∗V
−→ AnSheff(V; Λ)

Σ∞T
−−→ AnSh(V; Λ)

are equivalences of∞-categories.

Proof. The first equivalence is the content of [Ayo10, Théorèmes 1.8]. The second equivalence
follows from [Ayo10, Lemme 1.10] and the discussion right after this lemma in loc. cit. �

We now fix a field k endowed with a complex embedding σ : k ↪→ C. Given a k-variety X, we
denote by Xan the associated complex analytic variety.
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Definition 1.21. Let X be a k-variety and Λ ∈ CAlg(Sp) a commutative ring spectrum. The Betti
realisation for motivic sheaves on X is the symmetric monoidal functor

B∗X : MSh(X; Λ)⊗ → Sh(Xan; Λ)⊗ (1.5)

defined as the composition of

MSh(X; Λ)⊗
An∗
−−→ AnSh(Xan; Λ)⊗ ' Sh(Xan; Λ)⊗. (1.6)

Here, An∗ is induced from the functor Sm/X → AnSm/Xan, given by Y 7→ Yan, by the functoriality
of the constructions in Definitions 1.7 and 1.18. The functor B∗X admits a right adjoint BX, ∗. If no
confusion can arise, we sometimes write B∗ and B∗ instead of B∗X and BX, ∗.

Proposition 1.22. The functors B∗X in (1.5) are part of a morphism of CAlg(PrL)-valued presheaves

B∗ : MSh(−; Λ)⊗ → Sh((−)an; Λ)⊗ (1.7)

defined on Sch/k. Moreover, if f is a smooth morphism in Sch/k, the natural transformation

f an
] ◦ B∗ → B∗ ◦ f]

is an equivalence.

Proof. One argues as in [Rob15, §9.1] for the first assertion. The second assertion is clear. �

For later use, we need to adjust the Betti realisation in order to make its target a compactly
generated∞-category.

Definition 1.23. Let Λ ∈ CAlg(Sp) be a commutative ring spectrum.
(i) Let W be a complex analytic variety. We denote by LS(W; Λ) the full sub-∞-category

of Sh(W; Λ) consisting of dualizable objects. Objects of LS(W; Λ) will be also called
local systems on W; see Lemma 1.24 below. We also denote by L̂S(W; Λ) the full sub-
∞-category of Sh(W; Λ) generated under colimits by the objects of LS(W; Λ). Objects of
L̂S(W; Λ) will be called lisse sheaves on W.

(ii) Let X be a k-variety. A sheaf F ∈ Sh(Xan; Λ) is said to be constructible if for every point
x ∈ X, there is a locally closed subvariety Z ⊂ X containing x such that F|Zan is dualizable,
i.e., belongs to LS(Zan; Λ). We denote by Ct(X; Λ) the full sub-∞-category of Sh(Xan; Λ)
consisting of constructible sheaves. We also set Shct(X; Λ) = Ind(Ct(X; Λ)). There is an
obvious colimit-preserving functor

Shct(X; Λ)→ Sh(Xan; Λ) (1.8)

which induces the identity functor on Ct(X; Λ), but which is not fully faithful unless X
is zero-dimensional. Finally, we write LS(X; Λ) for LS(Xan; Λ) considered as a sub-∞-
category of Shct(X; Λ) and we let L̂S(X; Λ) be the full sub-∞-category of Shct(X; Λ) gen-
erated under colimits by the objects of LS(X; Λ).

Below, we give two lemmas around the ∞-categories introduced in Definition 1.23. We start
with the lemma that justifies our notion of local system.

Lemma 1.24. Let W be a complex analytic variety, and F ∈ Sh(W; Λ) a sheaf on W. Then the
following conditions are equivalent.

(i) The sheaf F is dualizable.
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(ii) There exists an open cover (Wi)i∈I of W such that the sheaves F|Wi are constant with value
a perfect Λ-module.

(iii) For every contractible open subvariety U ⊂ W, the sheaf F|U is constant with value a
perfect Λ-module.

Proof. The implications (iii)⇒ (ii)⇒ (i) are obvious. The implication (ii)⇒ (iii) is standard, but
we include an argument for the reader’s convenience. Assume that (ii) is satisfied. Replacing W
by U, we may assume that W is contractible. In particular it is connected and all the fibers of F are
equivalent to a fixed object F0 ∈ ModΛ. Let Q = EquiModΛ

(F0, F) be the hypersheaf on W sending
a connected open subset V ⊂ W to the space of equivalences from F0 to F(V). Then Q admits
an action of the H-group G = AuteqModΛ

(F0). In fact, condition (ii) implies that Q is a G-torsor
over W. Such a G-torsor is classified by a map W → B(G), with B(G) the classifying space of G.
Since W is contractible, every such map is null-homotopic, which implies that the G-torsor Q is
necessarily trivial. A global section of Q yields an equivalence between F and the constant sheaf
with value F0 on W. This proves (iii).

It remains to show the implication (i)⇒ (ii). Assume that F is dualizable. We fix a point x ∈ W,
and we show that F is constant in the neighbourhood of x. The functor A 7→ Ax is symmetric
monoidal. This implies that the Λ-module Fx is perfect. Writing Fx = colimx∈U F(U), where the
colimit is over the open neighbourhoods of x, we deduce that the identity of Fx lifts to a morphism
of Λ-modules Fx → F(U), for U small enough. Replacing W by U, we obtain a morphism
(Fx)cst → F from the constant sheaf (Fx)cst with value Fx, inducing the identity on the stalks at x.
The cofiber G of this morphism is still dualizable, and it is enough to show that it is zero in the
neighbourhood of x. Let G∨ be the dual of G, and consider the unit morphism η : ΛW → G ⊗Λ G∨.
Restricting to an open neighbourhood U of x and passing to global sections, we obtain a morphism
of Λ-modules

Λ→ Γ(U; G ⊗Λ G∨). (1.9)
Taking the colimit over U, we obtain the map Λ → Gx ⊗Λ G∨x ' 0. Since Λ is compact, we
deduce that the morphism (1.9) is zero for U small enough. Said differently, the unit map ΛU →

G|U ⊗Λ G∨|U is zero. This implies that G|U is zero as needed. �

We also record the following technical but reassuring result.

Lemma 1.25. Let X be a k-variety. The functor in (1.8) restricts to an equivalence of∞-categories

L̂S(X; Λ) ' L̂S(Xan; Λ). (1.10)

Proof. Recall that the functor in (1.8) induces the identity functor LS(X; Λ) = LS(Xan; Λ), and that
L̂S(X; Λ) and L̂S(Xan; Λ) are the sub-∞-categories of Shct(X; Λ) and Sh(Xan; Λ) generated under
colimits by the local systems on Xan. Thus, L̂S(X; Λ) is compactly generated by the objects of
LS(X; Λ) and it is enough to show the same for L̂S(Xan; Λ). More precisely, we need to show that
a local system on Xan is a compact object of the ∞-category L̂S(Xan; Λ). We warn the reader that,
on the contrary, a local system is not a compact object of Sh(Xan; Λ) in general.

Since local systems are dualizable, we are reduced to showing that Λcst is a compact object of
L̂S(Xan; Λ) or, equivalently, that the functor Γ(Xan;−) commutes with direct sums. Let (Mα)α be a
family of lisse sheaves on Xan and M =

⊕
α

Mα. We need to show that the natural map⊕
α

Γ(Xan; Mα)→ Γ(Xan; M) (1.11)
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is an equivalence. Both sides of the map in (1.11) satisfy cdh excision. Using resolution of sin-
gularities in characteristic zero [Hir64], we reduce to the case where X is smooth, and admitting
an open immersion j : X ↪→ X with X proper and X r j(X) a strict normal crossing divisor. By
[Lur09a, Corollary 7.3.4.12], the functor Γ(Xan;−) commutes with direct sums. Thus, we are left
to showing that the morphism ⊕

α

j∗Mα → j∗M (1.12)

is an equivalence in Sh(Xan; Λ). We check this on stalks, and fix a point x ∈ Xan. For U in a cofinal
system of neighbourhoods of x in Xan, we can find isomorphisms

U ' Dm+n and j−1(U) ' Dm × (D1 r {0})n,

for some integers m, n ≥ 0. In particular, j−1(U) is then equivalent to the classifying space B(Zm)
of Zm. It is enough to show that⊕

α

Γ( j−1(U),Mα| j−1(U))→ Γ( j−1(U),M| j−1(U)) (1.13)

is an equivalence for such U’s. The stalk of the lisse sheaf Mα| j−1(U) at a base point of j−1(U) is a
Λ-module Nα with an action of Zm. Setting N =

⊕
α

Nα, the morphism in (1.13) is equivalent to⊕
α

Γ(Zm; Nα)→ Γ(Zm; N).

Thus, we are reduced to showing that Γ(Zm;−) commutes with direct sums. By induction, we may
assume that m = 1. The result follows then from the fact that Γ(Z;−) can be computed as the
equalizer of the identity map and the action of 1 ∈ Z. �

Proposition 1.26. The six operations resulting from the Voevodsky pullback formalism

Sh((−)an; Λ)⊗ : (Sch/k)op → CAlg(PrL)

preserve the sub-∞-categories of constructible sheaves.

Proof. This is well-known fact, at least when Λ is an ordinary ring. For the reader’s convenience,
we include a proof. To simplify notation, we shall write f ∗, f∗, etc., instead of f an, ∗, f an

∗ , etc. We
split the proof in several steps.

Step 1. The result is obvious for the ordinary pullback and the tensor product. In this step, we
assume that the result is also known for the ordinary direct image functors, and we explain how to
derive the result for the remaining operations.

Given a morphism f of k-varieties, to show that f! preserves constructible sheaves, we may
assume that f is an open immersion or a proper morphism. The case of open immersions is clear
and, in the case of proper morphisms, we use that f! ' f∗ to conclude. Similarly, to prove that
f ! preserves constructible sheaves, we may assume that f is smooth or a closed immersion. If
f is smooth, we conclude using that f ! is equivalent to f ∗ up to twist and shift. If f is a closed
immersion, we use the localisation triangle and the assumption that ordinary direct images along
open immersions preserves constructible sheaves. Finally, to prove that Hom(F,G) is constructible
if F,G ∈ Sh(Xan; Λ) are constructible, we may assume that F is of the form u!L where u : Z → X
is a locally closed immersion and L is a local system on Zan. In this case, we have equivalences

Hom(u!L,G) ' u∗Hom(L, u!G) ' u∗(L∨ ⊗Λ u!G)
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and the result follows from the previous considerations.

Step 2. By the previous step, it remains to see that f∗ preserves constructible sheaves for every
morphism f : Y → X of k-varieties.

We argue by induction on the dimension of Y . It is enough to show that f∗F is constructible for
F = h!L with h : T ↪→ Y a locally closed immersion and L a local system on T an. Replacing Y
with the closure of h(T ), we may assume that h is the inclusion of a dense open subvariety T ⊂ Y .
Let V ⊂ T be the smooth locus of T , which is an open dense subvariety of Y . Let v : V ↪→ Y be the
obvious inclusion and s : Z → Y the complementary closed immersion. We have an exact triangle

f∗F → f∗v∗v∗F → f∗s∗s∗C →

with C = cofib(F → v∗v∗F). Applying the induction hypothesis to f ◦ s : Z → X, we see that f∗F
is constructible if ( f ◦ v)∗F|V and v∗F|V are constructible. This shows that we may replace f by
f ◦ v and v. In particular, we may assume that Y is smooth and F is a local system on Y .

Step 3. Using resolution of singularities in characteristic zero [Hir64], we may find an open im-
mersion j : Y → Y over X, with Y smooth and D = Y r Y a normal crossing divisor. In this step,
we prove that j∗F is constructible. (Recall that F is a local system on Y , by Step 2.)

Let D1, . . . ,Dm be the irreducible components of D and, for I ⊂ {1, . . . ,m} nonempty, let

DI =
⋂
a∈I

Da and D◦I = DI r
⋃
b<I

Db.

We claim that the restriction of j∗F to D◦I is a local system. Indeed, every point of (D◦I )an admits
an open neighbourhood V in Yan such that

V ' Dn and j−1(V) ' Dn−r × (D1 r {0})r.

(Of course, n is the local dimension of Y and r is the cardinality of I.) We form the commutative
diagram with cartesian squares

j−1(V) //

��

V

��

V ∩ (D◦I )an

p
��

oo

(D1 r {0})r j0
// Dr 0r.

i0
oo

Clearly, the local system F| j−1(V) is the pullback of a local system F0 on (D1r {0})r. Using the (ana-
lytic) smooth base change theorem, it follows that the restriction of j∗F to V ∩ (D◦I )an is isomorphic
to p∗i∗0 j0, ∗F0. Moreover, arguing as in the proof of Lemma 1.25, we see that the Λ-module i∗0 j0, ∗F0

is perfect. This proves what we want.

Step 4. Let g : Y → X be the structural morphism of the X-scheme Y . Recall that our aim is to
prove that f∗F ' g∗ j∗F is constructible.

Replacing Y with a connected component and X by the image of this component, we may assume
that Y is integral and g dominant. Using the proper base change theorem, the constructibility of
j∗F and induction on the dimension, we can replace X with any dense open subvariety of X. Thus,
we may assume that g is smooth and that D = Y r Y is a relative normal crossing divisor, i.e., all
the DI’s from Step 3 are smooth over X. We claim that in this situation, g∗ j∗F is a local system
on X. This is typically proven using Ehresmann’s theorem. We will give below a different proof
based on the six-functor formalism.
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Step 5. In this last step, we finish the proof of the proposition. We work in the situation we have
reached in Step 4. To show that f∗F is a local system, we may show that the obvious morphism

Hom(A,Λ) ⊗Λ g∗ j∗F → Hom(A, g∗ j∗F) (1.14)

is an equivalence for every A ∈ Sh(Xan; Λ). We have obvious equivalences

Hom(A,Λ) ⊗Λ g∗ j∗F ' g∗(g∗Hom(A,Λ) ⊗Λ j∗F)

' g∗(Hom(g∗A,Λ) ⊗Λ j∗F),

and Hom(A, g∗ j∗F) ' g∗Hom(g∗A, j∗F).

The third equivalence is obvious, while the first two rely on the fact that g is proper and smooth.
Therefore, it is enough to show that the natural morphism

Hom(g∗A,Λ) ⊗Λ j∗F → Hom(g∗A, j∗F) (1.15)

is an equivalence. This is a local question over Yan, and can be checked on stalks. We fix a point
y ∈ Yan. For V varying in a fundamental system of neighbourhoods of y, and U the image of V in
Xan, we have:

(1) U ' Dm, V ' Dn and, modulo these isomorphisms, V → U is given by the projection to
the first m coordinates.

(2) j−1(V) ' Dn−r × (D1 r {0})r with r ≤ n − m.
It is enough to show that for these V’s, the following morphism of Λ-modules

Γ(V; Hom(g∗A,Λ)) ⊗Λ Γ(V; j∗F)→ Γ(V; Hom(g∗A, j∗F)) (1.16)

is an equivalence. We have a commutative diagram with Cartesian squares

j−1(V)
j′

//

p′′

��

V

p′

��

g′
// U

p

��

Dn−m−r × (D1 r {0})r j0
// Dn−m g0

// pt

and a local system F0 on Dn−m−r × (D1 r {0})r such that F| j−1(V) ' p′′∗F0. Up to canonical equiva-
lences, the morphism in (1.16) can be rewritten as

Γ(U; Hom(A|U ,Λ)) ⊗Λ Γ(Dn−m; j0, ∗F0)→ Γ(V; Hom(g′∗A|U ; p′∗ j0, ∗F0)). (1.17)

We have a chain of natural equivalences

Γ(V; Hom(g′∗A|U ; p′∗ j0, ∗F0))
(1)
' Γ(U; Hom(A|U ; g′∗p

′∗ j0, ∗F0))
(2)
' Γ(U; Hom(A|U ; p∗g0, ∗ j0, ∗F0))
(3)
' Γ(U; Hom(A|U ; Λ) ⊗Λ p∗g0, ∗ j0, ∗F0)
(4)
' Γ(U; Hom(A|U ,Λ)) ⊗Λ Γ(Dn−m; j0, ∗F0)

where:
(1) is induced by the adjunction (g′∗, g′∗);
(2) follows from the (analytic) smooth base change theorem applied to the second square in

the above commutative diagram;
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(3, 4) follow from the fact that p∗g0, ∗ j0, ∗F0 is a (constant) local system with values Γ(Dn−m; j0, ∗F0)
which is a perfect Λ-module.

This clearly proves that (1.17) is an equivalence, and finishes the proof of the proposition. �

Corollary 1.27. There are two Voevodsky pullback formalisms

Ct(−; Λ)⊗ : (Sch/k)op → CAlg(Cat∞) and Shct(−; Λ)⊗ : (Sch/k)op → CAlg(PrL
ω)

related by a morphism of six-functor formalisms Ct(−; Λ)⊗ → Shct(−; Λ)⊗. Moreover, the four
operations f ∗, f∗, f! and f ! associated to a morphism of k-varieties f by Shct(−; Λ) belong to PrL

ω,
i.e., are compact-preserving left adjoint functors.

We summarise the main facts about the refined Betti realisation in the following statement.

Theorem 1.28. Let Λ ∈ CAlg(Sp) be a commutative ring spectrum. There is a commutative
triangle of Voevodsky pullback formalisms

MSh(−; Λ)
B∗ct
//

B∗ ''

Shct(−; Λ)

��

Sh((−)an; Λ)

where the vertical arrow is given by the functors in (1.8). Moreover, B∗ct is actually a morphism of
six-functor formalisms.

Proof. To prove the theorem, we may replace k by an algebraic closure. In particular, we may
assume that k has finite Λ-cohomological dimension. By Proposition 1.11, it follows that the
∞-categories MSh(X; Λ) are compactly generated for all X ∈ Sch/k, i.e., we have equivalences

Ind(MSh(X; Λ)ω) 'MSh(X; Λ). (1.18)

By [Ayo07a, Théorème 2.2.37 & Corollaire 2.3.65], the six operations deduced from MSh(−; Λ)⊗

respect compact objects. It is worth noting here that compactness for motivic sheaves (under our
hypothesis on k) coincides with the notion of constructibility introduced in [Ayo07a, Définition
2.2.3] relatively to the set {Λ(n); n ∈ Z}. (This is just Proposition 1.11.) This also implies immedi-
ately that the functors B∗X in (1.5) take compact motivic sheaves to constructible sheaves, and thus
induce a morphism of CAlg(Cat∞)-valued presheaves

MSh(−; Λ)⊗ω → Ct(−; Λ)⊗.

Applying indization of ∞-categories and using (1.18), we obtain a morphism of Voevodsky pull-
back formalisms B∗ct : MSh(−; Λ)⊗ → Shct(−; Λ)⊗. All the remaining assertions are clear. �

Remark 1.29. We will sometimes refer to the morphism of Voevodsky pull-back formalisms B∗ct as
the refined Betti realisation, or simply as the Betti realisation if no confusion can arise. Also, we
will often write B∗ and B∗X instead of B∗ct and B∗ct, X.

For later use, we note the following fact.

Proposition 1.30. The functor

Bct, ∗ : Shct(X; Λ)→MSh(X; Λ), (1.19)

right adjoint to B∗ct, is colimit-preserving.
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Proof. Since Bct, ∗ is an exact functor between stable ∞-categories, it is enough to show that it
preserves filtered colimits. If the base field k has finite virtual Λ-cohomological dimension, the
functor B∗ct belongs to PrL

ω and the claim follows from [Lur09a, Proposition 5.5.7.2(2)]. In general,
we argue as follows. Let MShnis(X; Λ) be the∞-category of motivic sheaves on X in the Nisnevich
topology, i.e., the ∞-category obtained by employing the Nisnevich topology instead of the étale
topology in Definitions 1.5 and 1.7. There is an obvious functor

aét : MShnis(X; Λ)→MSh(X; Λ)

which is a localisation functor, i.e., its right adjoint functor oét is fully faithful. The ∞-category
MShnis(X; Λ) is compactly generated and the composite functor B∗ct◦aét preserves compact objects.
Using [Lur09a, Proposition 5.5.7.2(2)] as above, we conclude that oét ◦ Bct, ∗ is colimit-preserving.
The result follows since Bct, ∗ ' aét ◦ oét ◦ Bct, ∗ and aét is colimit-preserving. �

1.3. Motivic Galois group, I. The general case.
We explain here the construction of the motivic Galois groupoid associated to a Weil spectrum

taking advantage of the∞-categorical edifice. In Subsection 1.4, we use this to recover the motivic
Galois group associated to the Betti realisation as defined and studied in [Ayo14b, Ayo14c]. The
motivic Galois groupoid arises naturally as a nonconnective affine spectral groupoid scheme in
the sense of spectral algebraic geometry [Lur18]. We start by recalling the notions of group and
groupoid objects in an∞-category following [Lur09a, Definition 6.1.2.7].

Definition 1.31. Let C be an ∞-category. A groupoid object in C is a cosimplicial object X :
∆op → C such that, for every integer n ≥ 0 and every covering {0, . . . , n} = I ∪ J with I ∩ J = {m}
a singleton, the square

X(∆{0,...,n}) //

��

X(∆J)

��

X(∆I) // X(∆{m})

(1.20)

is Cartesian. We say that X is a group object if moreover X(∆0) is a final object.

The motivic Galois groupoid will be defined as a groupoid object in the∞-category of noncon-
nective affine spectral schemes. We now recall this∞-category.

Definition 1.32. A nonconnective spectral scheme X = (|X|,OX) is a pair consisting of a topo-
logical space |X| and a CAlg(Sp)-valued hypersheaf OX, called the structural sheaf, such that the
following properties are satisfied.

(i) The ringed space Xcl = (|X|, π0OX) is a scheme in the classical sense;
(ii) For every i ∈ Z, the π0OX-module πiOX is quasi-coherent.

The scheme Xcl is called the underlying scheme of X. A spectral scheme X is a nonconnective
spectral scheme X such that OX is connective, i.e., the sheaves πiOX are trivial for i < 0. A
(nonconnective) spectral scheme X is said to be affine if Xcl is affine.

Notation 1.33. We denote by SpSCHnc the ∞-category of nonconnective spectral schemes and
morphisms of locally spectrally ringed spaces in the sense of [Lur18, Definition 1.1.5.1]. We
denote by SpSCH the full sub-∞-category of SpSCHnc consisting of spectral schemes. We also
denote by SpAFF(nc) the full sub-∞-category of SpSCH(nc) consisting of affine (nonconnective)
spectral schemes.
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Remark 1.34. The point of view of spectrally ringed spaces will be of little use in this paper. In
fact, we will rather think about spectral schemes via their functors of points. More precisely, to a
commutative ring spectrum A, one can associate an affine nonconnective spectral scheme Spec(A),
whose underlying scheme is Spec(π0A). By [Lur18], this construction yields equivalences of ∞-
categories

Spec : CAlg(Sp)op ∼
−→ SpAFFnc and Spec : CAlg(Sp≥0)op ∼

−→ SpAFF.

Now, using the Yoneda embedding, one obtains a fully faithful functor

SpSCH(nc) → P(SpAFF(nc)).

The image of a (nonconnective) spectral scheme X by this functor will be also denoted by X. The
latter is really the “functor of points” associated to X. More generally, an object of P(SpAFF(nc))
will be called a (nonconnective) spectral prestack.

Notation 1.35. Given a (nonconnective) commutative ring spectrum Λ ∈ CAlg(Sp), we denote by
SpSCH(nc)

/Λ and SpAFF(nc)
/Λ the∞-categories of objects over Spec(Λ) in SpSCH(nc) and SpAFF(nc).

Definition 1.36. Let Λ be a (nonconnective) commutative ring spectrum. A (nonconnective) spec-
tral group(oid) Λ-scheme G is a group(oid) object in the ∞-category SpSCH(nc)

/Λ . We say that G is
affine if it is a group(oid) object in the∞-category SpAFF(nc)

/Λ .

Remark 1.37. The ∞-category of affine spectral group(oid) schemes over Λ is equivalent to the
∞-category of group(oid) objects in CAlg(Sp≥0)op and hence to the opposite of the ∞-category of
commutative Hopf algebra (resp. algebroid) objects in Sp≥0. Said differently, every affine spectral
group(oid) scheme G arises in an essentially unique way as the spectrum of a commutative Hopf
algebra (resp. algebroid) object in Sp≥0. The same applies in the nonconnective case. Recall
that a commutative Hopf algebra (algebroid) object in a symmetric monoidal ∞-category C⊗ is a
cosimplicial object H : ∆ → CAlg(C) satisfying the dual conditions for a group(oid) object in
Definition 1.31.

To go further we need the notion of a Weil spectrum.

Definition 1.38. Let k be a field and Λ a commutative ring spectrum. A Weil Λ-spectrum is a
commutative algebra A ∈ CAlg(MSh(k; Λ)) satisfying the following two conditions.

(i) For every Γ(k;A)-module L, the obvious morphism

L→ Γ(k;A ⊗Γ(k;A) L) (1.21)

is an equivalence.
(ii) For every motive M ∈MSh(k; Λ), the composition of

A ⊗Γ(k;A) Γ(k;A ⊗Λ M)→A ⊗Γ(k;A) A ⊗Λ M →A ⊗Λ M (1.22)

is an equivalence. (The first morphism is deduced from the unit of the adjunction between
Γ and its left adjoint given by tensoring Λ-modules with the unit motive.)

We will say that A is neutral over Λ if the obvious map Λ→ Γ(k;A) is an equivalence.

Remark 1.39. Condition (i) in Definition 1.38 is automatically satisfied when k has finite Λ-
cohomological dimension. Indeed, in this case, the functor Γ(k;−) is colimit-preserving by Propo-
sition 1.11. (Note that Spec(k) is Λ-good.) Since the desuspensions of Γ(k;A) form a set of
compact generators of the∞-category ModΓ(k;A), it is enough to check that the morphism in (1.21)
is an equivalence for L = Γ(k;A), which is obvious.
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Remark 1.40. The notion of a Weil spectrum is closely related to the notion of a Weil cohomology
as formalised in [CD12, Definition 2.1.4] and [Ayo20, Définition 1.1]. Indeed, a Weil cohomology
ΓW in the sense of [Ayo20, Définition 1.1] determines a commutative algebra ΓW in MSh(k) which
is a Weil spectrum by [Ayo20, Proposition 2.8]. Conversely, if one modifies [Ayo20, Définition 1.1]
in order to allow commutative ring spectra instead of only allowing commutative dg Q-algebras,
then a Weil spectrum A defines a Weil cohomology given by X 7→ Γ(k; Hom(M(X),A)). One can
easily set up an equivalence between ∞-categories of Weil spectra and Weil cohomologies. We
leave this to the interested reader, since this will be irrelevant for us.

The next lemma is a generalisation of [CD12, Theorem 2.6.2] with an essentially identical proof.

Lemma 1.41. Let A be a Weil Λ-spectrum. Then, the obvious functor

A ⊗Γ(k;A) − : ModΓ(k;A) →MSh(k;A) (1.23)

is an equivalence of∞-categories.

Proof. The functor in (1.23) has a right adjoint given by M 7→ Γ(k;M). Condition (i) in Definition
1.38 says precisely that the unit of this adjunction is an equivalence. Therefore, the functor in (1.23)
is fully faithful. Since MSh(k;A) is generated under colimits by objects of the form A⊗Λ M, with
M ∈MSh(k; Λ), we deduce that the functor in (1.23) is also essentially surjective. �

The following statement generalises property (ii) in Definition 1.38.

Corollary 1.42. Let A be a Weil Λ-spectrum. The obvious morphism

A ⊗Γ(k;A) Γ(k;M)→M (1.24)

is an equivalence for every A-module M in MSh(k; Λ).

Proof. This follows from Lemma 1.41. Indeed, the morphism in (1.24) is the counit of the adjunc-
tion between the functor in (1.23) and its right adjoint. �

Notation 1.43. Let C⊗ be a symmetric monoidal∞-category and let A ∈ CAlg(C) be a commutative
algebra in C⊗. The cobar construction on A is the cosimplicial commutative algebra

cobar•(A) : ∆→ CAlg(C)

which is the left Kan extension along the inclusion ∆≤0 ⊂ ∆ of the functor [0] 7→ A. Informally, for
an integer n ≥ 0, we have cobarn(A) ' A⊗n+1, and the face maps are induced by the unit morphism
1C → A while the degeneracy maps are induced by the multiplication morphism A ⊗ A → A. The
cobar construction on A has a natural augmentation given by cobar−1(A) = 1C.

Theorem 1.44. Let A ∈ CAlg(MSh(k; Λ)) be a Weil Λ-spectrum.
(i) The cosimplicial commutative algebra Γ(k; cobar(A)) is a Hopf algebroid in Mod⊗Λ.

(ii) For M ∈ MSh(k; Λ), the Γ(k; cobar(A))-module Γ(k; cobar(A) ⊗Λ M) is naturally a co-
module over the Hopf algebroid Γ(k; cobar(A)).

Thus, one obtains a symmetric monoidal functor

Γ(k; cobar(A) ⊗Λ −) : MSh(k; Λ)⊗ → coMod⊗Γ(k;cobar(A)). (1.25)

Proof. As usual, we extend the assignment [n] 7→ cobarn(A) to nonempty finite linearly ordered
sets. To prove (i), we need to show that for every partition {0, . . . , n} = I ∪ J with I ∩ J = {m} a
singleton, the natural map

Γ(k; cobarI(A)) ⊗Γ(k;cobar{m}(A)) Γ(k; cobarJ(A))→ Γ(k, cobar{0,...,n}(A)) (1.26)
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is an equivalence in ModΛ. To do so, we start by noting that we have an equivalence

cobarI(A) ⊗cobar{m}(A) cobarJ(A)
∼
−→ cobar{0,...,n}(A) (1.27)

in MSh(k; Λ). On the other hand, by Corollary 1.42, we also have natural equivalences

cobar{m}(A) ⊗Γ(k;cobar{m}(A)) Γ(k; cobarL(A))
∼
−→ cobarL(A)

for all subsets L ⊂ {0, . . . , n} containing m. This shows that the domain of the equivalence in (1.27)
is naturally equivalent to

cobar{m}(A) ⊗Γ(k;cobar{m}(A)) (Γ(k; cobarI(A)) ⊗Γ(k;cobar{m}(A)) Γ(k; cobarJ(A)))

whereas its codomain is naturally equivalent to

cobar{m}(A) ⊗Γ(k;cobar{m}(A)) cobar{0,...,n}(A).

Thus, up to natural equivalences, we see that the equivalence in (1.27) can be obtained from the
morphism in (1.26) by applying A ⊗Γ(k;A) −. Since this functor is an equivalence by Lemma 1.41,
the result follows.

The proof of (ii) is very similar to that of (i), but we include it for the reader’s convenience.
Here, for every integers 0 ≤ m ≤ n, we need to check that the obvious morphism

Γ(k; cobar{0,...,n}(A)) ⊗Γ(k;cobar{m}(A)) Γ(k; cobar{m}(A) ⊗Λ M)→ Γ(k; cobar{0,...,n}(A) ⊗Λ M) (1.28)

is an equivalence in ModΛ. As above, we start by noting that we have an equivalence

cobar{0,...,n}(A) ⊗cobar{m}(A) (cobar{m}(A) ⊗Λ M)
∼
−→ cobar{0,...,n}(A) ⊗Λ M (1.29)

in MSh(k; Λ). By Corollary 1.42, we have natural equivalences

cobar{m}(A) ⊗Γ(k;cobar{m}(A)) Γ(k; cobarL(A) ⊗Λ N)
∼
−→ cobar{0,...,n}(A) ⊗Λ N

for all subsets L ⊂ {0, . . . , n} containing m and all objects N ∈ MSh(k; Λ). Using this for L = {m}
or L = {0, . . . , n} and N = Λ or N = M, we see that, up to natural equivalences, the equivalence
in (1.29) can be obtained from the morphism in (1.28) by applying A ⊗Γ(k;A) −. We then conclude
using Lemma 1.41. �

Definition 1.45. Keep the assumptions of Theorem 1.44. The Hopf algebroid Γ(k; cobar(A)) is
called the motivic Hopf algebroid associated to A and is denoted by Hmot(k,A). We set

Gmot(k,A) = Spec(Hmot(k,A));

this is a nonconnective spectral affine groupoid Λ-scheme, which we call the motivic Galois
groupoid associated to A. When the Weil spectrum A is neutral over Λ, Hmot(k,A) is a Hopf
algebra and Gmot(k,A) is a group.

We end this subsection with a description of the points of the groupoid Gmot(k,A).

Theorem 1.46. Let A ∈ CAlg(MSh(k; Λ)) be a Weil Λ-spectrum.
(i) The commutative algebra A admits a natural structure of a comodule over Hmot(k,A).

More precisely, there is a natural lift of A to a commutative algebra object in the symmetric
monoidal∞-category coMod⊗Hmot(k,A)(MSh(k; Λ)).

(ii) Let s, t ∈ Gmot(k,A)0(Λ) be two Λ-points corresponding to two Λ-algebra morphisms from
Γ(k;A) to Λ. We set As = A ⊗Γ(k;Λ), s Λ and At = A ⊗Γ(k;Λ), t Λ. Then, the coaction in (i)
induces an equivalence of Kan complexes

Gmot(k,A)1 ×Gmot(k,A)0×Gmot(k,A)0 (s, t) ' MapCAlg(MSh(k;Λ))(As,At).
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Proof. The lift of A to a commutative algebra in coMod⊗Hmot(k,A)(MSh(k; Λ)) is simply given by
the cosimplicial commutative algebra cobar(A) considered as an algebra over the Hopf algebroid
Γ(k; cobar(A)). The key property to be checked here is that the obvious morphism

cobar{m}(A) ⊗Γ(k,cobar{m}(A)) Γ(k, cobar{0,...,n}(A))→ cobar{0,...,n}(A)

is an equivalence for all integers 0 ≤ m ≤ n, which follows from Corollary 1.42. This proves (i).
For (ii), we need to show that the coaction of Hmot(k,A) on A induces an equivalence of Kan

complexes

MapCAlg(ModΛ)(Γ(k;As ⊗Λ At),Λ) ' MapCAlg(MSh(k;Λ))(As,At). (1.30)

The recipe for the above map is as follows. To a morphism α : Γ(k;As ⊗Λ At)→ Λ, we associate
a morphism α̃ : As →At by taking the composition of

As →As ⊗Λ At ' Γ(k;As ⊗Λ At) ⊗Λ At
α⊗id
−−−→At.

Conversely, given a morphism β : As →At, we associate a morphism β̂ : Γ(k;As ⊗Λ At)→ Λ by
applying Γ(k;−) to

As ⊗Λ At
β⊗id
−−−→At ⊗Λ At

µ
−→At

and using the equivalence Γ(k;At) ' Λ. It is easy to construct maps of spaces from the recipes
α 7→ α̃ and β 7→ β̂. It is also easy to see that these maps are compatible with base change along
morphisms of commutative algebras Λ → Λ′. Thus, to finish the proof, it remains to see that the
recipes α 7→ α̃ and β 7→ β̂ are inverses of each other up to homotopy, i.e., as maps on the π0’s of
the spaces in (1.30). This is again an easy but tedious exercise that we leave to the reader. �

In the case where the Weil Λ-spectrum is neutralised over Λ, we can be more precise. To do so,
we need some preliminaries on group actions in the∞-categorical setting.

Notation 1.47. Given an ∞-category C, we denote by C' the largest wide sub-∞-category of C
which is an∞-groupoid.

Construction 1.48. Let C be an∞-category and let X ∈ C. We define a (small) bisimplicial set

AuteqC(X) : ∆op → Set∆

by the following Cartesian square of (possibly large) bisimplicial sets

AuteqC(X)• //

��

Fun(∆•,C')

��

pt
(X,...,X)

// bar•(C')

where bar•(−) denotes the bar construction. (Recall that the bar construction on an object is the
right Kan extension along (∆≤0)op ↪→ ∆op of the unique functor from (∆≤0)op pointing to that
object.) Since C' is a Kan complex, the right vertical map in the above square is a Kan fibration
in each simplicial degree. It follows readily from the construction that AuteqC(X) defines a group
object in S. This is the group of autoequivalences of X ∈ C.
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Remark 1.49. If one does not care about explicit models, the H-group AuteqC(X) can also be
defined by the following Cartesian square of simplicial objects in “S

AuteqC(X)• //

��

C'

diag
��

pt
(X,...,X)

// bar•(C')

where pt and C' are considered as constant simplicial objects in “S. Indeed, for n ≥ 0, the Kan
complexes Fun(∆n,C') are all equivalent to C'. In fact, we will be using below this simpler
description. However, the description given in Construction 1.48 is perhaps more intuitive.

Remark 1.50. Given a groupoid object G : ∆op → S in spaces, we set B(G) = colim∆opG which
we call the classifying space of G. By construction, B(G) is the value at ∆∅ ∈ ∆+ of the augmented
simplicial object G+ extending G to a colimit diagram. Moreover, the groupoid G is effective in the
sense of [Lur09a, Definition 6.1.2.14], i.e., G+ is the Čech nerve associated to the map G0 → B(G);
see [Lur09a, Corollary 6.1.3.20] for a proof of this classical fact.

We now return to Construction 1.48, and consider the space B(AuteqC(X)) as an ∞-groupoid
(i.e., an∞-category where all maps are equivalences). Since AuteqC(X)• is the Čech nerve associ-
ated to X : pt→ C', we have a map of spaces

B(AuteqC(X))→ C'

which identify B(AuteqC(X)) to the full sub-∞-groupoid of C' spanned by the object X.

We will need a parametrised version of Construction 1.48.

Construction 1.51. Let K be a small simplicial set and let C : K → CAT∞ be a diagram in ∞-
categories. Let X : ptK → C be a natural transformation from the constant functor ptK : K →
CAT∞ pointing the final∞-category pt. We define a diagram

AuteqC(X) : ∆op × K → S

by the following Cartesian square of simplicial objects in Fun(K, “S)

AuteqC(X)• //

��

C'

diag
��

ptK
(X,...,X)

// bar•(C').

Here C' : K → “S is the functor obtained from C by composing with (−)' : CAT∞ → “S. We may
view AuteqC(X) as a diagram

AuteqC(X) : K → Fun(∆op,S),

taking values in the full sub-∞-category of group objects in S, and sending a vertex v ∈ K to the
group object AuteqC(v)(X(v)).

We need to spell out in which sense the group object AuteqC(X) acts on X. We do this directly
in the parametrised case.
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Lemma 1.52. Keep the notations of Construction 1.51, and assume that K is an ∞-category and
that C takes values in Cat∞. Let p :

∫
K
C → K be the coCartesian fibration classified by the functor

C. There is a functor
ActC(X) : ∆op ×

∫
K
C → S

and a natural transformation ActC(X)→ AuteqC(X)◦ (id∆op × p) such that the following conditions
are satisfied.

(i) The functor ActC(X)0 :
∫

K
C → S is given informally by (v, A) 7→ MapC(v)(X(v), A).

(ii) For all integers 0 ≤ m ≤ n the square

ActC(X){0,...,n} //

��

AuteqC(X){0,...,n} ◦ p

��

ActC(X){m} // AuteqC(X){m} ◦ p

is Cartesian.
(iii) For every object (v, A) in

∫
K
C, the induced action of AuteqC(v)(X(v)) on MapC(v)(X(v), A)

in hS is the one given by composition.

Proof. Consider the functor
F :

∫
K
C → CAT∞

sending an object (v, A) to the over ∞-category C(v)/A. We have a natural transformation F →

C ◦ p given informally at (v, A) by the forgetful functor C(v)/A → C(v). This induces an natural
transformation F' → C' ◦ p. This said, we define ActC(X) by the Cartesian square of simplicial
objects in Fun(

∫
K
C,S)

ActC(X)• //

��

F'

��

ptK ◦ p
(X,...,X)

// bar•(C' ◦ p).

The right vertical arrow is the composition of F' → C' ◦ p followed by the diagonal embedding.
The properties (i)–(iii) follow readily from the construction. �

We now go back to the motivic Galois group associated to a Weil Λ-spectrum.

Notation 1.53. Let R be a commutative ring spectrum in MSh(k; Λ). (We are interested in the case
of a Weil spectrum, but this is not relevant for this notation.) We apply Construction 1.51 with the
functor

CAlg(MSh(k;−)) : (SpAFFnc
/Λ)op → CAT∞,

sending Spec(Λ′) to CAlg(MSh(k; Λ′)), and the natural transformation pt → CAlg(MSh(k;−)),
given at Spec(Λ′) by the functor pointing at R ⊗Λ Λ′. This yields a nonconnective spectral group
Λ-prestack of automorphisms of R which we denote by Auteq(R).

Theorem 1.54. Let A ∈ CAlg(MSh(k; Λ)) be a Weil Λ-spectrum which is neutral over Λ. Then
there is a canonical equivalence of nonconnective spectral group Λ-prestacks

Gmot(k,A)
∼
−→ Auteq(A).
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Proof. By Theorem 1.46, we know that Auteq(A) is affine and has the same underlying noncon-
nective spectral scheme as Gmot(k,A). We need to show that this identification of the underlying
spectral prestacks extends to the group structure. To simplify notation, we write X• = Spec(E•) for
the simplicial object in SpAFFnc representing Auteq(A). By Lemma 1.52, we have a functor

Act(A) : ∆op → Fun
(∫

CAlg(ModΛ)
MSh(k;−),S

)
and, for every integer n ≥ 0, the functor

Act(A)n :
∫

CAlg(ModΛ)
MSh(k;−)→ S

is corepresentable by the pair (En,A⊗Λ En). (For the last assertion, we use properties (i) and (ii) in
Lemma 1.52.) Thus, forgetting the structure of En-modules, we obtain a cosimplicial commutative
algebra ËA• in MSh(k; Λ) with the following properties:

(i) ËA0 'A;
(ii) Γ(k; ËA•) ' E•;

(iii) the induced action of Spec(E1) on A in the homotopy category coincides with the tauto-
logical action of Auteq(A)1.

It is now easy to conclude. Indeed, being a left Kan extension, there is a morphism of cosimplicial
commutative algebras cobar(A) → ËA and, as recalled at the beginning of the proof, the induced
morphism Γ(k; cobar1A) → Γ(k; ËA1). This readily implies that the morphism of cosimplicial
commutative algebras Γ(k; cobar•A)→ Γ(k; ËA•) is an equivalence degreewise. �

Remark 1.55. Given a Weil Λ-spectrum A neutral over Λ, we have the associated realisation
functor given by

RA : MSh(k; Λ)⊗
A⊗Λ−
−−−−→MSh(k;A)⊗ ' Mod⊗Λ,

where the last equivalence is the one described in Lemma 1.41. It follows from [Lur17, Corollary
4.8.5.21] that we have an equivalence of groups

Auteq(A) ' AuteqCAlg(PrL)MSh(k;Λ)⊗/
(RA).

On the other hand, the obvious map

AuteqFun(MSh(k;Λ)⊗,Mod⊗
Λ

)(RA)→ AuteqCAlg(PrL)MSh(k;Λ)⊗/
(RA)

is an equivalence. Indeed, every autoequivalence of RA which is the identity on MSh(k; Λ)⊗ is
also the identity on Mod⊗Λ since RA admits a section. Thus, we have an equivalence of groups

Auteq(A) ' AuteqFun(MSh(k;Λ)⊗,Mod⊗
Λ

)(RA).

This holds equally with A replaced by A⊗Λ Λ′ for any commutative Λ-algebra Λ′. Using this and
Theorem 1.54, it is easy to show that the motivic Galois group Gmot(k,A) is equivalent to the one
defined by Iwanari [Iwa14, Definition 5.13]. Since this is not needed later on, we leave the details
to the interested reader.
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1.4. Motivic Galois group, II. The Betti case.
We fix a base field k and a complex embedding σ : k ↪→ C. In this subsection, we compare the

constructions of Subsection 1.3 in the Betti case with the construction in [Ayo17a]; this is actually
quite straightforward. Then, we recall a few known properties of the motivic Galois group in the
Betti case. The construction in [Ayo17a] relies on the following observation.

Proposition 1.56. For M ∈MSh(k; Λ) and N ∈ ModΛ, the obvious morphism

M ⊗Λ B∗(N)→ B∗(B∗(M) ⊗Λ N) (1.31)

is an equivalence.

Proof. By Proposition 1.30, the domain and codomain of the morphism in (1.31) are colimit-
preserving in the variable M. Thus, we may assume that M is dualizable and use [Ayo14b, Lemme
2.8] to conclude. �

Notation 1.57. For a commutative ring spectrum Λ, we set

BΛ = B∗(Λ)

which we view as an object of CAlg(MSh(k; Λ)). We refere to BΛ as the Betti spectrum. When
Λ = S is the sphere spectrum, we simply write B.

Corollary 1.58.
(i) There is a canonical equivalence of commutative algebras BΛ ' B ⊗ Λ.

(ii) The commutative algebra BΛ in MSh(k; Λ) is a Weil Λ-spectrum neutral over Λ.
(iii) The functor Γ(k;−) : MSh(k;BΛ)→ ModΛ is an equivalence of∞-categories.
(iv) The functor B∗ : MSh(k; Λ)→ ModΛ is equivalent to Γ(k;BΛ ⊗Λ −).

Proof. We start by noting that there is an equivalence

B∗(Λ) ⊗Λ L
∼
−→ B∗(L) (1.32)

for every Λ-module L. Indeed, by Proposition 1.30, the domain and codomain of the morphism in
(1.32) are colimit-preserving in the variable L. Thus, we may assume that L = Λ, and the claim
becomes obvious. This readily implies assertion (i) by taking for Λ and L the sphere spectrum and
Λ respectively. The equivalence in (1.32) can also be used to verify condition (i) of Definition 1.38
for BΛ. Indeed, we are then reduced to showing that L → Γ(k; B∗(L)) is an equivalence, which
is obvious since Γ(k; B∗(−)) is equivalent to the identity functor of ModΛ. (Its left adjoint is the
composite functor B∗ ◦ (−)cst where (−)cst : ModΛ →MSh(k; Λ) is the “constant” motive functor.)

Next, we prove property (iii) of the statement. The proof is very similar to that of Lemma 1.41.
We actually show that the left adjoint

BΛ ⊗Λ − : ModΛ →MSh(k;BΛ)

is an equivalence. Fully faithfulness follows immediately from condition (i) of Definition 1.38
which we just verified for BΛ. Essential surjectivity follows from Proposition 1.56 and the equiv-
alences in (1.32). Indeed, for every M ∈MSh(k; Λ), we have a chain of equivalences:

BΛ ⊗Λ M ' B∗B∗(M) ' BΛ ⊗Λ B∗(M).

We now finish the proof of property (ii) of the statement by verifying that condition (ii) of
Definition 1.38 holds true for BΛ. (Condition (i) the that definition was verified above.) We need
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to show that the composition of

B∗(Λ) ⊗Λ Γ(k; B∗(Λ) ⊗Λ M)→ B∗(Λ) ⊗Λ B∗(Λ) ⊗Λ M → B∗(Λ) ⊗Λ M

is an equivalence. By Proposition 1.56, we may rewrite this composition as follows:

B∗(Λ) ⊗Λ Γ(k; B∗B∗(M))→ B∗(Λ) ⊗Λ B∗B∗(M)→ B∗B∗(M).

This is a morphism of BΛ-modules. By the property (iii) just proved, it is enough to show that it
induces an equivalence after applying Γ(k;−) which is clear.

It remains to show property (iv) of the statement. For this we use again the natural equivalence
BΛ ⊗ M ' B∗B∗(M) provided by Proposition 1.56 and the fact, mentioned previously in the proof,
that Γ(k; B∗(−)) is equivalent to the identity functor. �

Construction 1.59. Let Λ ∈ CAlg(Sp) be a commutative ring spectrum. We simply write

B∗ : MSh(k; Λ)⊗ → Sh(pt; Λ)⊗ ' Mod⊗Λ (1.33)

for the Betti realisation functor over Spec(k). (Note that in this case, there is no distinction between
the Betti realisation functor and its refined version given by Theorem 1.28.) The functor B∗ in
(1.33) admits a right adjoint which we denote by B∗. By [Lur17, Proposition 4.7.3.3] applied to the
right adjoint functor (B∗)op, the composite functor B∗B∗ underlies a coalgebra structure in the ∞-
category EndFun(MSh(k; Λ)⊗) of right-lax symmetric monoidal endofunctors of MSh(k; Λ)⊗. Said
differently, there exists a cosimplicial object ÁB : ∆ → EndFun(MSh(k; Λ)⊗) which is informally
given as follows.

(1) For every integer n ≥ 0, there is an equivalence ÁBn ' (B∗B∗)◦n+1.
(2) For 0 ≤ i ≤ n + 1, the i-th face map ÁBn → ÁBn+1 is given by

(B∗B∗)◦i ◦ id ◦ (B∗B∗)◦n+1−i η
−→ (B∗B∗)◦i ◦ (B∗B∗) ◦ (B∗B∗)◦n+1−i,

where η is the unit of the adjunction (B∗,B∗).
(3) For 0 ≤ i ≤ n − 1, the i-th codegeneracy map ÁBn → ÁBn−1 is given by

B∗ ◦ (B∗B∗)◦i ◦ (B∗B∗) ◦ (B∗B∗)◦n−i−1 ◦ B∗
δ
−→ B∗ ◦ (B∗B∗)◦i ◦ id ◦ (B∗B∗)◦n−i−1 ◦ B∗,

where δ is the counit of the adjunction (B∗,B∗).

We may think of ÁB as a right-lax symmetric monoidal functorÁB : MSh(k; Λ)⊗ → Fun(∆,MSh(k; Λ))⊗ (1.34)

and, as usual, we also write ÁB for the underlying functor. In particular, ÁB(Λ) is a cosimplicial
commutative algebra in MSh(k; Λ)⊗.

Definition 1.60. By [Ayo17a, Theorem 8.3], the cosimplicial commutative algebra Γ(k;ÁB(Λ)) is a
commutative Hopf algebra, which we call the motivic Hopf algebra and denote by Hmot(k, σ; Λ).
(This also follows from Theorem 1.44, Corollary 1.58 and 1.62 below.) Its spectrum is denoted by
Gmot(k, σ; Λ) and is called the motivic Galois group. By definition, this is a nonconnective spectral
group Λ-scheme. When Λ is the sphere spectrum, we simply write Hmot(k, σ) and Gmot(k, σ).

Remark 1.61. It follows from Corollary 1.58 and Lemma 1.62 below that there is an equivalence
of commutative Hopf algebras Hmot(k, σ; Λ) ' Hmot(k, σ) ⊗ Λ. Thus, Gmot(k, σ; Λ) is simply the
base change of Gmot(k, σ) along Spec(Λ)→ Spec(S).
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Lemma 1.62. The cosimplicial commutative algebraÁB(Λ) : ∆→ CAlg(MSh(k; Λ))

is the left Kan extension of its restriction to ∆≤0. Said differently, there is an equivalence of cosim-
plicial commutative algebras cobar•(BΛ)

∼
−→ ÁB•(Λ).

Proof. We need to show that the morphism

n times︷                       ︸︸                       ︷
B∗(Λ) ⊗Λ . . . ⊗Λ B∗(Λ)→

n times︷                ︸︸                ︷
B∗B∗ ◦ . . . ◦ B∗B∗(Λ)

is an equivalence. This follows by induction from Proposition 1.56. �

Corollary 1.63. The motivic Hopf algebra Hmot(k, σ; Λ) is canonically equivalent to the motivic
Hopf algebra Hmot(k,BΛ) associated to the Betti spectrum BΛ.

Corollary 1.64. There is a canonical equivalence of nonconnective spectral group Λ-prestacks

Gmot(k, σ; Λ)
∼
−→ Auteq(BΛ).

Proof. This is the combination of Theorem 1.54 and Corollary 1.63. �

The reminder of this subsection is devoted to reviewing some of the more concrete properties of
the motivic Galois group obtained in [Ayo14b, Ayo14c]. We start with the following useful fact.

Proposition 1.65. Assume that k is a filtered union of a family of subfields (kα)α and let σα = σ|kα
be the complex embedding of kα obtained by restriction from σ. Then, there is an equivalence of
commutative Hopf algebras

colim
α

Hmot(kα, σα; Λ)
∼
−→ Hmot(k, σ; Λ).

Proof. For this proof, we need to work with motives in the Nisnevich topology. This is indeed
possible arguing as in the proof of Proposition 1.30. In fact, all the results of Subsection 1.3 are
valid equally in the Nisnevich topology. Below, we use freely that the ∞-categories of motives in
the Nisnevich topology are compactly generated.

The morphism eα : Spec(k)→ Spec(kα) induces a pair of adjoint functors

e∗α : MShnis(kα; Λ)�MShnis(k; Λ) : eα, ∗

and, by [AGV20, Proposition 2.5.11], we have an equivalence in PrL
ω:

MShnis(k; Λ) ' colim
α

MShnis(kα; Λ).

Concretely, this means that for any object M ∈MShnis(k; Λ), we have an equivalence

M ' colim
α

e∗αeα, ∗M. (1.35)

(It is standard but not completely obvious to set up an equivalence as above; we refer the reader
to [AGV20, Lemma 3.5.7 & Remark 3.5.8] where a similar construction is discussed in a different
situation.) Denote by B∗α : MSh(kα; Λ) → ModΛ the Betti realisation functor associated to σα

and let Bα, ∗ be its right adjoint. We have an equivalence B∗α ' B∗ ◦ e∗α inducing an equivalence
of right-lax monoidal functors Bα, ∗ ' eα, ∗ ◦ B∗. In particular, letting Bα,Λ = Bα, ∗(Λ), we have
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an equivalence of commutative algebras Bα,Λ ' eα, ∗BΛ. Applying the equivalence in (1.35), we
obtain an equivalence of commutative algebras

colim
α

e∗αBα,Λ ' BΛ. (1.36)

Since the above colimit is filtered and the functors e∗α symmetric monoidal, we also deduce an
equivalence of cosimplicial commutative algebras

colim
α

e∗αcobar(Bα,Λ) ' cobar(BΛ). (1.37)

We now apply Γ(k;−) and use the fact that the obvious morphism

colim
α

Γ(kα; cobar(Bα,Λ))→ colim
α

Γ(k; e∗αcobar(Bα,Λ))

is an equivalence to conclude. �

To go further, we need a short digression.

Construction 1.66. Given a profinite group G, we denote by BG the category of finite continuous
G-sets, which we endow with the topology τG generated by jointly surjective families of mor-
phisms of G-sets. For a commutative ring spectrum Λ, we define the ∞-category Rep(G; Λ) of
G-representations with coefficients in Λ as the ∞-category of τG-hypersheaves on BG with coeffi-
cients in Λ, i.e., we set

Rep(G; Λ) = Shv∧τG
(BG; Λ).

When G is finite, we recover the usual definition of the ∞-category of G-representations with
coefficients in Λ. The site (BG, τG) has a canonical point given by G considered as a profinite G-set
via the regular left action. Taking stalks at this point gives a forgetful functor

f∗G : Rep(G; Λ)→ ModΛ.

We denote by fG, ∗ its right adjoint.

Notation 1.67. Let X be a profinite set. Given a Λ-module M, we let C0(X; M) be the Λ-module

C0(X; M) = colim
X�F

MF

where the colimit is over the filtered set of surjections from X to finite sets and MF =
∏

F M is the
direct product of copies or M indexed by F. When M = Λ, the resulting Λ-module C0(X; Λ) is
naturally a commutative Λ-algebra. In fact, we have equivalences C0(X; M) ' C0(X; Λ) ⊗Λ M. As
usual, when Λ is the sphere spectrum, we simply write C0(X).

Lemma 1.68. Let G be a profinite group.
(i) The functor fG, ∗ : ModΛ → Rep(G; Λ) is colimit-preserving.

(ii) The cosimplicial algebra Γ(G; cobar•(fG, ∗(Λ))) is equivalent to the commutative Hopf al-
gebra C0(B•(G); Λ) where B•(G) is the classifying simplicial profinite set of G.

Proof. This is an easy exercise. We give some details for the reader’s convenience. The functor
fG, ∗ sends a Λ-module M to the τG-sheaf F ∈ BG 7→ MF . This proves (i) since finite direct products
in ModΛ are colimit-preserving.

For (ii), we remark that, for m ≥ 0, the G-representation fG, ∗(Λ)⊗m is the τG-hypersheaf associ-
ated to the presheaf F ∈ BG 7→ ΛFm

. Thus, fG, ∗(Λ)⊗m is given by F ∈ BG 7→ C0(F ×G Gm; Λ) with
G acting diagonally on Gm. From this, we deduce easily that Γ(G; cobar•(fG, ∗(Λ))) is equivalent to
C0(G\bar•(G); Λ). This is precisely the commutative Hopf algebra C0(B•(G); Λ). �
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Remark 1.69. To ease notation, we will often use the same symbol to denote a commutative Hopf
algebra, its underlying commutative algebra, its underlying spectrum, etc. For example, the ex-
pression “the commutative Hopf algebra C0(G; Λ)” should be read “the commutative Hopf algebra
C0(B(G); Λ)”. Similarly, the expression “the Λ-module Hmot(k, σ; Λ)” should be read “the Λ-
module B∗B∗(Λ)”.

Theorem 1.70. Let k/k be an algebraic closure of k and σ : k ↪→ C a complex embedding
extending σ. We have the following properties.

(i) There is a coCartesian square of commutative Hopf Λ-algebras

C0(Gk/k; Λ) //

��

Hmot(k, σ; Λ)

��

Λ // Hmot(k, σ; Λ).

(ii) The morphism of commutative Hopf Λ-algebras

C0(Gk/k; Λ)→ Hmot(k, σ; Λ) (1.38)

becomes an equivalence after `-adic completion, for every prime `. Said differently, the
cofiber of the morphism of Λ-modules in (1.38) belongs to ModΛQ .

Proof. We have a commutative triangle in CAlg(PrL)

Rep(Gk/k; Λ) c∗
//

f∗ ''

MSh(k; Λ)

B∗

��

ModΛ

where c∗ is the “Artin motive” functor and where we write “f∗” for “f∗
Gk/k

”. This induces a morphism
of commutative algebras c∗f∗(Λ)→ B∗(Λ) and hence a morphism of cosimplicial algebras

c∗(cobar(f∗(Λ)))→ cobar(B∗(Λ)).

Applying Γ(k;−) and using the natural transformation Γ(Gk/k;−) → Γ(k; c∗(−)), we obtain, by
Lemma 1.68, a morphism of commutative Hopf Λ-algebras

C0(Gk/k; Λ)→ Hmot(k, σ; Λ).

Since this construction is natural in the pair (k, σ), we also obtain a commutative square as in part
(i) of the statement. To prove that this square is coCartesian, we may replace the commutative
Hopf algebras by their underlying commutative algebras. The result follows then from Proposition
1.65 and Lemma 1.71 below.

We now turn to the proof of (ii). Using Proposition 1.65, it is enough to check the assertion that
the cofiber of the morphism in (1.38) belongs to ModΛQ when k is a finitely generated extension of
Q. In particular, we may assume that k has finite virtual Λ-cohomological dimension.

Given a stable presentable∞-category C, we let C`-cpl be the full sub-∞-category of `-complete
objects in C. Recall that the obvious inclusion admits a left adjoint

(−)`-cpl : C → C`-cpl

exhibiting C`-cpl as the localisation of C with respect to `-divisible objects (i.e., those objects for
which multiplication by ` is an equivalence). The Betti realisation functor B∗ and its right adjoint
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B∗ are colimit-preserving, and hence are left adjoint functors. Moreover, they preserve `-divisible
objects. Thus, by the universal properties of localisation, we have commutative squares

MSh(k; Λ) B∗
//

(−)`-cpl

��

ModΛ

(−)`-cpl

��

MSh(k; Λ)`-cpl
B∗
`
// (ModΛ)`-cpl

and
ModΛ

(−)`-cpl

��

B∗
// MSh(k; Λ)

(−)`-cpl

��

(ModΛ)`-cpl
B`, ∗
// MSh(k; Λ)`-cpl,

and B`, ∗ is right adjoint to B∗` . Since the Λ-module Hmot(k, σ; Λ) is given B∗B∗Λ, we deduce
that its `-completion Hmot(k, σ; Λ)`-cpl is given by B∗`B`, ∗Λ`. A similar reasoning shows that the
`-completion of C0(Gk/k; Λ) ' f∗f∗Λ is given by f∗` f`, ∗Λ` where f∗` and f`, ∗ are defined similarly as
B∗` and B`, ∗. (Here, we implicitly use Lemma 1.68(i).) Thus, to finish the proof, it would suffices
to show that the obvious functor

c∗` : Rep(Gk/k)`-cpl →MSh(k; Λ)`-cpl

is an equivalence. This is precisely the content of the rigidity theorem, proven by Bachmann
[Bac18, Theorem 6.6]. See also [AGV20, Theorem 2.10.4]. �

Lemma 1.71. Let k′/k be a finite extension and σ′ : k′ ↪→ C a complex embedding extending σ.
Then, we have a coCartesian square of commutative algebras

ΛHomσ(k′,C) //

σ′∗

��

Hmot(k, σ; Λ)

��

Λ // Hmot(k′, σ′; Λ)

where Homσ(k′,C) is the set of complex embeddings extending σ and σ′∗ is “evaluation at σ′”.

Proof. Let e : Spec(k′) → Spec(k) be the obvious morphism. For M′ ∈ MSh(k′; Λ), the object
e∗(M′) is an e∗(Λ)-module and the morphism

e∗e∗(M′) ⊗e∗e∗(Λ) Λ→ M′ (1.39)

is an equivalence. To prove this, we remark that the domain and codomain of the morphism in
(1.39) are colimit-preserving in the variable M′. (Here, we use that e∗ ' e! admits a right adjoint.)
On the other hand, MSh(k′; Λ) is generated under colimits by the image of e∗. Indeed, for X′ a
smooth k′-variety, the motive M(X′) ∈ MSh(k′; Λ) is a direct summand of M(X′ ⊗k k′). Thus, it is
enough to show that the morphism in (1.39) is an equivalence when M′ = e∗M. In this case, by the
projection formula, we have e∗M′ ' e∗(Λ) ⊗ M, and the result is then obvious.

Let B′∗ : MSh(k′,Λ) → ModΛ the Betti realisation functor associated to σ′, B′∗ its right adjoint
and B′

Λ
= B′∗(Λ). Since B∗ ' B′∗ ◦ e∗, we have BΛ ' e∗(B′Λ). Using the equivalence in (1.39), we

obtain an equivalence of commutative algebras

e∗BΛ ⊗e∗e∗Λ Λ
∼
−→ B′Λ.

Applying B′∗ to this equivalence, the result follows. �

Theorem 1.72. Assume that Λ is connective. Then, the commutative Hopf algebra Hmot(k, σ; Λ)
is also connective, i.e., it is a commutative Hopf algebra in the symmetric monoidal ∞-category
Mod⊗Λ,≥0. In other words, Gmot(k, σ; Λ) is a spectral affine group scheme over Λ.

36



Proof. We only need to show that the underlying Λ-module of Hmot(k, σ; Λ) is connective. Since
Hmot(k, σ; Λ) ' Hmot(k, σ) ⊗ Λ, it is enough to show that Hmot(k, σ) is connective. Since C0(Gk/k)
is connective, it is enough to show that the cofiber of

C0(Gk/k)→ Hmot(k, σ)

is a connective spectrum. By Theorem 1.70(ii), this cofiber belongs to ModQ. Since tensoring with
Q is exact, we are left to show that the cofiber of

C0(Gk/k;Q)→ Hmot(k, σ;Q)

is connective. This follows immediately from [Ayo14b, Corollaire 2.105]. �

Remark 1.73. Keep assuming that Λ is connective. It follows from Theorem 1.72 that the ordinary
π0Λ-algebra

Hcl
mot(k, σ; Λ) = π0Hmot(k, σ; Λ)

is an ordinary commutative Hopf algebra. Its spectrum, denoted Gcl
mot(k, σ; Λ), is the classical affine

group scheme underlying Gmot(k, σ; Λ). This is an affine group scheme over π0Λ. Taking Λ = Q,
we obtain an affine pro-algebraic group Gcl

mot(k, σ;Q) which is isomorphic to Nori’s motivic Galois
group by [CG17, Theorem 9.1].

1.5. The fundamental sequence.
In this subsection, we discuss some of the results obtained in [Ayo14c, §2] relating the motivic

Galois groups to the topological fundamental groups. The main facts are summarised in Theorem
1.86 below. As usual, Λ ∈ CAlg(Sp) is a commutative ring spectrum.

Construction 1.74. Fix a base field k and a complex embedding σ : k ↪→ C. Let X = (Xα)α be
a pro-k-variety and x ∈ limα Xα(C) a compatible system of base points. We can associate to the
pair (X, x) a commutative Hopf algebra object Fσ(X, x; Λ) in Mod⊗Λ by adapting Construction 1.59.
Indeed, consider the symmetric monoidal functor

φ∗x : L̂S(X; Λ)⊗ → Mod⊗Λ (1.40)

obtained by restricting the inverse image functor along the inclusion x : Spec(k) → X. Here and
below, we define L̂S(X; Λ)⊗ to be the filtered colimit in CAlg(PrL

ω) of the symmetric monoidal
∞-categories L̂S(Xα; Λ)⊗ introduced in Definition 1.23. The functor φ∗x in (1.40) is a morphism in
CAlg(PrL

ω). In particular, φ∗x admits a right adjoint φx, ∗ which right-lax monoidal and commutes
with colimits. By [Lur17, Proposition 4.7.3.3], the composite functor φx, ∗φ

∗
x underlies a coalgebra

structure in the ∞-category EndFun(L̂S(X; Λ)⊗) of right-lax symmetric monoidal endofunctors of
L̂S(X; Λ)⊗. Said differently, there exists a cosimplicial objectÊφx : ∆→ EndFun(L̂S(X; Λ)⊗)

such that Êφn
x = (φx, ∗φ

∗
x)
◦n+1, and the faces and codegeneracies are induced by the unit and counit of

the adjunction (φ∗x, φx, ∗). Arguing as in the proof of Lemma 1.62, one can show that the cosimplicial
commutative algebra ÊφxΛ is the left Kan extension of its restriction to ∆≤0.2 Said differently, there
is an equivalence of cosimplicial commutative algebras

cobar(φx, ∗(Λ))
∼
−→ Êφx(Λ).

2It is maybe worth developing a more general formalism that we can apply here.
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We define a cosimplicial commutative algebra in Mod⊗Λ by setting

F(X, x; Λ) = πX, ∗(Êφx(Λ))

where πX : X → Spec(k) is the structural projection and πX, ∗ is the usual direct image functor.

Notation 1.75. With the notations as in Construction 1.74, we set

π
alg
1 (X, x; Λ) = Spec(F(X, x; Λ)).

This is a nonconnective spectral affine group Λ-scheme.

Remark 1.76. If Λ′ is a commutative Λ-algebgra, we have a commutative square

L̂S(X; Λ)⊗
φ∗x
//

−⊗ΛΛ′

��

ModΛ

−⊗ΛΛ′

��

L̂S(X; Λ′)⊗
φ∗x
// ModΛ′

inducing a morphism of commutative Hopf Λ′-algebras

F(X, x; Λ) ⊗Λ Λ′ → F(X, x; Λ′). (1.41)

In contrast with Remark 1.61, this morphism is not an equivalence in general.

Lemma 1.77. Keep the assumptions and notations of Construction 1.74. Assume that Λ is an
ordinary regular ring. Then the Λ-module underlying F(X, x; Λ) is coconnective.

Proof. The condition that Λ is an ordinary regular ring implies that the canonical t-structure
on Sh(Xan; Λ) induces a t-structure on LS(X; Λ) which, by indization, induces a t-structure on
L̂S(X; Λ). Moreover, the functor φ∗x is t-exact. This implies that its right adjoint φx, ∗ is a left exact.
The result follows since the Λ-module underlying F(X, x; Λ) is given by φ∗xφx, ∗(Λ). �

We recall the following standard definition.

Definition 1.78.
(i) An elementary fibration is an affine morphism of schemes f : X → S which is part of a

commutative diagram

X
j
//

f
��

X

f
��

Z

e
��

i
oo

S

such that j is a fiberwise dense open immersion, f is smooth, proper, geometrically con-
nected and of relative dimension 1, and e is étale.

(ii) A k-variety X is said to be an Artin neighbourhood if its structural morphism X → Spec(k)
can be factored as

X = Xd
fd
−→ Xd−1 → · · · → X1

f1
−→ X0 = Spec(k)

where, for 1 ≤ r ≤ d, the morphism fr : Xr → Xr−1 is an elementary fibration. (In
particular, an Artin neighbourhood is smooth and geometrically connected over k.)

Lemma 1.79. Assume that the field k is infinite. Then, every smooth and geometrically connected
k-variety admits an open covering by Artin neighbourhoods.
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Proof. This is proven in [SGA73, Exposé XI, Proposition 3.3] under the assumption that k is
algebraically closed. However, the argument in loc. cit. can be easily adapted to the case where k
is only assumed to be infinite. Indeed, in [SS16, Lemma 6.3], the argument was adapted to cover
the case where k is perfect infinite, and where one is working in the neighbourhood of a rational
point. Both assumptions are only used in the last paragraph of the proof of [SS16, Lemma 6.3];
they can be removed using the following simple fact: for a geometrically irreducible k-variety S ,
and nonempty open subsets U1, . . . ,Un of S ⊗k k, with k/k an algebraic closure, there is an open
subset V ⊂ S such that V ⊗k k is contained in all the Ui’s. �

The following proposition is a “pro-algebraic” version of the well-known property that Artin
neighbourhoods are of type K(π, 1); see [SS16, §2.3 & Proposition 2.8] for a discussion in the
context of pro-finite étale homotopy theory. (In the statement below, we implicitly use the fact that
pushforwards along elementary fibrations preserve local systems, which follows from Ehresmann’s
theorem; see also Step 5 of the proof of Proposition 1.26.)

Proposition 1.80 (Beı̆linson). Assume that Λ is a field or a Dedekind domain with finite residue
fields at all maximal ideals. Let X be an Artin neighbourhood. Then there is an equivalence of
∞-categories

θX : D(L̂S(X; Λ)♥)
∼
−→ L̂S(X; Λ).

More generally, assume that for every k-variety S we are given a full sub-∞-category L̂(S ) ⊂
L̂S(S ; Λ) such that the following conditions are satisfied:

• each L̂(S ) is stable under colimits, desuspension, tensor product, and truncations with
respect to the obvious t-structure;
• the L̂(S )’s are stable by pullbacks and by pushforwards along finite étale morphisms and

elementary fibrations;
• each L(S ) = L̂(S ) ∩ LS(S ; Λ) is stable under duality and generates L̂(S ) by colimits.

With L̂(X)♥ = L̂(X) ∩ L̂S(X; Λ)♥, there is an equivalence of∞-categories D(L̂(X)♥)
∼
−→ L̂(X).

Proof. The essential part of the statement can be obtained by adapting Beı̆linson’s proof of [Beı̆87,
Lemma 2.1.1]; some extra work is needed for dealing with unbounded complexes. For the reader’s
convenience, we give a complete proof which we split into three steps.

Step 1. We argue by induction on the dimension of X. When X is zero-dimensional, there is
nothing to prove. Thus, we may assume that the dimension of X is ≥ 1, and we fix an elementary
fibration f : X → S with S an Artin neighbourhood. By the induction hypothesis, the functor

θS : D(L̂(S )♥)→ L̂(S )

is an equivalence of∞-categories. Consider the commutative square

D(L̂(S )♥)
θS∼

��

f ∗
// D(L̂(X)♥)

θX
��

L̂(S )
f ∗

// L̂(X),

(1.42)

where we denote by f ∗ the two functors given by pullback along f . These two functors admit right
adjoints that we denote by

R f∗ : D(L̂(X)♥)→ D(L̂(S )♥) and f∗ : L̂(X)→ L̂(S ).
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We will prove in Steps 2 and 3 below that the square (1.42) is right adjointable, i.e., that the natural
transformation

θS ◦ R f∗ → f∗ ◦ θX (1.43)

is an equivalence. This would suffices to conclude. Indeed, θX is colimit-preserving and its image
generates L̂(X) under colimits. Thus, it is enough to show that θX is fully faithful. Let M and N
be two objects of D(L̂(X)♥), and consider the map

MapD(L̂(X)♥)(M,N)→ Map
L̂(X)(M,N). (1.44)

(Since θX is the identity on objects, we simply write M and N for θX(M) and θX(N).) The domain
and codomain of the map in (1.44) transform colimits in the variable M into limits in S. The
∞-category D(L̂(X)♥) is generated under colimits by the objects of L(X)♥, and these objects are
clearly dualizable with respect to the symmetric monoidal structure on D(L̂(X)♥) given by Lemma
1.81 below. Thus, we may assume that M is dualizable with dual M∨. Replacing N by N ⊗Λ M∨,
we may assume that M = ΛX is the unit object. In this case, the map (1.44) can be identified with
the map

MapD(L̂(S )♥)(ΛS ,R f∗N)→ Map
L̂(S )(ΛS , f∗N) (1.45)

induced from the equivalence θS and the natural transformation (1.43). This proves our claimed
reduction.

Step 2. It remains to see that the natural transformation (1.43) is an equivalence. Note that the
functor f∗ has cohomological amplitude in [0, 1], i.e., takes an object of M ∈ L̂(X)♥ to an object
f∗M ∈ L̂(S ) concentrated in cohomological degrees zero and one.

We start by showing that (1.43) is an equivalence when evaluated at an injective object J of the
Grothendieck abelian category L̂(X)♥. The condition that J is injective insures that the complex
R f∗J is concentrated in degree zero. Since R f∗J → f∗J induces an equivalence in degree zero, it
remains to see that H1( f∗J) vanishes. Since the functor f ∗ : L̂(S )♥ → L̂(X)♥ is exact, it follows
that H0( f∗J) is an injective object of L̂(S )♥. Using that θS is an equivalence, we deduce that f∗J
is isomorphic to H0( f∗J) ⊕H1( f∗J)[−1]. To conclude, it is thus enough to show that the morphism
f ∗ f∗J → J is zero on the factor f ∗H1( f∗J)[−1]. But cofib( f ∗H1( f∗J)[−1] → J) belongs to L̂(X)♥

and is an extension of f ∗H1( f∗J) by J. This extension must split because J is injective.
Next, we show that (1.43) is an equivalence when evaluated at any object M of L̂(X)♥. Choose

an exact sequence
M → I0 → I1 → . . .→ Im → N → 0

where the Ii’s are injective objects of L̂(X)♥. Letting I = [I0 → . . .→ Im], with I0 placed in degree
zero, we obtain an exact triangle

M → I → N[−m]→

in D(L̂(X)♥). The morphism R f∗I → f∗I is an equivalence by the previous discussion and induc-
tion. We deduce an equivalence

cofib(R f∗M → f∗M) ' cofib(R f∗N → f∗N)[−m − 1].

The right hand side in concentrated in cohomological degrees ≥ m. This shows that the morphism
Hi(R f∗M) → Hi( f∗M) is an isomorphism for i ≤ m − 1. Since m can be taken arbitrary large, this
proves that R f∗M → f∗M is an equivalence.
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For use in Step 3 below, we note the following consequence. We have two “global sections”
functors

RΓ(X;−) : D(L̂(X)♥)→ D(Mod♥Λ) ' ModΛ and Γ(X;−) : L̂(X)→ ModΛ,

right adjoint to the obvious functors sending a Λ-module to the associated constant sheaf. Using the
induction hypothesis, and the discussion above, we immediately see that the obvious natural trans-
formation RΓ(X;−) → Γ(X,−) ◦ θX is an equivalence when evaluated at any object of Db(L̂(X)♥).
In particular, using Artin’s vanishing theorem for the cohomology of affine varieties in the Betti
setting (see the beginning of [Nor02, §1] for a proof), we deduce that the functor RΓ(X;−) has
cohomological amplitude in [0, dim(X)].

Step 3. At this stage, we know that (1.43) is an equivalence when evaluated at any object of
Db(L̂(X)♥). This sub-∞-category generates D(L̂(X)♥) under colimits. On the other hand, the
functors f∗ and θX are colimit-preserving. (In the case of f∗, we use that f ∗ : L̂(S )→ L̂(X) belongs
to PrL

ω which follows immediately from Definition 1.23; see also Lemma 1.25.) Thus, to conclude,
it remains to see that R f∗ is also colimit-preserving. For this, we will show that f ∗ : D(L̂(S )♥) →
D(L̂(X)♥) belongs to PrL

ω. That D(L̂(S )♥) is compactly generated follows from the induction
hypothesis since L̂(S ) has this property. Using the symmetric monoidal structures provided by
Lemma 1.81 below, we see that f ∗ : D(L̂(S )♥) → D(L̂(X)♥) preserves dualizable objects. Since
dualizable objects generate D(L̂(X)♥) under colimits, we can conclude if dualizability in D(L̂(X)♥)
implies compactness. This is the case if and only if ΛX is compact in D(L̂(X)♥). Said differently,
we are left to show that the “global sections” functor RΓ(X;−) : D(L̂(X)♥) → ModΛ is colimit-
preserving.

In order to do so, we first prove that every object of D(L̂(X)♥) is Postnikov complete in the
sense of [CM19, Definition 2.4] (see also [CM19, Example 2.6]). By [CM19, Proposition 2.10], it
is enough to show that every torsion-free object M of L(X)♥ = L(X) ∩ L̂(X)♥ has cohomological
dimension ≤ dim(X). (Here we use the fact that every object of L(X)♥ is a quotient of a torsion-
free object; see the proof of Lemma 1.81 below.) This follows immediately from the following
properties: M is dualizable, the functor M∨ ⊗ − is t-exact, and, for N ∈ L̂(X)♥, the complex of
Λ-modules RΓ(X; N) has cohomological amplitude in [0, dim(X)]. (The last property was proven
in Step 2.) This said, it is easy to see that RΓ(X;−) is colimit-preserving. Indeed, let L : KB →
D(L̂(X)) be a colimit diagram with K a filtered ordinary category, and denote by∞ the cone point
of KB. For every α ∈ KB, we have an equivalence in ModΛ:

RΓ(X; L(α)) ' lim
m∈N

RΓ(X; τ≤mL(α)),

just using that L(α) is Postnikov complete. Moreover, for a fixed cohomological index n, the tower
of ordinary Λ-modules (RnΓ(X; τ≤mL(α)))m is constant starting from m ≥ dim(X)−n. (This follows
from the fact proven in Step 2 that RΓ(X;−) has cohomological amplitude in [0, dim(X)].) Using
Milnor exact sequence for lim1 (see for example [Wei94, Theorem 3.5.8]), we deduce that

RnΓ(X; L(α))→ RnΓ(X; τ≤mL(α))

is an isomorphism for m ≥ dim(X) − n. Thus, we are reduced to showing that RnΓ(X; τ≤mL(∞)) is
the colimit of the RnΓ(X; τ≤mL(α)), for α ∈ K. Said differently, we may replace L with τ≥−nτ≤mL
and assume that the L(α)’s, for α ∈ KB, are bounded. In this case, by Step 2, we may replace
RΓ(X;−) with Γ(X;−) ◦ θX and conclude using that Γ(X;−) is colimit-preserving. �
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Lemma 1.81. Assume that Λ is a field or a Dedekind domain with finite residue fields at all maxi-
mal ideals, and assume we are given full sub-∞-categories L̂(S ) ⊂ L̂S(S ; Λ) as in the statement of
Proposition 1.80. Then the ∞-categories D(L̂(S )♥) admit natural symmetric monoidal structures
such that the pullback functors and the functors θS lift to symmetric monoidal functors.

Proof. The case where Λ is a field is clear, so we assume that Λ is a Dedekind domain. It is
enough to show that every local system M in L̂(S )♥ admits a resolution by a torsion-free local
system in L̂(S )♥. Let Mtor be the subsheaf of M consisting of torsion sections. By our assumption
on the residue fields of the Dedekind domain Λ, the local system Mtor has finite monodromy, i.e.,
there exists a finite étale cover e : S ′ → S such that e∗Mtor is constant. Since e!e∗Mtor → Mtor

is surjective, we may find a surjection N → Mtor with N torsion-free. (More precisely, we may
take for N the image by e! of the constant sheaf associated to a torsion-free ordinary Λ-module
surjecting onto the ordinary global sections of e∗Mtor.) We then obtain a surjection M×Mtor N → M
from a torsion free local system in L̂(S )♥, whose kernel is also torsion-free. �

Lemma 1.82. Assume that Λ is a field or a Dedekind domain with finite residue fields at all
maximal ideals. Let X be a pro-k-variety and x ∈ lim X(C). Denote by π ét

1 (X, x) the profinite étale
fundamental group of the pair (Xan, x). The morphism of commutative Hopf Λ-algebras

C0(π ét
1 (X, x); Λ)→ F(X, x; Λ) (1.46)

becomes an equivalence after tensoring with Λ/p for every maxmial ideal p ⊂ Λ. Said differently,
the cofiber of the morphism of Λ-modules in (1.46) belongs to ModFrac(Λ).

Proof. The argument is identical to the one used in the proof of Theorem 1.70(ii); instead of the
rigidity theorem for motivic sheaves, one uses that torsion local systems over X are étale locally
constant. We leave the details to the reader. �

We can now prove the following theorem.

Theorem 1.83. Assume that Λ is a field or a Dedekind domain with finite residue fields at all max-
imal ideals. Let X be an Artin neighbourhood and let x ∈ X(C). Then F(X, x; Λ) is concentrated
in degree zero and πalg

1 (X, x; Λ) is a classical affine group Λ-scheme.

Proof. By Lemma 1.77, we already know that F(X, x; Λ) is coconnective. Thus, it remains to see
that it is connective. Using Lemma 1.82, it is enough to prove this after tensoring with Frac(Λ).
Since the functor φx, ∗ : ModΛ → L̂S(X; Λ) is colimit-preserving, we have

F(X, x; Λ) ⊗Λ Frac(Λ) ' φ∗xφx, ∗(Frac(Λ)).

Now, by Proposition 1.80, the functor φx, ∗ can be identified with the right derived functor Rφx, ∗ :
D(Mod♥Λ) → D(L̂S(X; Λ)♥) associated to the right adjoint of φ∗x : L̂S(X; Λ)♥ → Mod♥Λ. Since
Frac(Λ) is an injective object of Mod♥Λ, we deduce that Rφx, ∗(Frac(Λ)) is concentrated in degree
zero. The same is thus true for φ∗xRφx, ∗(Frac(Λ)) as needed. �

Corollary 1.84. Assume that Λ is a field or a Dedekind domain with finite residue fields at all
maximal ideals. Let K/k be a field extension and Σ : K ↪→ C a complex embedding extending
σ. Consider Spec(K) as a pro-k-variety in the obvious way and Σ as a point of the limit of the
analytic pro-variety Spec(K)an. Then, F(K,Σ; Λ) is concentrated in degree zero and πalg

1 (K,Σ; Λ)
is a classical affine group Λ-scheme.

Proof. This is an immediate consequence of Lemma 1.79 and Theorem 1.83. �
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Remark 1.85. When Λ is a field, the affine group scheme πalg
1 (X, x; Λ) in Theorem 1.83 is the pro-

algebraic completion of the topological fundamental group π1(Xan, x). This can be easily obtained
from the fact that LS(X; Λ)♥ is equivalent to the ordinary category of finite-dimensional represen-
tations of π1(Xan, x) with coefficients in Λ.

In the next statement, we summarise the relation between motivic Galois groups and algebraic
completions of fundamental groups. The main part of the statement was essentially proven in
[Ayo14c, §2]. (See also [Ayo14d] for some corrections.)

Theorem 1.86. Let K/k be a field extension, Σ : K ↪→ C a complex embedding of K extending
σ : k → C. Consider the induced morphism of spectral affine group Λ-schemes

ρK/k : Gmot(K,Σ; Λ)→ Gmot(k, σ; Λ), (1.47)

and let Grel(K/k,Σ; Λ) be its kernel. We have the following properties.
(i) The morphism ρK/k in (1.47) is flat. Moreover, it is faithfully flat if and only if k is alge-

braically closed in K.
(ii) If k is algebraically closed, the morphism ρK/k in (1.47) admits a splitting exhibiting

Gmot(K,Σ; Λ) as a semi-direct product of Grel(K/k,Σ; Λ) by Gmot(k, σ; Λ).
(iii) The spectral scheme Grel(K/k,Σ; Λ) is flat over Λ. In particular, if Λ is an ordinary ring,

Grel(K/k,Σ; Λ) is classical.
(iv) Assume that Λ is a field or a Dedekind domain with finite residue fields at all maximal

ideals. Then, the obvious morphism of classical affine group Λ-schemes

π
alg
1 (K/k,Σ; Λ)→ Grel(K/k,Σ; Λ) (1.48)

is faithfully flat.
In particular, if Λ is a field or a Dedekind domain with finite residue fields at all maximal ideals,
and if k is algebraically closed in K, we have an exact sequence of classical affine group Λ-schemes

π
alg
1 (K/k; Σ; Λ)→ Gcl

mot(K,Σ; Λ)→ Gcl
mot(k, σ; Λ)→ {1} (1.49)

Proof. Let k′ ⊂ K be the algebraic closure of k in K andσ′ = Σ|k′ : k′ ↪→ C. We have a factorisation
ρK/k = ρk′/k ◦ ρK/k′ . By Lemma 1.71, the morphism ρk′/k : Gmot(k′, σ′; Λ) → Gmot(k, σ; Λ) is the
base change of Spec(σ′∗) : Spec(Λ) → Spec(ΛHomσ(k′,C)) which is a pro-open immersion. Thus,
to prove that (1.47) is flat, we may replace k by k′. Said differently, it is enough to prove the
second assertion in (i). Next, we want to reduce to the case where k is algebraically closed. Fix an
algebraic closure k/k of k and a complex embedding σ : k → C extending σ, and let K = K ⊗k k
and Σ : K → C be the complex embedding that restricts to σ and Σ. We have a commutative
diagram of spectral affine group Λ-schemes with Cartesian squares

Gmot(K,Σ; Λ)
ρK/k
//

��

Gmot(k, σ; Λ)

��

// {1}Λ

��

Gmot(K,Σ; Λ)
ρK/k
// Gmot(k, σ; Λ) // G(k/k)Λ,

where we wrote G(k/k)Λ for the Galois group of k/k considered as a constant spectral group
scheme over Λ. To show that ρK/k is faithfully flat, we may argue locally around each point
γ ∈ G(k/k). Since G(k/k) is profinite, localising around the inverse image of γ is the same as
taking the fiber at γ. Thus, we are left to prove that Gmot(K,Σ; Λ)γ → Gmot(k, σ; Λ)γ is faitfully flat
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(where “γ” in subscript refers to taking the fiber at γ). But Gmot(K,Σ; Λ)γ and Gmot(k, σ; Λ)γ are
torsors over Gmot(K,Σ; Λ) and Gmot(k, σ; Λ). So, it is enough to treat the case γ = 1 as needed.

Now that we have reduced property (i) to the case where k is algebraically closed, we see that it
follows from properties (ii) and (iii). We next prove (ii) and (iii), starting with (iii) which requires
less work. By Remark 1.61, it is enough to show that Grel(K/k,Σ) is flat over the sphere spectrum.
Using Theorem 1.70(ii), we have equivalences

cofib(C0(π ét
1 (K/k,Σ))→ Hrel(K/k,Σ))

' cofib(C0(π ét
1 (K/k,Σ);Q)→ Hrel(K/k,Σ;Q))

' cofib(C0(π ét
1 (K/k,Σ);Z)→ Hrel(K/k,Σ;Z)).

(1.50)

By [Ayo14c, Theorem 2.55], Hrel(K/k,Σ;Z) is concentrated in degree zero, which implies that the
Q-modules in (1.50) are also concentrated in degree zero. Thus π0Hrel(K/k,Σ) is isomorphic to the
ordinary commutative ring Hrel(K/k,Σ;Z) and that the latter is torsion-free, and hence flat over Z.
To finish the proof of (iii), it remains to show that, for i ≥ 1, the obvious morphism

Hrel(K/k,Σ;Z) ⊗ πiS→ πiHrel(K/k,Σ) (1.51)

is an equivalence. Since πiS is a torsion group, Theorem 1.70(ii) implies that the left hand side is
isomorphic to C0(π ét

1 (K/k,Σ);Z)⊗πiS. Using again the equivalences (1.50) and [Ayo14c, Theorem
2.55], we see that the morphism

C0(π ét
1 (K/k,Σ))→ Hrel(K/k,Σ)

induces an isomorphism on the i-th homotopy groups. Thus, we are left to show that

C0(π ét
1 (K/k,Σ);Z) ⊗ πiS→ πiC

0(π ét
1 (K/k,Σ))

is an equivalence. This is obvious since C0(π ét
1 (K/k,Σ)) is flat over the sphere spectrum.

We now prove (ii). Without loss of generality, we may assume that K is also algebraically
closed. Applying Zorn’s lemma to the ordered set of pairs (L, s) consisting of an algebraically
closed subfield L ⊂ K containing k and a section s of ρL/k, we are reduced to showing (ii) in the
case where K/k has transcendence degree 1. Let t be an indeterminate and, for n ∈ N×, fix an n-th
root t1/n of t. Let An be the henselisation of k[t1/n] at the ideal generated by t1/n, and Kn = An[t−1].
Then

⋃
n∈N× Kn is an algebraically closed extension of k of transcendence degree 1. Thus, without

loss of generality, we may assume that K =
⋃

n∈N× Kn. For n ∈ N×, we denote by

Ψn : MSh(Kn; Λ)⊗ →MSh(k; Λ)⊗

the “nearby motive” functor associated to the uniformizer t1/n ∈ An. For the construction and the
basic properties of this functor, we refer the reader to [Ayo07b, §3.5]; see also [AIS17, §4.3] for
a shorter account of the construction. (The constructions of loc. cit. are done using the language
of derivators but are easily translated into the language of∞-categories.) By [Ayo07b, Proposition
3.5.9], for m, n ∈ N×, we have an equivalence of symmetric monoidal functors Ψmn ◦ (en,mn)∗η ' Ψn,
where em : Spec(Amn) → Spec(An) is the obvious morphism. Passing to the colimit in CAlg(PrL),
we obtain a symmetric monoidal functor

Ψ∞ : MSh(K; Λ)⊗ →MSh(k; Λ)⊗.
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Composing with the Betti realisation functor associated to σ : k ↪→ C, we obtain the tangential
Betti realisation functor

TgB∗ : MSh(K; Λ)⊗
Ψ∞
−−→MSh(k; Λ)⊗

B∗
−−→ Mod⊗Λ (1.52)

considered in [Ayo15, §2.5]. We claim that this functor is non canonically equivalent to B∗
Σ

:
MSh(K; Λ)⊗ → Mod⊗Λ. Before saying anything about this claim, we explain why it suffices for
proving (ii). Using the claimed equivalence, we see that the Hmot(K,Σ; Λ) is equivalent to the
commutative Hopf algebra associated to the Weil spectrum TgB∗(Λ), where TgB∗ is the right
adjoint of TgB∗. By the very construction of TgB∗, we have a morphism of commutative algebras
Ψ∞(TgB∗(Λ))→ B∗(Λ) yielding a morphism of commutative Hopf algebras

Hmot(K,TgB∗(Λ))→ Hmot(k, σ; Λ).

This gives the required splitting.
We now say a few words about why the functor TgB∗ in (1.52) is equivalent to B∗

Σ
. The proof

is very similar to that of [Ayo14c, Proposition 2.20] and [Ayo15, Théorème 2.18], and we will not
repeat the details here. One needs a variant of [Ayo14c, Lemme 2.21] insuring the existence of a
family of paths (γn : [0, 1]→ C)n∈N× with the following properties:

• γn(0) = 0, γ′n(0) = 1 and γn(1) is the image of t1/n by Σ : K ↪→ C,
• for m, n ∈ N×, we have (γmn)m = γn,
• γn admits a lift to the analytic pro-variety Spec(An)an sending 0 to the origin.

We leave the construction of such a family of paths to the reader.
To finish the proof, it remains to prove (iv). Without loss of generality, we may assume that k is

algebraically closed. The morphism in (1.48) is over G(K/K)Λ, where K is the algebraic closure
of K in C. Arguing as in the beginning of the proof, we reduce to showing that the morphism
in (1.48) is faithfully flat after taking the fiber along {1}Λ ⊂ G(K/K)Λ. Said differently, we may
assume that K is algebraically closed. In this case, we have a Cartesian square of ordinary rings

Hrel(K/k,Σ; Λ) //

��

Λ

��

Hrel(K/k,Σ; Λ) ⊗Λ Frac(Λ) // Frac(Λ)

where the horizontal arrows are the counit morphisms. This follows immediately from Theorem
1.70(ii), even when Λ has positive characteristic. Similarly, by Lemma 1.82, we have a Cartesian
square of ordinary rings

F(K/k,Σ; Λ) //

��

Λ

��

F(K/k,Σ; Λ) ⊗Λ Frac(Λ) // Frac(Λ).

Applying Lemma 1.87 below, we are reduced to showing that the morphism of Frac(Λ)-algebras

Hrel(K/k,Σ; Λ) ⊗Λ Frac(Λ)→ F(K/k,Σ; Λ) ⊗Λ Frac(Λ)

is flat. Since these are commutative Hopf algebras over a field, it is enough to show that the induced
morphism of classical affine schemes is surjective. Thus, it is enough to show that

π
alg
1 (K/k,Σ; Frac(Λ))→ Grel(K/k,Σ; Frac(Λ))
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is surjective, and we may assume that the field Frac(Λ) has characteristic zero. The result follows
then from [Ayo14c, Théorème 2.57]. �

Lemma 1.87. Let R be an integral domain, and consider a commutative triangle of ordinary rings

A′
f ′

//

a
##

B′

b
��

Frac(R)

where a and b are surjective. Define subrings A ⊂ A′ and B ⊂ B′ by A = a−1(R) and B = b−1(R),
and let f : A→ B be the induced morphism. Then f is flat if and only if f ′ is flat.

Proof. It is clear that A′ and B′ are localisations of A and B. Thus, if f is flat, then so is f ′.
The converse follows from [Fer03, Théorème 2.2(iv)]. Indeed, assume that f ′ is flat. Let C′ =

B′ ⊗A′ Frac(R) and C = c−1(R), where c : C′ → Frac(A) is the obvious morphism. Then B is also
the inverse image of C ⊂ C′ along the obvious map B′ → C′. Said differently, the A-module B is
the image by the functor

S : Mod♥R ×Mod♥Frac(R)
Mod♥A′ → Mod♥A,

as in [Fer03, page 559], of the triple (C, s, B′), where s : C ⊗R Frac(R) ' C′ is the obvious
identification. Thus, it remains to see that C′ is flat over R, which is clear. �

1.6. Constructible sheaves of geometric origin.
In this subsection, we give a precise definition of what we mean by sheaves of geometric origin.

(Similar notions exist already in the literature, see for example [BBD82, §6.2.4], but we will not
attempt to make precise comparisons here.) We then prove that this class of sheaves has good
stability properties. Along the way, we prove a Betti version of [Dre18, Desiderata 1.1(7)]. As
usual, we fix a complex embedding σ : k ↪→ C.

Definition 1.88. Let Λ ∈ CAlg(Sp≥0) be a connective commutative ring spectrum, and let X be a
k-variety.3

(i) We denote by Shgeo(X; Λ)♥ the full subcategory of Shct(X; Λ)♥ generated under kernels,
cokernels, extensions and filtered colimits by the sheaves of the form Hp( f∗Λ) with f :
Y → X a proper k-morphism and p ∈ Z.

(ii) We denote by Shgeo(X; Λ) the full sub-∞-category of Shct(X; Λ) consisting of those objects
with homology sheaves in Shgeo(X; Λ)♥. A sheaf in Shgeo(X; Λ) is said to be of geometric
origin.

(iii) We denote by Ctgeo(X; Λ) the full sub-∞-category of Shgeo(X; Λ) spanned by constructible
sheaves of geometric origin, i.e., the intersection Ct(X; Λ) ∩ Shgeo(X; Λ). Similarly, we
denote by LSgeo(X; Λ) and L̂Sgeo(X; Λ) the intersection of LS(X; Λ) and L̂S(X; Λ) with
Shgeo(X; Λ). Objects in LSgeo(X; Λ) are called local systems of geometric origin.

Remark 1.89. By construction, the natural t-structure on Shct(X; Λ) restricts to a t-structure on
Shgeo(X; Λ) whose heart is Shgeo(X; Λ)♥. Also, for f : Y → X a proper morphism, the sheaf
f∗Λ belongs to Shgeo(X; Λ). In fact, we can characterise the full sub-∞-category Shgeo(X; Λ) ⊂
Shct(X; Λ) as being the one generated under colimits, desuspension and truncation by sheaves of the

3This definition needs to be modified: as defined, it is not at all clear that the ∞-category Shct(X; Λ) admits a
t-structure, compatible with the one on Sh(Xan; Λ).
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form f∗Λ, with f proper. In other words, this is the full sub-∞-category generated under colimits
and desuspension by the smallest abelian subcategory of Shct(X; Λ)♥ containing the sheaves of the
form Hp( f∗π0Λ) for f : Y → X a proper k-morphism and p ∈ N.

Remark 1.90. Using the proper base change theorem in the Betti context, we see that sheaves of
geometric origin are stable under pullbacks. Thus, we have a CAT∞-valued presheaf

Shgeo(−; Λ) : (Sch/k)op → CAT∞. (1.53)

Given a k-variety X, [Ayo07a, Lemme 2.2.23] implies that the∞-category MSh(X; Λ) is generated
under colimits, desuspension and negative Tate twists by motives of the form f∗Λ, with f : Y → X
proper. This shows that the refined Betti realisation of Theorem 1.28 factors through a morphism

B∗geo : MSh(−; Λ)→ Shgeo(−; Λ) (1.54)

of CAT∞-values presheaves. If no confusion can arise, we simply write B∗ for this morphism. Us-
ing Remark 1.89, one obtains yet another characterisation of the full sub-∞-category Shgeo(X; Λ) ⊂
Shct(X; Λ): it is the one generated under colimits, desuspension and truncation by the image of the
refined Betti realisation functor B∗ : MSh(X; Λ)→ Shct(X; Λ).

Before stating our main results concerning sheaves of geometric origin, we give the following
construction.

Construction 1.91. Recall that we denote by BΛ the commutative algebra object of MSh(k; Λ)
given by B∗(Λ), where B∗ : ModΛ →MSh(k; Λ) is the right adjoint of the Betti realisation functor.
There is a Voevodsky pullback formalism

MSh(−;BΛ)⊗ : (Sch/k)op → CAlg(PrL) (1.55)

sending a k-variety X to the symmetric monoidal ∞-category MSh(X;BΛ)⊗ of BΛ-modules in
MSh(X; Λ)⊗. Moreover, we have a factorisation of the refined Betti realisation

B∗ : MSh(−; Λ)⊗
BΛ⊗−
−−−−→MSh(−;BΛ)⊗

B̃∗
−−→ Shct(−; Λ)⊗, (1.56)

where ‹B∗ is informally given by the formula ‹B∗(−) = B∗(−) ⊗B∗B∗(Λ) Λ. We now sketch the con-
struction of the functor (1.55) and the factorisation (1.56). For this, we adapt the method used in
[AGV20, §3.4]. Recall that we have a functor CAlg : CAlg(CAT∞)→ CAT∞ sending a symmetric
monoidal ∞-category C⊗ to the ∞-category CAlg(C) of commutative algebra objects in C⊗. By
[AGV20, Construction 3.4.4 & Remark 3.4.5], we have a functor Mod(−)⊗ : CAlg(CAT∞) →
CAT∞ endowed with a natural transformation Mod(−)⊗ → Fin∗ × CAlg(−). This gives us a com-
mutative square of CAT∞-valued presheaves on Sch/k

Mod(MSh(−; Λ))⊗
Mod(B∗)⊗

//

f0
��

Mod(Shct(−; Λ))⊗

f1
��

Fin∗ × CAlg(MSh(−; Λ))
CAlg(B∗)

// Fin∗ × CAlg(Shct(−; Λ)).
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Applying Lurie’s unstraightening construction [Lur09a, §3.2], we get a commutative diagram

M⊗0
H⊗

//

q0

��

M⊗1

q1

��

Fin∗ × Ξ0
F

//

p0
((

Fin∗ × Ξ1
p1

vv

Fin∗ × (Sch/k)op.

It follows from [AGV20, Lemma 3.4.6] and [Lur09a, Proposition 2.4.2.3(3)] that the functors pi, qi

and pi ◦ qi are coCartesian fibrations for i ∈ {0, 1}. To conclude, consider the coCartesian sections

sBΛ
: (Sch/k)op → Ξ0, s0,Λ : (Sch/k)op → Ξ0 and s1,Λ : (Sch/k)op → Ξ1

sending Spec(k) to B∗(Λ) ∈ CAlg(MSh(k; Λ)), Λ ∈ CAlg(MSh(k; Λ)) and Λ ∈ CAlg(Shct(k; Λ))
respectively. We have morphisms s0,Λ → sBΛ

and FsBΛ
→ s1,Λ, which we use to obtain coCarte-

sian fibrations
Φ0 = M⊗0 ×Ξ0, s0,Λ→sBΛ

(∆1 × (Sch/k)op)→ ∆1 × Fin∗ × (Sch/k)op,

Φ1 = M⊗1 ×Ξ1, s1,Λ→FsBΛ
→s1,Λ (∆2 × (Sch/k)op)→ ∆2 × Fin∗ × (Sch/k)op.

Applying Lurie’s straightening construction [Lur09a, §3.2] to these coCartesian fibrations, we get
the following commutative diagram of CAlg(CAT∞)-valued presheaves on Sch/k:

MSh(−; Λ)⊗
−⊗ΛBΛ

//

B∗

��

MSh(−;BΛ)⊗

B∗

��

Shct(−; Λ)⊗
−⊗ΛB∗BΛ

// Shct(−; B∗BΛ)⊗
−⊗B∗BΛ

Λ
// Shct(−; Λ)⊗.

This finishes the construction.

Remark 1.92. Combining Remark 1.53 and the morphism ‹B∗ in (1.56), we obtain a morphism of
CAlg(CAT∞)-valued presheaves‹B∗geo : MSh(−;BΛ)⊗ → Shgeo(−; Λ)⊗. (1.57)

If no confusion can arise, we simply write ‹B∗ for this morphism.

Below, we summarise some essential properties of sheaves of geometric origin.

Theorem 1.93.
(i) Given a k-variety X, the functor‹B∗ : MSh(X;BΛ)→ Shct(X; Λ) (1.58)

is fully faithful with essential image Shgeo(X; Λ). Said differently, the morphism ‹B∗geo in
(1.57) is an equivalence.

(ii) The sub-∞-categories Shgeo(−; Λ) ⊂ Shct(−; Λ) are closed under the four operations f ∗, f∗,
f! and f !, associated to a morphism f of k-varieties, as well as tensor product and internal
homomorphism from a constructible geometric sheaf.

(iii) The abelian subcategory Shgeo(X; Λ)♥ ⊂ Shct(X; Λ)♥ is stable under subquotients.
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Remark 1.94. The fully faithfulness of the functor ‹B∗ in (1.58) was first observed by Cisinski–
Déglise in [CD19, Example 17.1.7]. Since this can be obtained by a simple application of the six-
functor formalism and its compatibility with the Betti realisation, we include a proof in Lemma
1.95 below. As far as we know, the determination of the essential image of the functor ‹B∗ in (1.58)
is not stated explicitly in the literature, but see Remark 1.101.

The reminder of this section is mostly devoted to proving Theorem 1.93.

Lemma 1.95. The functor ‹B∗ in (1.58) is fully faithful.

Proof. For the sake of clarity, we shall write ‹B∗X for the functor in (1.58) and denote by ‹BX, ∗ :
Shct(X; Λ) → MSh(X;BΛ) its right adjoint. Informally, the latter sends an object F ∈ Shct(X; Λ)
to BX, ∗(F) endowed with its natural structure of BΛ-module. Combining Proposition 1.30 with
[Lur17, Corollary 3.4.4.6], we deduce that ‹BX, ∗ is colimit-preserving. To prove that the functor‹B∗X is fully faithful, we need to show that the unit natural transformation id → ‹BX, ∗

‹B∗X is an
equivalence. Since its domain and codomain are colimit-preserving, it is enough to prove that this
natural transformation is an equivalence when evaluated on a set of objects generating MSh(X;BΛ)
under colimits. Using [Ayo07a, Proposition 2.2.27], we are reduced to showing that

g∗(Λ) ⊗Λ BΛ|X →
‹BX, ∗

‹B∗X(g∗(Λ) ⊗Λ BΛ|X) = BX, ∗B∗X(g∗(Λ))

is an equivalence when g : Y → X is a proper morphism from a smooth k-variety Y . By the projec-
tion formula (see, for example, [AGV20, Proposition 4.1.7]), we have g∗(Λ) ⊗Λ BΛ|X ' g∗(BΛ|Y).
By Theorem 1.28, we have an equivalence BX, ∗B∗X(g∗(Λ)) ' g∗BY, ∗(Λ). Thus, to conclude, we need
to show that BΛ|Y → BY, ∗(Λ) is an equivalence. Using that the refined Betti realisation commute
with extension by zero, we deduce that the functors B−, ∗ commute with the inverse image along
open immersions. Thus, we may replace Y by a smooth compactification and assume that Y is also
proper. Using [Ayo07a, Proposition 2.2.27] for a second time, we see it is enough to show that

MapMSh(Y;Λ)(h!Λ(m)[n],BΛ|Y)→ MapMSh(Y;Λ)(h!Λ(m)[n],BY, ∗(Λ))

is an equivalence for h : Z → Y a proper morphism from a smooth k-variety Z, and m, n ∈ Z.
Using adjunction and Theorem 1.28, we reduce to showing that

MapMSh(Z;Λ)(Λ(m)[n], E ⊗Λ BΛ|Z)→ MapMSh(Z;Λ)(Λ(m)[n],BZ, ∗B∗ZE)

where E = h!(Λ) is the relative Thom space associated to the virtual normal bundle of h. Finally,
by adjunction, we are left to show that

p∗(E ⊗Λ p∗BΛ)→ p∗BZ, ∗B∗Z(E)

is an equivalence, where p : Z → Spec(k) is the structural morphism which is smooth and proper.
Using the projection formula [AGV20, Proposition 4.1.7] and Theorem 1.28 as we did previousely,
we can rewrite this morphism as p∗(E) ⊗Λ BΛ → B∗B∗p∗(E). That this is an equivalence is a
particular case of Proposition 1.56. �

Remark 1.96. The proof of Lemma 1.95 shows that the commutative algebra BΛ|X, obtained by
pulling back BΛ to X, coincides with BX, ∗(Λ). This is in fact a formal consequence of the fully
faithfulness of the functor ‹B∗ in (1.58) which implies, more generally, that

M ⊗Λ BΛ|X → BX, ∗B∗X(M)

is an equivalence for every M ∈MSh(X; Λ).
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Remark 1.97. One could give a shorter proof of Lemma 1.95 under the hypothesis that the field k
has finite virtual Λ-cohomological dimension. Indeed, in this case, we easily reduce to showing
that

MapMSh(X;Λ)(M,N ⊗Λ BΛ|X)→ MapShct(X;Λ)(B
∗(M),B∗(N)) (1.59)

is an equivalence when M is compact. We then have an equivalence

Hom(M,−) ⊗Λ BΛ|X ' Hom(M,− ⊗Λ BΛ|X)

since BΛ|X can be written as a filtered colimit of dualizable objects. By Theorem 1.28, we have an
equivalence B∗ ◦ Hom(M,−) ' Hom(B∗(M),B∗(−)). Putting these facts together, we may rewrite
the map in (1.59) as follows:

MapMSh(X;Λ)(Λ,Hom(M,N) ⊗Λ BΛ|X)→ MapShct(X;Λ)(Λ,B
∗(Hom(M,N))). (1.60)

Let p : X → Spec(k) be the structural projection. Bor the same reasons as before, we have
equivalences p∗(− ⊗Λ BΛ|X) ' p∗(−) ⊗Λ BΛ and B∗ ◦ p∗ ' p∗ ◦ B∗. Thus, it is enough to show that

(p∗Hom(M,N)) ⊗Λ BΛ → B∗B∗(p∗Hom(M,N))

is an equivalence, which is the case by Proposition 1.56.

The crucial step in proving Theorem 1.93 is to show that the functor ‹B∗ in (1.58) is essentially
surjective. We start by proving a reduction.

Lemma 1.98. To prove that the functor ‹B∗geo in (1.57) is an equivalence, it is enough to treat the
case where Λ = Q.

Proof. Using Lemma 1.95, it remains to see that Shgeo(X; Λ) is generated under colimits by the
image of the functor B∗ : MSh(X; Λ) → Shgeo(X; Λ). We assume that this is known when Λ = Q
and we explain how to deduce the general case. We split the argument in two small steps.

Step 1. Let Λ′ be a commutative Λ-algebra. The forgetful functor Shct(X; Λ′) → Shct(X; Λ) is t-
exact, colimit-preserving and conservative. Using Remark 1.90, we deduce that this functor takes
Shgeo(X; Λ′) into Shgeo(X; Λ), inducing a functor

g : Shgeo(X; Λ′)→ Shgeo(X; Λ)

which is also t-exact, colimit-preserving and conservative. Moreover, the functor g admits a left
adjoint f : Shgeo(X; Λ)→ Shgeo(X; Λ′) given by M 7→ M ⊗Λ Λ′.

We claim that the image of f generates Shgeo(X; Λ′) under colimits. This follows for example
from [AGV20, Proposition 3.1.14 & Lemma 3.1.15]. Alternatively, we may argue more concretely
as follows. Fix M′ ∈ Shgeo(X; Λ′). Using [Lur17, Proposition 4.7.3.3], we have an augmented
simplicial object R′• in Shgeo(X; Λ′) given informally by R′n = ( f ◦ g)◦n+1M′, for n ≥ −1. It is
enough to show that R′• is a colimit diagram. Since g is colimit-preserving and conservative, it
is enough to show that g(R′•) is a colimit diagram, which follows from the fact that the simplicial
object g(R′•) is split, see [Lur17, Example 4.7.2.7].

This said, we see that the image of B∗ : MSh(X; Λ′) → Shgeo(X; Λ′) generates Shgeo(X; Λ′)
under colimits if this is the case for the image of B∗ : MSh(X; Λ) → Shgeo(X; Λ). This will be
used several times in Step 2 below.
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Step 2. By Step 1, we only need to treat the case where Λ is the sphere spectrum. Given an
object M ∈ Shgeo(X), the object M ⊗ Q belongs to Shgeo(X;Q) and hence, by our assumption, to
the image of the fully faithful embedding ‹B∗ : MSh(X;B) → Shgeo(X). Thus, we may replace
M with the cofiber of M → M ⊗ Q and assume that M is `-nilpotent for some prime `. We
may also assume that M belongs to the heart of the t-structure. Since M ' π0(M ⊗S Z) belongs
to Shgeo(X;Z) by construction, it is enough to show that M belongs to the image of the functor‹B∗ : MSh(X;BZ) → Shgeo(X;Z). Since M is `-nilpotent, we are finally reduced to showing that
the image of the functor

B∗ : MSh(X;Z/`ν)→ Shgeo(X;Z/`ν)
generates Shgeo(X;Z/`ν) under colimits. (Here ν ≥ 1 is an integer.) By construction, Shgeo(X;Z/`ν)
is generated under colimits and desuspensions by constructible ordinary étale sheaves of Z/`ν-
modules on Xan. Those are clearly in the image of the Betti realisation. �

We now establish the essential surjectivity of the functor ‹B∗ in (1.58) at the generic point, assum-
ing that Λ = Q. We will give two proofs, one relying on Deligne’s semi-simplicity theorem [Del71,
Théorème 4.2.6] and one avoiding semi-simplicity, relying instead on Theorem 1.86. We believe
that the argument using Deligne’s semi-simplicity theorem was also known to Drew; see Remark
1.101 below. For the next statement, we remark that, for Λ = Q, the morphism in (1.57) clearly
belongs to the ∞-category of CAlg(PrL

ω)-valued presheaves. We also implicitly use the continuity
property of∞-categories of motives, as stated for example in [AGV20, Proposition 2.5.11].

Lemma 1.99. Let K/k be a field extension. Then, the functor‹B∗ : MSh(K;BQ)→ Shgeo(K;Q), (1.61)

obtained from (1.57) via colimit in PrL
ω, is an equivalence. Moreover, the abelian subcategory

Shgeo(K;Q)♥ ⊂ Shct(K;Q)♥ is stable under subquotients.

First proof of Lemma 1.99. By [Ayo07a, Proposition 2.2.27] and Remark 1.90, the ∞-category
Shgeo(K;Q) is generated under colimits, desuspension and truncations by objects of the form f∗Q,
with f : Y → Spec(K) proper and smooth. We need to show that the word “truncation” is su-
perfluous here. To do so, remark that one can reformulate the previous sentence as follows: the
∞-category Shgeo(K;Q) is generated under colimits and desuspension by the smallest abelian sub-
category of Shct(K;Q)♥ stable by extension and containing the objects of the form Hp( f∗Q), for
f : Y → Spec(K) proper and smooth, and p ∈ N. Thus, by Lemma 1.100 below, we see that it
suffices to show that every subquotient of Hp( f∗Q) is a direct summand of f∗Q. This follows from
Deligne’s semi-simplicity theorem [Del71, Théorème 4.2.6] combined with [Del68, Proposition
2.1]. Alternatively, one could also use the decomposition theorem [BBD82, Théorème 6.2.5]. �

Lemma 1.100. Let A be an abelian category, and S a set of objects in A. Let B be the smallest
abelian subcategory of A stable by extensions and containing the objects of S . Then, every object
of B admits a finite, separated and exhaustive filtration whose graded pieces are subquotients of
objects in S .

Remark 1.101. The above argument using the decomposition theorem [BBD82, Théorème 6.2.5]
shows that the essential image of the fully faithful embedding‹B∗ : MSh(X;BQ)→ Shct(X;Q)

is closed under truncation with respect to the perverse t-structure on Shct(X;Q). A closely related
result was announced by Drew in [Dre18]. Most probably, this was based on the same argument.
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We will give another proof of Lemma 1.99, avoiding Deligne’s semi-simplicity theorem. This
relies on the following result which is of independent interest.

Proposition 1.102. Let K/k be a field extension and Σ : K ↪→ C a complex embedding extending
σ. Denote by B∗

Σ
: MSh(K; Λ) → ModΛ the associated Betti realisation functor and set BΣ,Λ =

BΣ, ∗(Λ) which we endow with its natural structure of a commutative BΛ-algebra. Said differently,
we view BΣ,Λ as an object of CAlg(MSh(K;BΛ)). Denote by Σ∗ : Shct(K; Λ) → ModΛ the fiber
functor associated to point Σ of Spec(K)an. Then, the following conditions are satisfied.

(i) There is an equivalence of commutative algebras Σ∗‹B∗BΣ,Λ ' Hrel(K/k,Σ; Λ) which is
compatible with the coaction of F(K/k; Σ; Λ).

(ii) Assume that Λ is an ordinary commutative ring. Then ‹B∗BΣ,Λ belongs to Shgeo(K; Λ)♥.

Proof. By construction, we have equivalences

Σ∗‹B∗BΣ,Λ ' Σ∗(B∗BΣ,Λ ⊗B∗BΛ
Λ)

' (Σ∗B∗BΣ,Λ) ⊗B∗BΛ
Λ

' (B∗
Σ
BΣ,Λ) ⊗B∗BΛ

Λ

' Hmot(K,Σ; Λ) ⊗Hmot(k,σ;Λ) Λ

showing the first assertion. For the second assertion, we may assume that Λ = Z. Then, ‹B∗BΣ,Z

belongs to Shgeo(K;Z)♥ if and only if Σ∗‹B∗BΣ,Λ belongs to Mod♥Z, which is indeed the case by
Theorem 1.86(iii). �

Second proof of Lemma 1.99. As in the first proof, the essential point is to show that every sub-
quotient Q of Hp f∗Q belongs to the essential image of the functor ‹B∗ in (1.61). We use the notation
in the statement of Proposition 1.102. The action of πalg

1 (K/k,Σ;Q) on Σ∗Hp f∗Q factors through
the quotient Grel(K/k,Σ;Q), and the same is true for Σ∗Q. Thus, we may find a πalg

1 (K/k,Σ;Q)-
equivariant resolution

Σ∗(Q)→ J0 ⊗Hrel(K/k,Σ;Q)→ · · · → Jn ⊗Hrel(K/k,Σ;Q)→ · · ·

where the Jn’s are Q-vector spaces endowed with a trivial action of πalg
1 (K/k,Σ;Q). By Proposition

1.102, this gives a resolution in Shct(K/k;Q)♥ of the form

Q→ J0 ⊗ ‹B∗BΣ,Q → · · · → Jn ⊗ ‹B∗BΣ,Q → · · · .

Truncating stupidly and using that (1.61) is fully faithful (by Lemma 1.95), we obtain a tower
(Pn)n≥0 in MSh(K;BQ) such that ‹B∗(Pn) = [J0 ⊗ ‹B∗BΣ,Q → · · · → Jn ⊗ ‹B∗BΣ,Q]. In particular, we
see that

Hi‹B∗(Pn) '
{

Q si i = 0,
0 si i < {0, n}.

Since the cohomological dimension of Shct(K;Q)♥ is bounded by the transcendence degree of the
extension K/k, we have ‹B∗(Pn) ' Q ⊕ Hn‹B∗(Pn)[−n]

for n big enough. Using that ‹B∗ is fully faithful, it follows that Q is the image of a direct summand
of Pn as needed. �
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Notation 1.103. Let X be a pro-k-variety and x ∈ lim X(C). Repeating Construction 1.74 with
L̂Sgeo(X; Λ)⊗ instead of L̂S(X; Λ)⊗ we obtain a commutative Hopf algebra Fgeo(X, x; Λ). We set

π
geo
1 (X, x; Λ) = Spec(Fgeo(X, x; Λ)).

This is a nonconnective spectral affine group Λ-scheme.

Remark 1.104. The statement of Theorem 1.83 holds true for πgeo
1 (X, x; Λ) with the same proof.

Corollary 1.105. Let K/k be a field extension and Σ : K ↪→ C a complex embedding extending σ.
Then, there is an equivalence of spectral affine group Λ-schemes

π
geo
1 (K,Σ; Λ)

∼
−→ Grel(K/k,Σ; Λ).

In particular, πgeo
1 (K,Σ; Λ) is flat over Λ. Moreover, assuming that k is algebraically closed in K,

we have a short exact sequence

{1}Λ → π
geo
1 (K,Σ; Λ)→ Gmot(K,Σ; Λ)→ Gmot(k, σ; Λ)→ {1}Λ.

Finally, when Λ is a field or a Dedekind domain with finite residue fields at all maximal ideals, we
have a faithfully flat morphism of classical affine group Λ-schemes

π
alg
1 (K/k,Σ; Λ)→ π

geo
1 (K/k,Σ; Λ).

Proof. This follows immediately from Theorem 1.86 and Proposition 1.102. �

We are now ready to finish the proof of Theorem 1.93.

Proof of Theorem 1.93, (i) and (ii). We first note that part (ii) follows from (i) combined with The-
orem 1.28. Concerning (i), the fully faithfulness of the functor ‹B∗ in (1.58) was established in
Lemma 1.95. Moreover, by Lemma 1.98, we may assume that Λ = Q. Furthermore, by Lemma
1.99, we know the result at the generic points. Thus, it remains to explain how to deduce essential
surjectivity of ‹B∗ in the general case from knowing it in the generic case (under the assumption
that Λ = Q).

We fix a compact object F ∈ Shgeo(X;Q) and we prove that it belongs to the image of ‹B∗. We
argue by noetherian induction on X. Let η be a generic point of X and K = κ(η). By Lemma 1.99,
we my find a compact object Mη ∈ MSh(K;BQ) such that ‹B∗Mη ' η∗F. By the the continuity
property of ∞-categories of motives (see for example [AGV20, Proposition 2.5.11]), there exists
M ∈ MSh(X;BQ) compact such that Mη ' η

∗M. Similarly, the equivalence ‹B∗Mη ' η
∗F spreads

into an equivalence ‹B∗ j∗M ' j∗F, with j : U ↪→ X the inclusion of an open neighbourhood of η.
Let i : Z = X r U ↪→ X be the complementary closed immersion. We have an exact triangle‹B∗ j! j∗M → F → i∗i∗F → .

By the induction hypothesis, there exists L ∈ MSh(Z;BQ) such that ‹B∗L ' i∗F, and the result
follows. �

Before proving assertion (iii) of Theorem 1.93, we note the following corollary of assertion (i).

Corollary 1.106. Let Λ′ be a commutative Λ-algebra.
(i) We have a t-exact equivalence of∞-categories

ModΛ′(Shgeo(X; Λ)) ' Shgeo(X; Λ′).

In particular, if Λ and Λ′ are ordinary rings, then we have an equivalence of ordinary
categories ModΛ′(Shgeo(X; Λ)♥) ' Shgeo(X; Λ′)♥.
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(ii) If Λ and Λ′ are ordinary rings,4 we have an equivalence of∞-categories

ModΛ′(L̂Sgeo(X; Λ)) ' L̂Sgeo(X; Λ′).

Proof. Part (i) follows immediately from Theorem 1.93 using the analogous property for the ∞-
categories of motivic sheaves. For (ii), it is enough to treat the case of an ordinary Z-algebra Λ,
i.e., to prove that ModΛ(L̂Sgeo(X;Z)) ' L̂Sgeo(X; Λ). We claim that the forgetful functor

Shgeo(X; Λ)→ Shgeo(X;Z)

takes L̂Sgeo(X; Λ) into L̂Sgeo(X;Z). Indeed, given a local system L of Λ-modules on X of geometric
origin, the sheaves Hi(L) can be written as a filtered colimit of constructible subsheaves of Z-
modules of geometric origin. But, every constructible subsheaf of Z-modules of Hi(L) is contained
in a sub-local system of Z-modules, which must be also of geometric origin. This proves our claim.
It follows that the functor

− ⊗Z Λ : L̂Sgeo(X;Z)→ L̂Sgeo(X; Λ)
admits a right adjoint, given by the forgetful functor, which is thus conservative and colimit-
preserving. We may apply [Lur17, Theorem 4.7.3.5] to conclude. �

Proof of Theorem 1.93, (iii). By Corollary 1.106(i), we may assume that Λ = Z. First, we note
that the result is true generically, i.e., if K/k is a field extension, then the abelian subcategory
Shgeo(K;Z)♥ ⊂ Shct(K;Z)♥ is stable under subquotients. This follows from Lemma 1.99 using the
fact that any torsion sheaf of geometric origin is the realisation of a torsion étale sheaf.

Next, we consider the general case of a k-variety X. Let F ∈ Shgeo(X;Z)♥ and G ⊂ F a subobject
of F in Shct(X;Z). We must show that G is of geometric origin. We may assume that F and G are
constructible. We argue by noetherian induction on X. Let η be a generic point of X. By the above
discussion, we know that η∗G is of geometric origin. Thus, we may find a constructible sheaf G′ of
geometric origin on X such that η∗G ' η∗G′. This isomorphism extends to an open neighbourhood
U of η on X. In particular, j∗G is of geometric origin, with j : U ↪→ X the obvious inclusion. To
conclude, it remains to see that i∗G is of geometric origin, with i : Z = X r U → X the inclusion
of the complement of U. But i∗Z is a subsheaf of i∗F, and we may conclude by induction. �

We end the subsection with the following result which is essentially due to Nori.

Theorem 1.107 (Nori). Assume that Λ is an ordinary commutative ring. Then, the functor

D(Shgeo(X; Λ)♥)→ Shgeo(X; Λ) (1.62)

is an equivalence of∞-categories. If Λ is a field or a Dedekind domain with finite residue fields at
all maximal ideals, then the same is true with “Shct” instead of “Shgeo”.

We will not give a self-contained proof of Theorem 1.107. Instead, we will explain how to
deduce it from results in [Nor02]. We first prove some reductions.

Lemma 1.108. Assume that Λ is an ordinary ring. We have an equivalence of∞-categories

ModΛ(D(Shgeo(X;Z)♥)) ' D(Shgeo(X; Λ)♥).

In particular, to show that the functor in (1.62) is an equivalence, it is enough to consider the case
Λ = Z.

4Is this really necessary?
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Proof. The functor − ⊗ Λ : Shgeo(X;Z)♥ → Shgeo(X; Λ)♥ is right exact. By Corollary 1.106(i), it
admits a right adjoint given by the forgetful functor. Arguing as in the proof of Lemma 1.81, this
adjunction can be lifted to the derived setting:

D(Shgeo(X;Z)♥)� D(Shgeo(X; Λ)♥).

It is immediate to see that [Lur17, Theorem 4.7.3.5] applies to the above adjunction yielding
the equivalence in the statement. This prove the first statement. Combining this with Corollary
1.106(i), we obtain also the second statement. �

Lemma 1.109. Assume that Λ is a field or a Dedekind domain with finite residue fields at all
maximal ideals. To show that the functor in (1.62) is an equivalence, it is enough to show that the
functor

Db(Ctgeo(X; Λ)♥)→ Ctgeo(X; Λ) (1.63)

is an equivalence. The same is true for “Shct” and “Ct” instead of “Shgeo” and “Ctgeo”.

Proof. Since Shgeo(X; Λ) is the indization of Ctgeo(X; Λ), it is enough to show that D(Shgeo(X; Λ)♥)
is the indization of Db(Ctgeo(X; Λ)♥). The argument is very similar to the one used in Step 3 of the
proof of Proposition 1.80. Indeed, using that the functor in (1.63) is an equivalence, we deduce
that every object of Ctgeo(X; Λ)♥ has cohomological dimension bounded by 2 dim(X) + 1. Using
[CM19, Proposition 2.10], we deduce that every object of D(Shgeo(X; Λ)♥) is Postnikov complete.
From this, it follows easily that every object in Db(Ctgeo(X; Λ)♥) determines a compact object
of D(Shgeo(X; Λ)♥). The result follows since Db(Ctgeo(X; Λ)♥) generates D(Shgeo(X; Λ)♥) under
filtered colimits. The case of “Shct” and “Ct” is treated similarly. �

Proof of Theorem 1.107. We only treat the case of sheaves of geometric origin. By Lemmas 1.108
and 1.109, it is enough to show that the functor in (1.63) is an equivalence. Only fully faithfulness
is needed. We will prove more generally that

MapD(Shgeo(X;Λ)♥)(F,G)→ MapShgeo(X;Λ)(F,G) (1.64)

is an equivalence for F ∈ Db(Ctgeo(X; Λ)) and G ∈ Db(Shgeo(X; Λ)).

Step 1. We first assume that G is torsion. Since F is constructible, the domain and codomain
of (1.64) commute with colimits of uniformly bounded above inductive systems in the variable
G. Thus, we may assume that G is a Z/`ν-module. By adjunction, we may then replace Λ with
Λ/`ν and F with F ⊗ Z/`ν. In this case, the result follows from the fact that derived ∞-category
of étale sheaves of Z/`ν-modules on X ⊗k C is equivalent to the ∞-category Shgeo(X;Z/`ν). This
ultimately relies on Artin’s comparison theorem [SGA73, Exposé XI, Théorème 4.4 & Exposé
XVI, Théorème 4.1].

Step 2. By Step 1, we may replace G with G⊗Λ Frac(Λ) since cofib(G → G⊗Λ Frac(Λ)) is torsion.
By adjunction, we can further replace Λ and F with Frac(Λ) and F ⊗Λ Frac(Λ). In this case, the re-
sult follows from [Nor02, Theorem 3]. Strictly speaking, Nori’s theorem is stated for constructible
sheaves, but a quick look at his proof shows that the result is also valid for constructible sheaves
of geometric origin (and constructible sheaves of Frac(Λ)-modules definable over Λ). �
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2. The main theorem for constructible sheaves

This section contains the main results of this paper. In particular, we show that the motivic
Galois group Gmot(k, σ) arises naturally as the group of autoequivalences of the functor

Shgeo(−)⊗ : (Sch/k)op → CAlg(CAT∞).

This is Theorem 2.10 whose proof is given in Subsection 2.2. A key ingredient for the proof is a
result of Drew–Gallauer [DG20] that we review in Subsection 2.1.

2.1. Universal Voevodsky pullback formalisms.
In this subsection, we review the main result of [DG20] which, roughly speaking, asserts that

MShnis(−)⊗ is initial among all Voevodsky pullback formalisms. The following definition agrees
with [DG20, Definition 2.10] except for the condition that H(∅) is final.

Definition 2.1. Let S be a quasi-compact and quasi-separated scheme. A pullback formalism is a
functor

H⊗ : (Sch/S )op → CAlg(CAT∞)

sending a finite type S -scheme X to a symmetric monoidal ∞-category H(X)⊗ and a morphism
f : Y → X of finite type S -schemes to a symmetric monoidal functor f ∗ : H(X)⊗ → H(Y)⊗

such that the following conditions are satisfied. (Below, we also write f ∗ : H(X) → H(Y) for the
functor underlying f ∗.)

(i) H(∅) is equivalent to the final∞-category with one object and one morphism.
(ii) If f : Y → X is a smooth morphism, the functor f ∗ admits a left adjoint f] satisfying the

projection formula: the morphism f]( f ∗(A) ⊗ B) → A ⊗ f](B) is an equivalence for every
A ∈ H(X) and B ∈ H(Y).

(iii) Given a Cartesian square of finite type S -schemes

Y ′
g′
//

f ′
��

Y
f
��

X′
g
// X,

with g smooth, the exchange morphism g′
]
f ′∗ → f ∗g] is an equivalence.

A morphisms of pullback formalisms is a natural transformation θ : H⊗ → H′⊗ such that the
natural morphisms f] ◦ θY → θX ◦ f] are equivalences for all smooth morphisms f : Y → X
in Sch/S . We denote by PB(S ) the sub-∞-category of Psh(Sch/S ; CAlg(CAT∞)) spanned by the
pullback formalisms and their morphisms.

The following is a key technical result in [DG20]. We will give a sketch of proof for the reader’s
convenience. For a much more systematic treatment, we refer the reader to [DG20, Theorem 3.25].

Proposition 2.2. The∞-category PB(S ) admits an initial object given by the functor

(Sm/−)× : (Sch/S )op → CAlg(CAT∞) (2.1)

sending X ∈ Sch/S to the ordinary category Sm/X endowed with its Cartesian symmetric monoidal
structure.
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Proof. We will only explain how to construct a morphism of pullback formalisms

θ : (Sm/−)× → H⊗

for any H⊗ in PB(S ). The construction is functorial enough and, with some effort, can be made
into a section of the left fibration PB(S )(Sm/−)×/ → PB(S ) sending (Sm/−)× to its identity functor.
This would be enough to conclude, but we will not carry out the details here. Informally, the
functor θX : Sm/X → H(X) sends a smooth X-scheme Y with structural morphism f to the object
f]1Y , where 1Y is the monoidal unit of H(Y)⊗.

The construction of the natural transformation θ : (Sm/−) → H, without its compatibility
with the symmetric monoidal structures, is quite straightforward. (For instance, one can adapt the
proof of [AGV20, Lemma 2.6.12].) The question of how to incorporate the symmetric monoidal
structures was resolved in [DG20]. In retrospective, one needs to exploit the fact that the functors
f] are left-lax monoidal. The problem is that the theory of symmetric monoidal ∞-categories is
built in a way that allows to speak easily about right-lax monoidal functors, but not about the left-
lax monoidal ones. Thus, one is lead to work with the induced symmetric monoidal structures on
the∞-categories Hop(X)’s. (Here we write “Hop(X)” instead of “H(X)op”.)

Recall that (Sch/S )op,q is the ordinary category whose objects are given by pairs (〈n〉, (Xi)1≤i≤n),
where n ≥ 0 is an integer and the Xi’s are S -schemes of finite type. An arrow

(〈n〉, (Xi)1≤i≤n)→ (〈n′〉, (X′j)1≤ j≤n′)

between two such pairs is a morphism r : 〈n〉 → 〈n′〉 and, for every 0 ≤ j ≤ n′, a morphism
of S -schemes X′j →

∏
i∈r−1( j)(Xi/S ). We have an obvious functor (Sch/S )op,q → Fin∗ which

defines the coCartesian monoidal structure on (Sch/S )op. We also have an obvious diagonal functor
d : Fin∗ × (Sch/S )op → (Sch/S )op,q sending a pair (〈n〉, X) to the pair (〈n〉, (X)1≤i≤n).

Similarly, we consider the ordinary category D whose objects are pairs (〈n〉, ( fi : Yi → Xi)1≤i≤n),
where n ≥ 0 is an integer and the fi’s are smooth morphisms in Sch/S . An arrow

(〈n〉, ( fi : Yi → Xi)1≤i≤n)→ (〈n′〉, ( f ′j : Y ′j → X′j)1≤ j≤n′)

between two such pairs is a morphism r : 〈n〉 → 〈n′〉 and, for every 0 ≤ j ≤ n′, a commutative
square of S -schemes

Y ′j //

f ′j
��

∏
i∈r−1( j)(Yi/S )

��

X′j //
∏

i∈r−1( j)(Xi/S ).

We have obvious functors

s : D→ (Sch/S )op,q and t : D→ (Sch/S )op,q

sending the object (〈n〉, ( fi : Yi → Xi)1≤i≤n) to (〈n〉, (Yi)1≤i≤n) and (〈n〉, (Xi)1≤i≤n) respectively. We
also have a natural transformation φ : t → s given at the previously considered object by id〈n〉 and
the fi’s.

Next, we consider the coCartesian fibration

p : Ξ⊗ → (Sch/S )op,q, (2.2)

whose fiber at (〈n〉, (Xi)1≤i≤n) is the Cartesian product of the∞-categories Hop(Xi)’s. The existence
of such a coCartesian fibration is insured by [DG20, Corollary A.12] as explained in [DG20,
Remark A.13]. Note that the base change of p by d|Fin∗×{X}, for X ∈ Sch/S , is the coCartesian
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fibration Hop(X)⊗ → Fin∗ defining the symmetric monoidal structure on the opposite of H(X).
Pulling back along s and t, we obtain a commutative triangle

Ξ⊗t
φ∗

//

pt
  

Ξ⊗s

ps
~~

D,

where ps and pt are coCartesian fibrations, and φ∗ preserves coCartesian edges. Informally, over
the previously considered object (〈n〉, ( fi : Yi → Xi)1≤i≤n), φ∗ is given by the Cartesian product of
the inverse image functors f ∗i and thus admits a right adjoint by assumption. By [Lur17, Proposi-
tion 7.3.2.6], the functor φ∗ admits a right adjoint φ] relative to D in the sense of [Lur17, Definition
7.3.2.2]. Writing 1 for the coCartesian section of ps given by the monoidal units, we obtain a
section φ]1 : D→ Ξ⊗t of pt. Equivalently, we have constructed a commutative triangle

D h
//

t
%%

Ξ⊗

p
yy

(Sch/S )op,q

with the following properties. The base change of t by d|Fin∗×{X}, for X ∈ Sch/S , is the coCartesian
fibration

tX : DX = (Sm/X)op,q → Fin∗

defining the coCartesian symmetric monoidal structure on (Sm/X)op. Similarly, the base change
of h by d|Fin∗×{X}, for X ∈ Sch/S , is a symmetric right-lax monoidal functor

hX : (Sm/X)op,q → Hop(X)⊗

sending a smooth X-scheme Y with structural morphism f to f]1Y . If follows from the projection
formula that hX is actually symmetric monoidal. By straightening the base changes of t and p by
d, we thus obtain a morphism (Sm/−)op,q → Hop,⊗ in Psh(Sch/S ; CAlg(CAT∞)). Applying the
involution (−)op of CAlg(CAT∞) to this morphism, yields the desired result. �

Definition 2.3.
(i) A pullback formalism H⊗ is called presentable if it factors through CAlg(PrL). Similarly,

a morphism of presentable pullback formalisms is a morphism of pullback formalisms that
belongs to the ∞-category Psh(Sch/S ; CAlg(PrL)). We denote by PrPB(S ) the sub-∞-
category of PB(S ) spanned by the presentable pullback formalisms and their morphisms.

(ii) A pullback formalism H⊗ is called stable if it factors CAlg(CATst
∞). Similarly, a morphism

of stable pullback formalisms is a morphism of pullback formalisms that belongs to the
∞-category Psh(Sch/S ; CAlg(CATst

∞)). Stable presentable pullback formalisms form a full
sub-∞-category of PrPB(S ) that we denote by PrPBst(S ).

Definition 2.4. We define VPB(S ) to be the full sub-∞-category of PBst(S ) consisting of Voevod-
sky pullback formalisms in the sense of Definition 1.14. Similarly, we define PrVPB(S ) to be
the full sub-∞-category of PrPBst(S ) consisting of Voevodsky pullback formalisms. Objects of
PrVPB(S ) are the presentable Voevodsky pullback formalisms.
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We can now state the main result of [DG20, Theorem 7.14]. Since this result is crucial for us,
we give a sketch of proof relying on Robalo’s universality result [Rob15, Corollary 2.39]. For a
more detailed and self-contained proof, we refer the reader to [DG20].

Theorem 2.5 (Drew–Gallauer). Let S be a quasi-compact and quasi-separated scheme, locally of
finite Krull dimension. Then the Voevodsky pullback formalism

MShnis(−)⊗ : (Sch/S )op → CAlg(PrL)

is an initial object of PrVPB(S ).

Proof. In fact, one proves that MShnis(−) is initial in the ∞-category W defined below, which is
much larger than PrVPB(S ). Consider the functor Sch/S → CAT∞ sending X ∈ Sch/S to the
∞-category

CAlg(PrL, st)(Sm/X)×/ = CAlg(PrL, st) ×CAlg(CAT∞) CAlg(CAT∞)(Sm/X)×/,

and form the associated Cartesian fibration

p :←
∫

(Sch/S )op
CAlg(PrL, st)(Sm/−)×/ → (Sch/S )op.

The∞-category Sect(p) of sections of p is equivalent to the fiber product

Psh(Sch/S ,CAlg(PrL, st)) ×Psh(Sch/S ,CAlg(CAT∞)) Psh(Sch/S ,CAlg(CAT∞))(Sm/−)×/.

Thus, an object of Sect(p) is given by a morphism of CAlg(CAT∞)-valued presheaves on Sch/S
from (Sm/−)× to a CAlg(PrL, st)-valued presheaf. Let W ⊂ Sect(p) be the full sub-∞-category
spanned by those presheaves morphisms θ : (Sm/−)× → H(−)⊗ satisfying the following conditions
for every X ∈ Sch/S .

(i) The functor θX takes a Nisnevich square of smooth X-schemes to a coCartesian square in
the∞-category H(X).

(ii) For every U ∈ Sm/X, the functor θX takes the projection A1
U → U to an equivalence in the

∞-category H(X).
(iii) The object cofib(θX(∞X) → θX(P1

X)) of the symmetric monoidal ∞-category H(X)⊗ is ⊗-
invertible.

Alternatively, we can define W as the ∞-category Sect(q) of sections of the Cartesian fibration
q : Q→ (Sch/S )op where

Q ⊂ ←

∫
(Sch/S )op

CAlg(PrL, st)(Sm/−)×/

is the full sub-∞-category whose fiber QX at X ∈ Sch/S is spanned by those symmetric monoidal
functors ς : (Sm/X)× → K⊗ satisfying the analogs of conditions (i)–(iii) above.

By Proposition 2.2, we have a faithful functor

PrPBst(S )→ Sect(p)

whose restriction to PrVPB(S ) factors through W = Sect(q). (Recall that a functor is said to
be faithful if it induces monomorphisms on mapping spaces; a monomorphism in S is a (−1)-
truncated map in the sense of [Lur09a, Definition 5.5.6.8].) We claim that it is enough to show that
the natural transformation

(Sm/−)× →MShnis(−)⊗
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is an initial object of W. Indeed, given a presentable Voevodsky pullback formalism H⊗ and a
triangle of natural transformations

(Sm/−)× //

''

MShnis(−)⊗

Φ
��

H⊗

with Φ in the∞-category Psh(Sch/S ,CAlg(PrL, st)) and the two others in PB(S ), it is easy to deduce
that Φ is necessarily a morphism of presentable Voevodsky pullback formalisms. This said, the
result follows now from [Rob15, Corollary 2.39] combined with [Lur09a, Proposition 2.4.4.9]
applied to the Cartesian fibration q. �

In fact, for later use, we will need a Λ-linear version of Theorem 2.5 which follows immediately
from the S-linear version.

Definition 2.6. Let Λ ∈ CAlg(Sp) be a commutative ring spectrum. A Λ-linear presentable Vo-
evodsky pullback formalism is a functor

H⊗ : (Sch/S )op → CAlg(PrL, st)Mod⊗
Λ
/

whose composition with the forgetful functor CAlg(PrL, st)Mod⊗
Λ
/ → CAlg(PrL, st) is a Voevodsky

pullback formalism. We denote by PrVPB(S )Λ the∞-category of Λ-linear presentable Voevodsky
pullback formalisms. A morphism of CAlg(PrL, st)Mod⊗

Λ
/-valued presheaves on Sch/S belongs to

PrVPB(S )Λ if its underlying morphism belongs to PrVPB(S ).

Lemma 2.7. The obvious forgetful functor PrVPB(S )Λ → PrVPB(S ) admits a left adjoint sending
a presentable Voevodsky pullback formalism H(−)⊗ to the functor ModΛ(H(−))⊗.

Using Lemma 2.7, we deduce that Theorem 2.5 admits the following Λ-linear version.

Theorem 2.8 (Drew–Gallauer). Let S be a quasi-compact and quasi-separated scheme, locally of
finite Krull dimension. Then the Voevodsky pullback formalism

MShnis(−; Λ)⊗ : (Sch/S )op → CAlg(PrL)Mod⊗
Λ
/

is an initial object of PrVPB(S )Λ. Said differently, the obvious forgetful functor

PrVPB(S )MShnis(−;Λ)⊗/ → PrVPB(S )Λ

is an equivalence of∞-categories.

2.2. The first main theorem.
In this subsection, we prove our main theorem for constructible sheaves of geometric origin

and derive a few complements. We start by introducing the prestack of autoequivalences of the
CAlg(PrL)-valued presheaf Sh⊗geo.

Definition 2.9. Let k be a field and σ : k ↪→ C a complex embedding. We define the nonconnective
spectral group S-prestack Auteq(Sh⊗geo) by applying Construction 1.51 to

• the functor C : (SpAFFnc)op → CAT∞ sending Spec(Λ) to the∞-category

Psh(Sch/k; CAlg(PrL)Mod⊗
Λ
/)

of CAlg(PrL)Mod⊗
Λ
/-valued presheaves on Sch/S , and
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• the natural transformation pt→ C sending Spec(Λ) to the functor

Shgeo(−; Λ)⊗ : (Sch/k)op → CAlg(PrL)Mod⊗
Λ
/.

Thus, informally, the group of Λ-points of Auteq(Sh⊗geo) is the group of autoequivalences of the
CAlg(PrL)Mod⊗

Λ
/-valued presheaf Shgeo(−; Λ)⊗. If we want to stress that Auteq(Sh⊗geo) depends on

the complex embedding σ, we will write Auteq(Sh⊗σ-geo).

The following is our main theorem for constructible sheaves.

Theorem 2.10 (Main theorem for constructible sheaves). Let k be a field and σ : k ↪→ C a complex
embedding. There is an equivalence of nonconnective spectral group S-prestacks

Gmot(k, σ)
∼
−→ Auteq(Sh⊗σ-geo). (2.3)

In particular, the right hand side is a spectral affine group scheme.

Proof. We split the proof in two steps.

Step 1. Using Theorem 1.54, it is enough to construct an equivalence of nonconnective spectral
group S-prestacks

Auteq(B)
∼
−→ Auteq(Sh⊗geo)

where B ∈ CAlg(MSh(k)⊗) is the Betti spectrum introduced in Notation 1.57. By Theorem 1.93(i),
we have an equivalence of CAlg(PrL)Mod⊗

Λ
/-valued presheaves‹B∗ : MSh(−;BΛ)⊗ → Shgeo(−; Λ)⊗.

Thus, in Definition 2.9, we may as well take the natural transformation pt → C sending Spec(Λ)
to the functor

MSh(−;BΛ)⊗ : (Sch/k)op → CAlg(PrL)Mod⊗
Λ
/.

Now, recall that the nonconnective spectral group S-prestack Auteq(B) is obtained by applying
Construction 1.51 to

• the functor D : (SpAFFnc)op → CAT∞ sending Spec(Λ) to the∞-category

CAlg(MSh(k; Λ))

of commutative algebra objects in MSh(k; Λ)⊗, and
• the natural transformation pt→ D sending Spec(Λ) to BΛ.

There is a natural transformation D → C sending Spec(Λ) to the functor

CAlg(MSh(k; Λ))→ Psh(Sch/k; CAlg(PrL)Mod⊗
Λ
/)

taking a commutative algebra object A of MSh(k; Λ)⊗ to the CAlg(PrL)Mod⊗
Λ
/-valued presheaf

MSh(−;A)⊗ : (Sch/k)op → CAlg(PrL)Mod⊗
Λ
/.

Moreover, the following triangle of CAT∞-valued presheaves on SpAFFnc

pt //

��

D

��

C
61



is commutative. Applying Construction 1.51 with the CAT∞-valued presheaf on ∆1 × SpAFFnc

corresponding to D → C, we obtain a morphism

Auteq(B)→ Auteq(Sh⊗geo), (2.4)

and it remains to see that this morphism is an equivalence. This will be proven in the next steps.

Step 2. Evaluating the morphism (2.4) at Spec(Λ), for Λ ∈ CAlg(Sp), yields a morphism of groups
objects in S:

AuteqCAlg(MSh(k;Λ))(BΛ)→ AuteqPsh(Sch/k;CAlg(PrL)Mod⊗
Λ
/)

(MSh(−;BΛ)⊗). (2.5)

We only need to show that (2.5) induces an equivalence on the underlying spaces.
First, we note that any autoequivalence of the CAlg(PrL)Mod⊗

Λ
/-valued presheaf MSh(−;BΛ)⊗ is

automatically an autoequivalence of Λ-linear presentable Voevodsky pullback formalisms. Thus,
the codomain of the map in (2.5) can be rewritten as follows:

AuteqPrVPB(k)Λ
(MSh(−;BΛ)⊗) (2.6)

where PrVPB(k)Λ is the ∞-category of introduced in Definition 2.6. Applying Theorem 2.8, we
see that the space in (2.6) is equivalent to

AuteqPrVPB(k)MSh(−;Λ)⊗/
(MSh(−; Λ)⊗ →MSh(−;BΛ)⊗). (2.7)

Using again that the autoequivalences of the CAlg(PrL)-valued presheaf MSh(−;BΛ)⊗ belong to
PrVPB(k), we may rewrite the space in (2.7) as

AuteqPsh(Sch/k;CAlg(PrL))MSh(−;Λ)⊗/
(MSh(−; Λ)⊗ →MSh(−;BΛ)⊗). (2.8)

Now, remark that we have a commutative triangle

AuteqCAlg(MSh(k;Λ))(BΛ)
(a)
//

(c)
,,

AuteqPsh(Sch/k;CAlg(PrL))MSh(−;Λ)⊗/
(MSh(−; Λ)⊗ →MSh(−;BΛ)⊗)

(b)
��

AuteqCAlg(PrL)MSh(k;Λ)⊗/
(MSh(k; Λ)⊗ →MSh(k;BΛ)⊗)

where (a) is the map in (2.5) modulo the above identifications, and (b) is the map induced by
evaluating at the final object of Sch/k. It is easy to see that the map (c) is induced by the functor

CAlg(MSh(k; Λ))→ CAlg(PrL)MSh(k;Λ)⊗/

sending a commutative algebra object A in MSh(k; Λ)⊗ to the object MSh(k; Λ)⊗ →MSh(k;A)⊗.
By [Lur17, Corollary 4.8.5.21], this functor is fully faithful, which implies that the map (c) is an
equivalence. To end the proof, it remains to see that the map (b) is an equivalence.

Step 3. To prove that the map (b) is an equivalence we remark that for every finite type k-scheme
X, the following square

MSh(k; Λ)⊗ //

��

MSh(k;BΛ)⊗

��

MSh(X; Λ)⊗ // MSh(X;BΛ)⊗
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is coCartesian in CAlg(PrL). Indeed, by the usual formula for the pushout of commutative alge-
bras (which follows by combining [Lur17, Proposition 3.2.4.7] with the proof of [Lur17, Lemma
1.3.3.10]), it is enough to show that the base change functor

ModMSh(k;Λ)⊗(PrL)→ ModMSh(X;Λ)⊗(PrL)

takes the MSh(k; Λ)⊗-module MSh(k;BΛ) to the MSh(X; Λ)⊗-module MSh(X;BΛ). Thus, we are
reduced to showing that the obvious functor

ModBΛ
(MSh(k; Λ)) ⊗MSh(k;Λ)⊗ MSh(X; Λ)→ ModBΛ

(MSh(X; Λ))

is an equivalence. (Note that here, we are free to forget the symmetric monoidal structure on
MSh(X; Λ), remembering only its left MSh(k; Λ)⊗-module structure.) The claimed result is then a
particular case of [BZFN10, Proposition 4.1].

This said, it is now easy to prove that the map (b) is an equivalence. Indeed, the object

MSh(−; Λ)⊗ →MSh(−; Λ)⊗

of Psh(Sch/k; CAlg(PrL))MSh(−;BΛ)⊗/ appears now as the image of the object

(MSh(k; Λ)⊗)cst → (MSh(k;BΛ)⊗)cst

by the cobase change functor

Psh(Sch/k; CAlg(PrL))(MSh(k;Λ)⊗)cst/ → Psh(Sch/k; CAlg(PrL))MSh(−;Λ)⊗/.

(As usual, the subscript “cst” refers to “constant presheaf”.) Thus, the result follows readily from
Lemma 2.11 below. �

Lemma 2.11. Let C be a small∞-category admitting a final object pt, and let D be an∞-category
admitting pushouts. Let F ∈ Psh(C;D) be a D-valued presheaf on C. Let f : A → B be a map in
D, and suppose we have a pushout square in Psh(C;D):

Acst
//

fcst
��

F

��

Bcst
// G.

Then, the functor Psh(C;D) → D, given by evaluating at pt, induces an equivalence of group
objects in S:

AuteqPsh(C;D)F/
(F → G) ' AuteqDF(pt)/

(F(pt)→ G(pt)). (2.9)

Proof. Without loss of generality, we may assume that A = F(pt) which implies that B = G(pt).
Evaluation at pt gives a map

AuteqPsh(C;D)F/
(F → G)→ AuteqDA/

(A→ B), (2.10)

and we want to show that this map is an equivalence. By construction, the object F → G is the
image of the object Acst → Bcst by the cobase change functor Psh(C;D)Acst/ → Psh(C;D)F/ which
admits a right adjoint given composition with the morphism Acst → F. Combining this with the
fact that (−)cst is left adjoint to evaluating at pt, we obtain the equivalences

MapPsh(C;D)F/
(F → G, F → G) ' MapPsh(C;D)Acst/

(Acst → Bcst, Acst → G)

' MapDA/
(A→ B, A→ B).
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It is easy to see that the composite equivalence sends the subspace AuteqPsh(C;D)F/
(F → G) to the

subspace AuteqDA/
(A→ B) yielding the map (2.10). It remains to see that this map is surjective on

π0, which follows from the fact that it admits a section. �

Our next task is to derive a version of Theorem 2.10 for the classical affine group scheme under-
lying Gmot(k, σ). For that, we need a “classical” version of Definition 2.9.

Definition 2.12. Let k be a field and σ : k ↪→ C a complex embedding. We define the (noncom-
mutative) Picard Z-prestack Auteq(Sh♥,⊗geo ) to be the presheaf of Picard groupoids on AFF sending
Spec(Λ), with Λ an ordinary commutative ring, to the Picard groupoid of autoequivalences of the
functor Shgeo(−; Λ)♥,⊗ from (Sch/k)op to the 2-category of ordinary Λ-linear symmetric monoidal
categories. If we want to stress that this depends on the complex embedding σ, we will write
Auteq(Sh♥,⊗σ-geo) instead.

Corollary 2.13. Let k be a field and σ : k ↪→ C a complex embedding. There is an equivalence of
classical Picard Z-prestacks

Gcl
mot(k, σ)

∼
−→ Auteq(Sh♥,⊗σ-geo).

In particular, the right hand side is an affine group scheme.

Proof. Recall that, for an ordinary commutative ring Λ, we have Gcl
mot(k, σ)(Λ) = Gmot(k, σ)(Λ).

Thus, by Theorem 2.10, it remains to construct natural equivalences of group objects in S:

AuteqPsh(Sch/k;CAlg(CAT∞)Mod⊗
Λ
/)

(Shgeo(−; Λ)⊗)

∼
−→ AuteqPsh(Sch/k;CAlg(CATord)Mod♥,⊗

Λ
/
)(Shgeo(−; Λ)♥,⊗).

(2.11)

(Here, we write CATord for the full sub-∞-category of CAT∞ spanned by ordinary categories. In
particular, we only retain invertible natural transformations between functors.) We split the proof
in three steps.

Step 1. Note that any autoequivalence Θ of the CAlg(PrL, st)-valued presheaf Shgeo(−; Λ)⊗ has to
be t-exact, i.e., should respect the natural t-structures on the stable ∞-categories Shgeo(X; Λ), for
X ∈ Sch/k. This follows from the following two observations:

• for any finite extension l/k, Θ induces a t-exact autoequivalence on the stable ∞-category
Shgeo(l; Λ) ' (ModΛ)homk(l,C) since it preserves colimits and the ⊗-unit,
• Θ commutes with the t-exact functors x∗ : Shgeo(X; Λ)→ Shgeo(x; Λ), for all closed points

x ∈ X, and these functors can be used to detect connective and coconnective objects.

In particular, we deduce an equivalence of group objects in S:

AuteqPsh(Sch/k;CAlg(CAT∞)Mod⊗
Λ
/)

(Shgeo(−; Λ)⊗)

∼
−→ AuteqPsh(Sch/k;CAlg(CAT∞)Mod⊗

Λ,≥0/
)(Shgeo(−; Λ)⊗

≥0).
(2.12)

Moreover, for every X ∈ Sch/k, the ordinary category Shgeo(X; Λ)♥ can be identified with the full
sub-∞-category of discrete objects in Shgeo(X; Λ)≥0 or, equivalently, of those objects which are
local for all maps between 1-connective objects. This implies the existence of a natural map of
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group objects in S:

AuteqPsh(Sch/k;CAlg(CAT∞)Mod⊗
Λ,≥0/

)(Shgeo(−; Λ)⊗
≥0)

→ AuteqPsh(Sch/k;CAlg(CATord)Mod♥,⊗
Λ

/
)(Shgeo(−; Λ)♥,⊗).

(2.13)

Clearly, the maps in (2.12) and (2.13) can be made functorial in the ordinary ring Λ. Thus, to finish
the proof, it suffices to show that the map in (2.13) is an equivalence.

Step 2. We first note that the map in (2.13) admits a section. Indeed, a symmetric monoidal au-
toequivalence of the functor Shgeo(−; Λ)♥,⊗ induces a symmetric monoidal autoequivalence of the
functor D(Shgeo(−; Λ)♥)⊗

≥0 which, by Theorem 1.107, is equivalent to Shgeo(−; Λ)⊗
≥0. (This actually

requires the construction of a natural transformation D(Shgeo(−; Λ)♥)⊗ → Shgeo(−; Λ)⊗ extend-
ing the functors considered in Theorem 1.107. This can be easily achieved using, for example,
a model-theoretic construction of the symmetric monoidal ∞-categories of sheaves on analytic
spaces.) The domain of the map in (2.13) is discrete, being equivalent to the set of Λ-points of
the affine group scheme Gcl

mot(k, σ) by Theorem 2.10 combined with the equivalence in (2.12). It
follows that the codomain of the map in (2.13) is also discrete. Even more, we see that the ordinary
presheaf on AFF sending Spec(Λ) to the group

AuteqPsh(Sch/k;CAlg(CATord)Mod♥,⊗
Λ

/
)(Shgeo(−; Λ)♥,⊗)

is representable by an affine group scheme which is a split closed subgroup of Gcl
mot(k, σ). To end

the proof, we need to show that this closed subscheme is dense, and for that it is enough to show
that this closed subscheme and Gcl

mot(k, σ) have the same Λ-points for every field Λ of characteristic
zero. In this way, we are reduced to showing that the map in (2.13) is an equivalence when Λ is
a field of characteristic zero. Under this assumption, the tensor products on the abelian categories
Shgeo(X; Λ)♥ are exact in both variables.

Step 3. The remainder of the argument consists in quoting some results from [Lur18]. Follow-
ing loc. cit., we denote by Groth∞ the ∞-category of Grothendieck prestable ∞-categories. This
is the full sub-∞-category of PrL whose objects are the prestable ∞-categories in which filtered
colimits are exact; see [Lur18, Proposition C.1.4.1, Definitions C.1.4.2 & C.3.0.5]. We also
need the wide sub-∞-category Grothlex

∞ ⊂ Groth∞ spanned by those functors which are left ex-
act (in addition to being colimit-preserving); see [Lur18, Notation C.3.2.3]. We need as well
the full sub-∞-categories Grothlex, sep

∞ ⊂ Grothlex
∞ and Grothlex

ab ⊂ Grothlex
∞ spanned by the sep-

arated Grothendieck prestable ∞-categories and by the Grothendieck abelian categories respec-
tively; see [Lur18, Proposition C.3.6.1 & Definition C.5.4.1]. The ∞-categories Groth∞, Grothlex

∞

and Grothlex
ab have natural symmetric monoidal structures, and the inclusion functors to PrAdd are

compatible with these structures; see [Lur18, Theorem C.4.2.1 & Corollary C.4.4.2]. There is a
functor (−)sep : Grothlex

∞ → Grothlex, sep
∞ which is left adjoint to the obvious inclusion. By [Lur18,

Corollary C.4.6.2], there is a unique symmetric monoidal structure on Grothlex, sep
∞ such that (−)sep

is symmetric monoidal. Now, by [Lur18, Theorem C.5.4.9 & Remark C.5.4.10], the construction
A → D(A)≥0 defines a fully faithful functor

D(−)≥0 : Grothlex
ab → Grothlex, sep

∞ (2.14)
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from the 2-category Grothlex
ab of Grothendieck abelian categories and colimit-preserving exact func-

tors. The induced functor

D(−)≥0 : ModMod♥Q
(Grothlex

ab )→ ModModcn
Q

(Grothlex, sep
∞ ) (2.15)

is symmetric monoidal, i.e., given two Q-linear Grothendieck abelian categories A and A′, the
natural functor

D(A)≥0 ⊗ D(A′)≥0 → D(A ⊗A′)≥0

is an equivalence. To see this, we use [Lur18, Corollary C.2.1.8] to view A and A′ as exact
localisations of Mod♥R and Mod♥R′ , where R and R′ are ordinaryQ-algebras. In this case, D(A)≥0 and
D(A′)≥0 are exact localisations of Modcn

R and Modcn
R′ . The result then follows from the equivalence

Modcn
R ⊗Modcn

R′ ' Modcn
R⊗R′ , noting that R⊗R′ is an ordinary Q-algebra (since R and R′ are flat over

Q). Having said all this, it is now easy to conclude.
From the fully faithful symmetric monoidal embedding in (2.15), we obtain a fully faithful

embedding
CAlg(Grothlex

ab )Mod♥Q/
→ CAlg(Grothlex, sep

∞ )Modcn
Q /
. (2.16)

The functor Shgeo(−; Λ)♥,⊗ can be considered as a CAlg(Grothlex
ab )Mod♥Q/

-valued presheaf. Similarly,
the functor Shgeo(−; Λ)⊗

≥0 can be considered as a CAlg(Grothlex, sep
∞ )Modcn

Q /
-valued presheaf. More-

over, the latter is obtained from the former by composing with the fully faithful embedding in
(2.16). Thus, we obtain an equivalence of group objects in S:

AuteqPsh(Sch/k;CAlg(Grothlex, sep
∞ )Modcn

Λ
/)

(Shgeo(−; Λ)⊗
≥0)

→ AuteqPsh(Sch/k;CAlg(Grothlex
ab )Mod♥

Λ
/)

(Shgeo(−; Λ)♥,⊗).
(2.17)

Since any autoequivalence of Shgeo(X; Λ)≥0 (resp. Shgeo(X; Λ)♥) is colimit-preserving and left
exact, we see that the map in (2.13) coincides with the one in (2.17). �

By base change to positive characteristic rings, one obtains the following particular case of
Corollary 2.13.

Corollary 2.14. Let k be a field of charactersitic zero, k/k an algebraic closure of k and Λ a torsion
connected ring. Consider the functor F(−; Λ) : (Sch/k)op → CATord sending a k-variety X to the
ordinary category of étale sheaves on X ⊗k k with coefficients in Λ. Then, there is an equivalence
of Picard groupoids

G(k/k) ' AuteqPsh(Sch/k;CAlg(CATord))(F(−; Λ)⊗).
In particular, the right hand side is discrete.

Proof. This follows immediately from Corollary 2.13. Indeed, fix a complex embeddingσ : k → C
and set σ = σ|k. By Theorem 1.70, Gcl

mot(k, σ; Λ) ' Gmot(k, σ; Λ) is isomorphic to the constant
group Λ-scheme associated to the profinite group G(k/k). On the other hand, for every X ∈ Sch/k,
the category F(X; Λ) is equivalent Shgeo(X; Λ)♥. (To prove this, one reduces to the case where Λ

is finite and use [SGA73, Exposé XI, Théorème 4.4(i)].) �

Remark 2.15. The proof we gave of Corollary 2.14 is not satisfactory. Indeed, one can obtain
an elementary and more direct argument, which is moreover valid for an arbitrary field k and an
arbitrary commutative ring Λ, by following the same path used in proving Theorem 2.10. More
precisely, one replaces the Drew–Gallauer universality theorem for MSh(−; Λ) (i.e., Theorem 2.8)
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by a similar one for the functor F(−; Λ) sending a k-variety X to the category of étale sheaves
of Λ-modules on X. Then, one interprets F(X; Λ) as the category of modules in F(X; Λ) over
C0(G(k/k); Λ) seen as an algebra object of F(k; Λ). This reduces the computation of the autoe-
quivalence groupoids of F(−; Λ) to the automorphism group of an algebra object of F(k; Λ) which
is more manageable. We leave the details to the interested reader.

2.3. A complement to the first main theorem.
In this subsection, we derive an interesting complement to our main theorem for constructible

sheaves, that is Theorem 2.10. We first start by reformulating this theorem.

Notation 2.16. Let k be a field and σ : k ↪→ C a complex embedding. We denote by BGmot(k, σ)
the spectral S-prestack sending Spec(Λ) ∈ SpAFF to the space

B(Gmot(k, σ)(Λ)) = colim
[n]∈∆op

Gmot(k, σ)n(Λ).

Below, we will consider BGmot(k, σ) as a presheaf on SpAFF with values in ∞-groupoids and, in
particular, as a Cat∞-valued presheaf. Given a connective commutative ring spectrum Λ, we also
denote by BGmot(k, σ; Λ) the restriction of BGmot(k, σ) to SpAFF/Λ.

Notation 2.17. We denote by LinPr⊗ the CAlg(CAT∞)-valued presheaf on SpAFF sending Spec(Λ)
to the symmetric monoidal ∞-category LinPr(Λ)⊗ = ModMod⊗

Λ
(PrL)⊗ of presentable ∞-categories

tensored over the symmetric monoidal ∞-category Mod⊗Λ. We deduce from this a CAT∞-valued
presheaf CAlg(LinPr) on SpAFF sending Spec(Λ) to the ∞-category CAlg(LinPr(Λ)) which we
identify with the∞-category CAlg(PrL)Mod⊗

Λ
/ of presentable symmetric monoidal∞-categories en-

dowed with a symmetric monoidal functor from Mod⊗Λ. (This identification follows from [Lur17,
Corollary 3.4.1.7].) Below, we simply write

Psh(Sch/k; CAlg(LinPr))

for the CAT∞-valued presheaf on SpAFF sending Spec(Λ) to the∞-category

Psh(Sch/k; CAlg(LinPr(Λ))).

Note that we have a natural transformation

pt→ Psh(Sch/k; CAlg(LinPr)) (2.18)

pointing at Shgeo(−; Λ)⊗ for every Spec(Λ) ∈ SpAFF.

Theorem 2.18. Let k be a field and σ : k ↪→ C a complex embedding. There is a morphism of
CAT∞-valued presheaves on SpAFF:

BGmot(k, σ)→ Psh(Sch/k; CAlg(LinPr)) (2.19)

such that, for every Spec(Λ) ∈ SpAFF, the functor

BGmot(k, σ)(Λ)→ Psh(Sch/k; CAlg(LinPr(Λ)))

induces an equivalence between its domain and the full sub-∞-groupoid of its codomain spanned
by the object Shgeo(−; Λ)⊗. In particular, the morphism in (2.18) factors through the morphism in
(2.19).
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Proof. It follows immediately from Construction 1.51 and Remark 1.50 that there is a morphism
of CAT∞-valued presheaves on SpAFF:

B(Auteq(Sh⊗geo))→ Psh(Sch/k; CAlg(LinPr))

with the required property. Thus, the result follows from Theorem 2.10. �

Construction 2.19. The morphism in (2.19) determines a morphism of CAT∞-valued presheaves
on SpAFF:

(Sch/k)op × BGmot(k, σ)→ CAlg(LinPr). (2.20)
Roughly speaking, at Spec(Λ) ∈ SpAFF, this morphism is given by the functor sending a pair
(X, ?) consisting of X ∈ Sch/k and the base point ? of BGmot(k, σ)(Λ) to Shgeo(X; Λ)⊗. Apply-
ing Lurie’s unstraightening [Lur09a, §3.2] to the functor BGmot(k, σ), we obtain the coCartesian
fibration

p : Φ =

∫
(SpAFF)op

BGmot(k, σ)→ (SpAFF)op,

which is in fact a left fibration. Similarly, applying Lurie’s unstraightening [Lur09a, §3.2] to the
functor CAlg(LinPr), we obtain a coCartesian fibration

q : Ψ =

∫
(SpAFF)op

CAlg(LinPr)→ (SpAFF)op.

The morphism in (2.20) induces a commutative triangle

(Sch/k)op × Φ
h

//

p◦r
((

Ψ

q
zz

(SpAFF)op

with r : (Sch/k)op ×Φ→ Φ the projection to the second factor and h a functor preserving coCarte-
sian edges. There is a functor l : Ψ → CAlg(PrL) whose restriction to the fiber at Spec(Λ) is the
obvious forgetful functor CAlg(LinPr(Λ))→ CAlg(PrL). (We leave it to the reader to construct the
functor l.) Consider the composite functor

l ◦ h : (Sch/k)op × Φ→ CAlg(PrL). (2.21)

Roughly speaking, this functor sends a triple (X,Λ, ?), with X ∈ Sch/k, Spec(Λ) ∈ SpAFF and
? the base point of BGmot(k, σ)(Λ), to the symmetric monoidal ∞-category Shgeo(X; Λ)⊗. By
adjunction, we obtain a functor

(Sch/k)op → Fun(Φ,CAlg(PrL)). (2.22)

We denote by
ShGmot

geo (−)⊗ : (Sch/k)op → CAlg(PrL) (2.23)
the functor obtained from the one in (2.22) by composition with the limit functor

lim
Φ

: Fun(Φ,CAlg(PrL))→ CAlg(PrL).

Informally, for X ∈ Sch/k, an object of the ∞-category ShGmot
geo (X) is an object M ∈ Shgeo(X)

endowed with compatible equivalences M ⊗ Λ ' γ∗(M ⊗ Λ) for every Spec(Λ) ∈ SpAFF and
γ ∈ Gmot(k, σ)(Λ). Said differently, ShGmot

geo (X) is the ∞-category of geometric sheaves fixed by the
action of Gmot(k, σ) on the∞-category Shgeo(X).
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Proposition 2.20. The functor ShGmot
geo (−)⊗ in (2.23) is a presentable Voevodsky pullback formalism.

Moreover, the forgetful functors yield a natural transformation

ff : ShGmot
geo (−)⊗ → Shgeo(−)⊗ (2.24)

which is a strong morphism of presentable Voevodsky pullback formalisms.

Proof. This is a consequence of the fact that limits of ∞-categories have excellent formal proper-
ties. Inspecting Definition 1.14, we see that it suffices to show that the squares

ShGmot
geo (X)

f ∗
//

ffX

��

ShGmot
geo (Y)

ffY

��

Shgeo(X)
f ∗
// Shgeo(Y)

(2.25)

are right adjointable for all morphisms f : Y → X in Sch/k and left adjointable for all smooth
ones. This follows easily from [Lur17, Corollary 4.7.4.18]. Indeed, the functor

Φ→ Fun(∆1,CAT∞), (2.26)

deduced from (2.21) by restricting along ( f , id) : ∆1 × Φ → (Sch/k)op × Φ and using adjunction,
factors through FunRAd(∆1,CAT∞); see [Lur17, Definition 4.7.4.16]. (This follows form the fact
that the BGmot(k, σ)(Λ)’s are∞-groupoids and that the operation f∗ on sheaves of geometric origin
commutes with extension of scalars.) Consider a limit diagram

ΦC → Fun(∆1,CAT∞) (2.27)

extending the diagram in (2.26). By construction, the cone point of ΦC is mapped to the functor
f ∗ : ShGmot

geo (X) → ShGmot
geo (Y). By [Lur17, Corollary 4.7.4.18], the diagram in (2.27) factors through

FunRAd(∆1,CAT∞). Since the square in (2.25) is the image of the edge relating the cone point of
ΦC to the object (Spec(S), ?) of Φ, the result follows. When f is smooth, the functor in (2.26)
factors through FunLAd(∆1,CAT∞), and we may conclude similarly. �

Corollary 2.21. There is a strong morphism of presentable Voevodsky pullback formalisms

BGmot : MSh(−)⊗ → ShGmot
geo (−)⊗.

Proof. This follows from Proposition 2.20 and the Drew–Gallauer universality theorem (i.e., The-
orem 2.5). �

Remark 2.22. It is expected that the functor BGmot : MSh(X) → ShGmot
geo (X), for X ∈ Sch/k, is

very close to being an equivalence of ∞-categories. More precisely, it is expected to induce an
equivalence between the∞-category of constructible motivic sheaves MCt(X) and the∞-category
CtGmot

geo (X) of constructible sheaves of geometric origin fixed by Gmot(k, σ) acting on Ctgeo(X). This
property certainly implies the conservativity conjecture (see for example [Ayo17b, §2.1]), and it is
plausible that both statements are actually equivalent. We do not know how to prove “formally”
the equivalence of these two statements, but see [Pri20, §2.5].

Since Gmot(k, σ) is affine, it is possible to describe the ∞-categories ShGmot
geo (−)⊗ more simply.

This is explained in the following remark.
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Remark 2.23. We write Gmot(k, σ)• for the simplicial object in SpAFF defining the spectral group
S-scheme Gmot(k, σ). By construction, BGmot(k, σ) is the colimit of Gmot(k, σ)• taken in the ∞-
category of S-prestacks, i.e., of presheaves on SpAFF. Thus, with the notation of Construction
2.19, the cosimplicial diagram Gmot(k, σ)• : ∆→ (SpAFF)op admits a canonical lift to Φ, i.e., there
is a commutative triangle

Φ

p
��

∆
Gmot(k,σ)•

//

ρ

77

(SpAFF)op.

Moreover, ρ induces an equivalence between the colimits of the diagrams p and Gmot(k, σ)• taken
in the ∞-category of S-prestacks. Thus, composing ρ with the functor in (2.21), one obtains a
functor

Shgeo(−;O(Gmot(k, σ)•))⊗ : (Sch/k)op × ∆op → CAlg(PrL) (2.28)
and an equivalence

ShGmot
geo (−)⊗ ' lim

[n]∈∆
Shgeo(−;O(Gmot(k, σ)n))⊗ (2.29)

of CAlg(PrL)-valued presheaves on Sch/k. It is important to note here that the functor in (2.28) is
by no mean the obvious one obtained by applying Shgeo(−;−)⊗ to the cosimplicial ring spectrum
O(Gmot(k, σ)•). In fact, this functor encodes the action of Gmot(k, σ) on Shgeo(−)⊗.

Remark 2.24. There is also an “ordinary” version of the previous results, where Gmot(k, σ) is re-
placed with its underlying ordinary group scheme Gcl

mot(k, σ). More precisely, replacing Gmot(k, σ)
by Gcl

mot(k, σ) in Construction 2.19, we obtain a functor

ShGcl
mot

geo (−)⊗ : (Sch/k)op → CAlg(PrL). (2.30)

Arguing as in Proposition 2.20, we see that this functor is a presentable Voevodsky pullback for-
malism, and the obvious natural transformation

ShGmot
geo (−)⊗ → ShGcl

mot
geo (−)⊗ (2.31)

is a strong morphism of presentable Voevodsky pullback formalisms. Arguing as in Remark 2.23,
we also obtain the following simpler description

ShGcl
mot

geo (−)⊗ ' lim
[n]∈∆

Shgeo(−;O(Gcl
mot(k, σ)n))⊗. (2.32)

Let ∆′ ⊂ ∆ be the wide subcategory of strictly increasing maps. The obvious inclusion is coinitial
by [Lur09a, Lemma 6.5.3.7], and thus we also have an equivalence

ShGcl
mot

geo (−; Λ)⊗ ' lim
[n]∈∆′

Shgeo(−;O(Gcl
mot(k, σ; Λ)n))⊗. (2.33)

(Here, the left hand side is defined as in Construction 2.19 but working Λ-linearly.) Since Gcl
mot(k, σ; Λ)

is a flat affine group Λ-scheme, we see that the semi-cosimplicial diagram

Shgeo(−;O(Gcl
mot(k, σ; Λ)•))⊗ : ∆′ → CAlg(PrL)

lifts to a diagram of stable ∞-categories with t-structures and t-exact functors. It follows that
ShGcl

mot
geo (X; Λ) admits a t-structure such that

ShGcl
mot

geo (X; Λ)♥ = lim
[n]∈∆′

Shgeo(−;O(Gcl
mot(k, σ; Λ)n))♥.
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By the main result of [CG17], the abelian category ShGcl
mot

geo (k;Q)♥ is equivalent to the indization

of the abelian category of Nori motives. Thus, for X ∈ Sch/k, an object of ShGcl
mot

geo (X;Q)♥ whose
underlying sheaf is constructible, is entitled to be called a Nori motivic sheaf on X. See [Ara13],
[Ara20], [Ivo17] and [IM19] for other approaches.

3. Monodromic specialisation, stratification and exit-path

In this section, we develop a machinery which we use in Section 4 to extract from Theorem 2.10
a description of Gmot(k, σ) as a group of autoequivalences of a functor LS◦geo(−)⊗ taking values in
∞-categories of local systems of geometric origin. (For a precise statement, see Theorem 4.37.) In
fact, this machinery allows for a description of the∞-categories Shgeo(X), for X ∈ Sch/k, in terms
of ∞-categories of local systems of geometric origin in a highly structured and “coordinate free”
manner. We expect this machinery to be also useful in other contexts.

3.1. Regularly stratified varieties and deformations to normal cones.
In this subsection, we gather some geometric constructions needed in the remainder of this

section. To fix ideas, we start by recalling the notion of a stratification.

Definition 3.1. Let X be a noetherian spectral space (see for example [Sta18, Tag 08YF]). A
stratification P of X is a set of connected and locally closed subspaces of X, called P-strata, such
that the following condition is satisfied.

(i) The P-strata form a partition of X, i.e., we have a set-theoretic decomposition X =
∐

S∈P S .
(ii) The closure of a P-stratum is a union of P-strata.

A subset C ⊂ X is called P-constructible if it is a union of P-strata.

Remark 3.2. Let X be a noetherian spectral space.
(i) Let P be a stratification of X. The set P of P-strata is finite. We define a partial order �

on P by setting T � S if T ⊂ S . A P-stratum is maximal for this order if and only if it is
open. Moreover, the union of open P-strata is dense in X.

(ii) Let P and Q be two stratifications on X. We say that Q is finer than P is every P-
constructible subset is Q-constructible. More generally, a continuous map f : Y → X
of noetherian spectral spaces is said to be compatible with stratifications P and Q on X and
Y if the inverse image of a P-constructible subset is Q-constructible. In this case, there is
an induced map f∗ : Q → P sending a Q-stratum D to the unique P-stratum C such that
f (D) ⊂ C.

(iii) Given a finite family (Zi)i ∈ I of closed subsets of X, there is a coarsest stratification on
X for which the Zi’s are constructible. The strata of this stratification are the connected
components of the subsets (

⋂
j ∈ J Z j) r (

⋃
i ∈ IrJ Zi) for J ⊂ I.

Definition 3.3. A stratified scheme is a pair (X,PX) consisting of a noetherian scheme X and a
stratification PX of the topological space underlying X, which we call the structural stratification.
Whenever possible, we shall omit the mention of the structural stratification PX. A morphism of
stratified schemes f : Y → X is a morphism of schemes which is compatible with the structural
stratifications (as in Remark 3.2(ii)).

Remark 3.4.
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(i) If no confusion can arise, the PX-strata of a stratified scheme X are simply called the
strata of X. Similarly, the PX-constructible subsets of X are simply called the constructible
subsets of X.

(ii) Let S be a base scheme. By the expression “stratified S -scheme”, we mean a stratified
scheme whose underlying scheme is endowed with a morphism to S . Similarly for the
expression “morphism of stratified S -schemes”, etc.

Notation 3.5. Let X be a stratified scheme. We denote by X◦ the union of the open strata of X. As
said in Remark 3.2(i), this is a dense open subscheme of X.

Definition 3.6.
(i) Let X be a regular noetherian scheme. A stratification P on X is said to be regular if

there exists a strict normal crossing divisor D on X whose irreducible components are P-
constructible and such that P is the coarsest stratification on X with this property. (Said dif-
ferently, if (Di)∈I are the irreducible components of D, then the P-strata are the connected
components of the subsets (

⋂
j ∈ J D j) r (

⋃
i ∈ IrJ Di), for J ⊂ I, as in Remark 3.2(iii).)

(i′) A regularly stratified scheme X is a stratified scheme X whose underlying scheme is regular
and whose structural stratification PX is also regular.

(ii) Let S be a noetherian scheme and X a smooth S -scheme. A stratification P on X is said to
be smooth (over S ) if there exists a relative strict normal crossing divisor D on X which is
a union of P-constructible smooth divisors and such that P is the coarsest stratification on
X with this property.

(ii′) Let S be a noetherian scheme. A smoothly stratified S -scheme is a stratified S -scheme
X whose underlying S -scheme is smooth and whose structural stratification PX is also
smooth.

Notation 3.7. We denote by SCH-Σ the category of stratified schemes and REG-Σ its full subcat-
egory of regularly stratified schemes. Let S be a noetherian scheme. We denote by Sch-Σ/S the
category of finite type stratified S -schemes. We denote by Reg-Σ/S (resp. Sm-Σ/S ) the full sub-
category of Sch-Σ/S spanned by the regularly stratified S -schemes (resp. the smoothly stratified
S -schemes). If A is a ring and S = Spec(A), we write Sch-Σ/A, Reg-Σ/A and Sm-Σ/A instead.
Note that for a perfect field k, we have Sm-Σ/k = Reg-Σ/k.

Our next task is to introduce a version of the classical deformation to the normal cone which
plays an important role in the whole section. This is the subject of Construction 3.10 below; the
relation with the classical deformation to the normal cone is explained in Remark 3.12. We start
by introducing some useful notations.

Notation 3.8. Let X be a regularly stratified scheme and let C be a stratum of X. We denote by
R◦X(C) the group of Cartier divisors of X freely generated by the constructible irreducible divisors of
X containing C. (Said differently, R◦X(C) is a lattice having a basis indexed by the 1-codimensional
strata D in X such that C � D.) We denote by RX(C) ⊂ R◦X(C) the submonoid of effective Cartier
divisors. We set

T◦X(C) = Spec(Z[tv; v ∈ R◦X(C)]) and TX(C) = Spec(Z[tv; v ∈ RX(C)]).

(Here, the tv’s are monomials such that tv · tv′ = tv+v′ .) Thus, T◦X(C) is the split torus dual to the
lattice R◦X(C) and we have an equivariant embedding T◦X(C) ↪→ TX(C). Such an embedding will
be called a split torus-embedding; see Definition 3.104 below. In fact, TX(C) is isomorphic to Ac,
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with c the codimension of C in X, and T◦X(C) corresponds to the complement of the union of the
coordinate hyperplanes. We use this to consider TX(C) as a regularly stratified scheme, with open
stratum T◦X(C). We denote by oC he unique closed stratum of TX(C); it is isomorphic to Spec(Z).
Often, when working over a base scheme S , we continue writing T◦X(C), TX(C) and oC for the base
change of these schemes to S .

Notation 3.9. Let X be a regular scheme. Given a reduced divisor D on X, we denote as usual by
OX(D) the fractional ideal associated to D, i.e., the inverse of the ideal of OX defining D. More
generally, if v = e1 ·D1 + . . .+en ·Dn is a Cartier divisor on X, such that the Di’s are reduced, we set
OX(v) = OX(D1)e1 · · ·OX(Dn)en . (Note that OX(v) is an ideal of OX if and only if −v is effective.)

Construction 3.10. Let X be a regularly stratified scheme and let C be a stratum of X. Assuming
that X is connected, we set

Df◦X(C) = X◦ × T◦X(C) and DfX(C) = Spec

 ⊕
v∈R◦X(C)

(OX(v) ∩OX) · tv

 . (3.1)

By construction, we have an evident morphism DfX(C)→ X × TX(C), and Cartesian squares

Df◦X(C) //

��

DfX(C)

��

X◦ // X

and
X × T◦X(C) //

��

DfX(C)

��

T◦X(C) // TX(C).

The scheme DfX(C) is regular and the open subscheme Df◦X(C) ⊂ DfX(C) is the complement of
a strict normal crossing divisor. We use this to make DfX(C) into a regularly stratified scheme so
that Df◦X(C) is its open stratum. Note also that the obvious action of T◦X(C) on Df◦X(C) extends to
an action on DfX(C). (Indeed, DfX(C) is the spectrum of a R◦X(C)-graded OX-algebra.)

If X is no longer assumed to be connected, we set DfX(C) = DfX′(C) where X′ is the connected
component of X containing C.

We also introduce a constructible open subscheme of Df(X), which we will need later on.

Construction 3.11. Keep the assumptions and notations as in Construction 3.10. Let D ⊂ X be an
irreducible constructible divisor containing C, corresponding to an element v ∈ RX(C). The ideal
of ODfX(C) generated by the sections of OX(−v) · t−v is the ideal of an irreducible smooth divisor
D[ ⊂ DfX(C), namely the closure of D×T◦X(C) in DfX(C). We define the constructible open subset
Df[X(C) ⊂ DfX(C) as the complement of the divisors D[, for D ⊂ X irreducible constructible and
containing C. Using the second equality in (3.1), we readily obtain the following description

Df[X(C) = Spec

 ⊕
v∈R◦X(C)

OX(v) · tv

 . (3.2)

Thus, the X-scheme Df[X(C) is a torsor over T . In particular, the morphism Df[X(C)→ X is smooth.

Remark 3.12. Keep the notation as in Construction 3.10 and assume that X is connected. Let
D1, . . . ,Dc be the irreductible constructible divisors containing C. For 1 ≤ i ≤ c, we have the
classical deformation to the normal cone of Di, which we denote by Wi. Recall that Wi is the
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complement of the strict transform of o × X in the blowup of A1 × X along o × Di, i.e.,

Wi = Spec

OX[t] ⊕
⊕
n≥1

OX(−nDi) · t−n

 .
It follows immediately that DfX(C) is the fiber product of the Wi’s over X. Also, letting ‹Di be the
strict transform of A1 × Di in Wi, the open subscheme Df[X(C) corresponds to the fiber product
of the W ′

i r
‹Di’s. The main reason for having introduced the scheme DfX(C) the way we did in

Construction 3.10 is to render its naturality in X and C more transparent; see Theorem 3.22 below.

Notation 3.13. Let X be a regularly stratified scheme and let C be a stratum of X. We define NX(C)
by the Cartesian square

NX(C) //

��

DfX(C)

��

oC
// TX(C).

(3.3)

The closed subscheme NX(C) ⊂ DfX(C) is constructible, and hence inherits a stratification from
the one of DfX(C). This makes NX(C) into a connected regularly stratified scheme (see Lemma
3.14 below). We write N◦X(C) for the open stratum of NX(C). Note also that NX(C) inherits an
action of the torus T◦X(C) from the one on DfX(C).

Lemma 3.14. Let X be a regularly stratified scheme and let C be a stratum of X. Let D1, . . . ,Dc

be the irreductible constructible divisors containing C. For 1 ≤ i ≤ c, let Ni → Di be the normal
bundle of the closed immersion Di → X. Then NX(C) is isomorphic to

(N1 ×D1 C) ×C . . . ×C (N1 ×Dc C)

endowed with the coarsest stratification P for which the inverse images of the zero sections of
the Ni’s and the inverse images of the irreducible components of C r C are P-constructible. In
particular, the following properties hold:

(i) NX(C) is regularly stratified and its underlying scheme is isomorphic to the normal cone of
the closed immersion C → X;

(ii) N◦X(C) is naturally a torsor over T◦X(C) defined over C.

Proof. If C is open, NX(C) = C by construction, and there is nothing to prove. Thus, we may
assume that C has codimension ≥ 1. A direct computation shows that NX(C) is isomorphic to the
spectrum of the R◦X(C)-graded OC-algebra⊕

v∈R◦X(C), v<0

OX(v) · tv,

where OX(v) is the quotient of OX(v) by the sub-OX-module
∑

v′<v OX(v′). (Of course the inequality
sign “<” refers to the additive order on the group R◦X(C) for which RX(C) is the monoid of positive
elements.) The statement follows readily from this. �

We now describe with some details the stratification of DfX(C).

Remark 3.15. Let X be a regularly stratified scheme and let C be a stratum of X. Given a second
stratum D � C, we have direct sum decompositions

R◦X(C) = R◦X(D) ⊕ R◦X|D(C) and RX(C) = RX(D) ⊕ RX|D(C) (3.4)
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where R◦X|D(C) is the group of Cartier divisors of X generated by the constructible irreducible
divisors of X containing C but not D, and RX|D(C) ⊂ R◦X|D(C) is the submonoid of effective Cartier
divisors. Dually, we obtain the following direct product decompositions

T◦X(C) = T◦X(D) × T◦X|D(C) and TX(C) = TX(D) × TX|D(C). (3.5)

In particular, we have a Cartesian square

TX|D(C) //

��

TX(C)

��

oD
// TX(D)

which we use to identify TX|D(C) with the constructible closed subscheme of TX(C) whose ideal is
generated by the tv for v ∈ RX(D). Using this identification, T◦X|D(C) is then a stratum of TX(C).
It is easy to check that the map D � C 7→ T◦X|D(C) is a bijection between the strata of TX(C) and
those strata of X containing C in their closure.

Notation 3.16. Let X be a regularly stratified scheme and let C � D be strata of X. We set

DfX|D(C) = DfX(C) ×TX(C) TX|D(C) ' DfX(C) ×TX(D) oD.

This is a constructible closed subscheme of DfX(C), and hence inherits a stratification from the
one of DfX(C). This makes DfX|D(C) into a connected regularly stratified scheme (see Lemma 3.17
below). As usual, we denote by Df◦X|D(C) the open stratum of DfX|D(C) and set Df[X|D = Df[X∩DfX|D.

Lemma 3.17. Let X be a regularly stratified scheme and let C � D be strata of X. Then, there is a
commutative square of stratified schemes

DfX|D(C) ∼
//

��

DfD(C) ×D NX(D)

��

TX|D(C) ∼
// TD(C)

(3.6)

where the horizontal arrows are isomorphisms. In particular, the following properties hold:

(i) DfX|D(C) is regularly stratified and there is a morphism DfX|D(C) → DfD(C) making
DfX|D(C) into a vector bundle over DfD(C);

(ii) there is an isomorphism Df◦X|D(C) ' T◦
D

(C) × N◦X(D).

Proof. If D is open, we have by construction DfX|D(C) ' DfX(C) = DfD(C), and there is nothing
to prove. Thus, we may assume that D has codimension ≥ 1. Using the decompositions in (3.4),
we have an isomorphism of OX-algebras

O(DfX(C)) '

 ⊕
v∈R◦X|D(C)

(OX(v) ∩OX) · tv

 ⊗OX O(DfX(D)).
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It follows by construction that

O(DfX|D(C)) '

 ⊕
v∈R◦X|D(C)

(OX(v) ∩OX) · tv

 ⊗OX O(NX(D))

'


 ⊕

v∈R◦X|D(C)

(OX(v) ∩OX) · tv

 ⊗OX OD

 ⊗OD
O(NX(D))

' O(DfD(C)) ⊗OD
O(NX(D)).

For the last isomorphism in the above chain, we use the fact that the lattice R◦
D

(C) can be identified
with R◦X|D(C). This proves the lemma. �

In the remainder of this subsection, we will describe the functoriality of the previous construc-
tions in X and C. Given a stratified scheme Y and a sequence of strata (D j)1≤ j≤n in Y , we will call
“relevant” the open strata of Y containing at least one of the D j’s in their closure.

Lemma 3.18. Let f : Y → X be a morphism of regularly stratified schemes taking the relevant
open strata of Y to open strata of X.

(i) Let D be a stratum of Y and C = f∗(D). Pulling back Cartier divisors from the smallest con-
structible neighbourhood of C to the smallest constructible neighbourhood of D induces a
homomorphism f ∗ : R◦X(C)→ R◦Y(D) respecting the submonoids of effective elements.

(ii) Let D0 � D1 be strata of Y and C0 � C1 their images by f∗. Then, the following square

R◦X(C0) //

f ∗

��

R◦X(C1)

f ∗

��

R◦Y(D0) // R◦X(D1),

where the horizontal arrows are the obvious inclusions, is commutative. Moreover, the
homomorphism f ∗ : R◦X(C1) → R◦Y(D1) sends R◦X|C0

(C1) into R◦Y |D0
(D1) inducing a homo-

morphism f ∗ : R◦X|C0
(C1)→ R◦Y |D0

(D1) rendering the square

R◦X|C0
(C1) ∼

//

f ∗

��

R◦
C0

(C1)

f ∗0
��

R◦Y |D0
(D1) ∼

// R◦
D0

(D1)

commutative (with f0 : D0 → C0 the morphism induced by f ).

Proof. Everything is clear except the second assertion in part (ii). For this one needs to remark that
if E ⊂ X is an irreducible constructible divisor containing C1 but not C0, then every component of
f −1(E) that contains D1 does not contain D0. �

Proposition 3.19. Let f : Y → X be a morphism of regularly stratified schemes.
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(i) Let D be a stratum of Y and C = f∗(D). There is an induced commutative diagram of
regularly stratified schemes

Y

��

DfY(D) //

��

oo TY(D)

��

X DfX(C) //oo TX(C)

(ii) Let D0 � D1 be strata of Y and C0 � C1 their images by f∗. There is an induced commuta-
tive diagram of regularly stratified schemes

TD0
(D1)

��

TY |D0(D1)∼
oo //

��

TY(D1) //

��

TY(D0)

��

DfD0
(D1)

��

77

DfY |D0(D1)oo //

��

66

DfY(D1) //

��

88

DfY(D0)

��

88

TC0
(C1) TX|C0(C1)∼

oo // TX(C1) // TX(C0)

DfC0
(C1)

77

DfX|C0(C1)oo //

66

DfX(C1) //

88

DfX(C0).

88

Proof. We first assume that f takes the relevant open stratum to an open stratum. In this case, part
(i) follows from Construction 3.10 and Lemma 3.18(i). Similarly, part (ii) follows from Lemma
3.18(ii) and the construction of the morphisms DfX|C0(C1)→ DfC0

(C1) and DfY |D0(D1)→ DfD0
(D1)

which can be extracted from the proof of Lemma 3.17.
Next, we assume that Y → X is the inclusion of an irreducible constructible closed subscheme.

In this case, Y◦ is a stratum of X and we have C = D, C0 = D0 and C1 = D1. We define the vertical
morphisms of the right square in the commutative diagram of (i) by the compositions

DfY(D) = DfY(C)
s0
−→ DfY(C) ×Y NX(Y◦)

(?)
' DfX|Y◦(C)→ DfX(C)

and TY(D) = TY(C) ' TX|Y◦(C)→ TX(C).
(Here, s0 denotes the zero section of NX(Y◦) and (?) is the inverse of the isomorphism given in
Lemma 3.17.) The commutativity of the diagram in (i) is then clear by construction. We leave the
commutativity of the diagram in (ii) to the reader. �

Theorem 3.20. There are functors

Df, T :
∫

REG-Σ
P→ REG-Σ

sending a pair (X,C), consisting of a regularly stratified scheme X and a stratum C ⊂ X to the
regularly stratified schemes DfX(C) and TX(C) respectively. These functors are characterised by
the following properties.

(i) For a fixed X and strata C0 � C1 in X, the associated morphisms DfX(C1)→ DfX(C0) and
TX(C1)→ TX(C0) are the obvious ones.

(ii) A morphism f : (Y,D) → (X,C) with C = f∗(D) is sent to the obvious morphisms
DfY(D)→ DfX(C) and TY(D)→ TX(C). (See Proposition 3.19(i).)

Proof. This follows from Proposition 3.19 by direct verification. The details are omitted. �

To state the next result, we need to introduce some notations.
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Notation 3.21. Given a stratified scheme X, we let P′X be the sub-poset of (PX,�)× (PX,�) whose
elements are pairs (C−,C+) of strata in X such that C− � C+. Thus, an arrow (C′−,C

′
+) → (C−,C+)

witnesses a chain of inequalities C′− � C− � C+ � C′+. Moreover, we let P′′X be the sub-poset
of (PX,�) × (PX,�) × (PX,�) whose elements are triples (C−,C0,C+) of strata in X such that
C− � C0 � C+. We have an obvious functor P′′X → P′X whose fiber at (C−,C+) is the set of strata
between C+ and C− partially ordered by �.

Theorem 3.22. There are functors

Df, T :
∫

REG-Σ
P′′ → REG-Σ

sending a pair (X, (C−,C0,C+)), consisting of a regularly stratified scheme X and an object of
P′′X , to the regularly stratified schemes DfC− |C0

(C+) and TC− |C0
(C+) respectively. These functors are

characterised by the following properties.
(i) For a fixed X and an arrow in P′′X of the form (C−,C0,C+) → (C−,C−,C+) the associated

morphisms DfC− |C0
(C+)→ DfC−(C+) and TC− |C0

(C+)→ TC−(C+) are the obvious inclusions.
(ii) For a fixed X and an arrow in P′′X of the form (C−,C−,C′+) → (C−,C−,C+) the associated

morphisms DfC−(C
′
+)→ DfC−(C+) and TC−(C

′
+)→ TC−(C+) are the obvious ones.

(iii) For a fixed X and an arrow in P′′X of the form (C−,C0,C+) → (C0,C0,C+) the associated
morphism DfC− |C0

(C+)→ DfC0
(C+) is the one described in Lemma 3.17, and the associated

morphism TC− |C0
(C+)→ TC0

(C+) is the obvious isomorphism.
(iv) A coCartesian morphism of the form f : (Y, (D−,D−,D+)) → (X, (C−,C−,C+)) is sent to

the obvious morphisms DfD−(D+)→ DfC−(C+) and TD−(D+)→ TC−(C+). (See Proposition
3.19(i).)

Furthermore, we have a natural transformation Df → T given by the obvious morphisms and the
functor N = Df ×T o factors through

∫
REG-Σ

P′ yielding a functor

N :
∫

REG-Σ
P′ → REG-Σ

sending a pair (X, (C−,C+)) to the regularly stratified scheme NC−(C+).

Proof. This follows from Proposition 3.19 by direct verification. The details are omitted. �

3.2. Monodromic specialisation, I. Definition and basic properties.
In this subsection, we construct the monodromic specialisation functors. Classically, mon-

odromic specialisations were introduced by Verdier in [Ver83, §8], and they are closely related
to the nearby cycles functors. Roughly speaking, monodromic specialisation along a closed sub-
variety Z ⊂ X is the nearby cycles functor associated to the deformation to the normal cone of Z.
When Z is a principal divisor, this allows one to encode the monodromy action on the sheaf of
nearby cycles via variations over the fibers of a relative 1-dimensional torus. In the motivic set-
ting, a similar but more restrictive formalism was recently developed by Ivorra–Sebag in [IS18].
(Indeed, the map f Gm used in [IS18, §4.1] is the projection toA1 of an open subvariety of the defor-
mation to the normal cone of the central fiber of f .) Our monodromic specialisation formalism is
closely related to the aforementioned constructions, but differs in some aspects related to functori-
ality. We start by generalising slightly some constructions from [Ayo07b, §3.4 & 3.5]. Throughout
this subsection, we fix a base scheme S and a presentable Voevodsky pullback formalism

H⊗ : (Sch/S )op → CAlg(PrL).
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(See Definitions 1.14 and 2.4.)

Construction 3.23. Let T be a split torus over S (or any other base scheme). We define a diagram
of T -schemes YT as follows. The indexing category of YT is ∆ × N× where N× = N r {0} is
partially ordered with the opposite of the divisibility relation. We set YT ([n], r) = T n+1, with
structural morphism

T n+1 → T, (x0, . . . , xn) 7→ xr
0.

For r, d ∈ N×, the morphism YT ([n], rd) → YT ([n], r) is evaluation to the power d. The cosimpli-
cial scheme YT (−, r) is independent of r once we forget the structural morphism to T . Its coface
morphism di : YT ([n], r) → YT ([n + 1], r) is induced by the diagonal immersion T → T × T of
the i-th factor in T n+1, if 0 ≤ i ≤ n, and is given by inserting 1 at the n + 1-th factor of T n+2, if
i = n + 1. (Note that we are numbering the factors of T n+1 and T n+2 starting from 0 to n and n + 1
respectively.) Its codegeneracy morphism s j : YT ([n], r) → YT ([n − 1], r) is given by the projec-
tion parallel to the j + 1-th factor, for 0 ≤ j ≤ n − 1. Said differently, YT (−, r) is the cosimplicial
split torus T ×̃T 1, obtained by applying [Ayo07b, Lemme 3.4.1], and considered as a cosimplicial
T -scheme using the composition of

T ×̃T 1→ T
(−)r

−−→ T.

In fact, we even have YT = ET ×̃ET 1, where we apply [Ayo07b, Lemme 3.4.1] in the category of
N×-diagrams of tori with ET the object sending r ∈ N× to T and an arrow rd → r in N× to the
elevation to the power d. (See also [Ayo07b, Définitions 3.5.1 & 3.5.3].)

Construction 3.24. Keep the notations as in Construction 3.23. Let θ : YT → (T,∆ × N×) be the
natural transformation from YT to the constant ∆×N×-diagram given by the structural projections
to T . We have a morphism of coCartesian fibrations

(∆ × N×)op ×H(T )⊗ θ∗
//

p
((

∫
(∆×N×)op

H(YT )⊗

vv

(∆ × N×)op × Fin∗.

By [Lur17, Proposition 7.3.2.6], the functor θ∗ admits a relative right adjoint θ∗. By applying θ∗θ∗

to the section of p given by the ⊗-unit object of H(T )⊗, we obtain the section θ∗1 of p which we
may view as a diagram θ∗1 : (∆ × N×)op → CAlg(H(T )). We set

UT = colim
(∆×N×)op

θ∗1. (3.7)

We note that the above colimit is sifted, and thus can be computed on the underlying objects
in H(T ). We will also need a variant of the above construction where we use the subdiagram
YT

1 = YT (−, 1) instead of YT . This yields the commutative algebra LT given by

LT = colim
∆op×{1}

θ∗1. (3.8)

By construction, we have a morphism of commutative algebras LT → UT . We refer to LT as the
logarithmic algebra over T .

Notation 3.25. Let T ◦ be a split torus and j : T ◦ ↪→ T a split torus-embedding (as in Definition
3.104 below). We set

LT = j∗LT ◦ and UT = j∗UT ◦ . (3.9)
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Since j∗ is a lax symmetric monoidal functor, these are also commutative algebras in H(T )⊗.

Remark 3.26. The commutative algebras LT and UT introduced in Construction 3.24 and Notation
3.25 are motivic in the following sense: the initial morphism of Voevodsky pullback formalisms

MShnis(−)⊗ → H(−)⊗,

given by Theorem 2.8, takes the commutative algebras LT and UT in MShnis(T )⊗ to the commuta-
tive algebras LT and UT in H(T )⊗.

We now discuss a few properties of the commutative algebras LT and UT .

Lemma 3.27.
(i) Let T ′ and T ′′ be two split torus-embeddings, and let T = T ′ × T ′′. There are canonical

equivalences of commutative algebras LT ' LT ′ �LT ′′ and UT ' UT ′ �UT ′′ .
(ii) Let T be a split torus-embedding over S , and let p : T → S be the structural projection.

The unit morphisms 1→ p∗LT and 1→ p∗UT are equivalences.
(iii) Let T be a split torus-embedding over S , and let E◦ ⊂ T be a stratum with closure E. There

are equivalences of commutative algebras LT |E ' LE and UT |E ' UE.

Proof. Let j : T ◦ ↪→ T , j′ : T ′◦ ↪→ T ′ and j′′ : T ′′◦ ↪→ T ′′ be the split torus-embeddings
considered in (i). There is an isomorphism of ∆ × N×-diagrams of T -schemes

YT ◦ ' YT ′◦ ×S YT ′′◦ .

Since the tensor product commutes with sifted colimits, we are reduced to showing that the obvious
morphism j′∗(A

′) � j′′∗ (A′′)→ j∗(A′ � A′′) is an equivalence, when A′ and A′′ are motives in H(T ′)
and H(T ′′) obtained via pullback from H(S ). This is easy, and left to the reader.

To prove (ii), we may assume that T = T ◦ is a torus. Also, it suffices to treat the case of the
logarithmic algebra. Using (i), we may reduce to the case of T = Gm which is treated in [Ayo07b,
page 78]. In fact, the argument in loc. cit. is valid for a general T . The point is that p∗LT is the
geometric realisation of (p ◦ θ1)∗1. We then use [Ayo07b, Lemme 3.4.1(B) & Corollaire 3.4.12] to
conclude.

For (iii), we may assume that T = E × Ac
S so that E is identified with the subscheme E × 0. In

this case, we may use (i) to reduce to the case where T = Ac and E = 0S . Using (i) again, we
may further reduce to the case where T = A1. The result follows then from [Ayo07b, Proposition
3.4.9(1) & Lemme 3.5.10]. We may also deduce it from (ii), but we leave this to the reader. �

To state our next result, we need to introduce some notations.

Notation 3.28. Let T be a split torus over S . We denote by q : T → S the structural projection and
by er : T → T , for r ∈ N×, the elevation to the power r on T .

(i) We denote by H(T )un/S , or simply H(T )un if S is understood, the stable localising sub-∞-
category of H(T ) generated by the image of q∗. We denote by φ∗un : H(T )un → H(S ) the
inverse image functor along the unit section of T , and by φun

∗ its right adjoint.
(ii) Similarly, we denote by H(T )qun/S , or simply H(T )qun if S is understood, the stable local-

ising sub-∞-category of H(T ) generated by the image of the functors er, ∗ ◦ q∗, for r ∈ N×.
We denote by φ∗qun : H(T )qun → H(S ) the inverse image functor along the unit section of
T , and by φqun

∗ its right adjoint.
Objects of H(T )un are said to be unipotent, and those of H(T )qun are said to be quasi-unipotent.
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Proposition 3.29. Let T be a split torus over S . There are equivalences

φun
∗ (−) ' LT ⊗ q∗(−) and φ

qun
∗ (−) ' UT ⊗ q∗(−). (3.10)

In particular, we have LT ' φ
un
∗ (1) and UT ' φ

qun
∗ (1).

Proof. This is a generalisation of [Ayo14c, Proposition 2.10] and the proof given in loc. cit. still
works in the generality we are considering. For the reader’s convenience, we sketch the proof.

We only treat the quasi-unipotent case. Using the unit sections of the tori YT ([n], r), for [n] ∈ ∆
and r ∈ N×, we see that there is a commutative algebra morphism ε : φ∗qun(UT ) → 1. We may use
this to define a natural transformation UT ⊗ q∗(−) → φ

qun
∗ (−). We take the one corresponding by

adjunction to the composition of

φ∗qun(UT ⊗ q∗(−)) ' φ∗qun(UT ) ⊗ φ∗qun(q∗(−))
ε
−→ φ∗qun(q∗(−)) ' id.

We will show that for every M ∈ H(T )qun and N ∈ H(S ), the induced map

MapH(T )(M,UT ⊗ q∗(N))→ MapH(T )(M, φqun
∗ (N)) (3.11)

is an equivalence. By the definition of H(T )qun, we may assume that M belongs to the image of
er, ∗q∗. Note that we have equivalences er, ∗UT ' UT and er, ∗ ◦ φ

qun
∗ ' φ

qun
∗ fitting in a commutative

diagram of natural transformations

UT ⊗ q∗(−)

∼

��

// φ
qun
∗ (−)

∼

��

er, ∗UT ⊗ q∗(−) ∼
// er, ∗(UT ⊗ e∗rq∗(−)) ∼

// er, ∗(UT ⊗ q∗(−)) // er, ∗φ
qun
∗ (−).

Thus, the morphism UT ⊗ q∗(N)→ φ
qun
∗ (N), inducing the map in (3.11), is equivalent to its image

by er, ∗. Using adjunction and the fact that the image of e∗rer, ∗q∗ is contained in the image of q∗, we
are left to show that (3.11) is an equivalence with M = q∗M0, for M0 ∈ H(S ). By adjunction, we
are thus left to show that

q∗(UT ⊗ q∗(N))→ q∗(φ
qun
∗ (N))

is an equivalence. Since φ∗qun ◦q∗ ' id, we deduce that the codomain of this morphism is equivalent
to N. On the other hand, the domain is easily seen to be equivalent to q∗(UT ) ⊗ N. We finally
conclude using Lemma 3.27(ii). �

Corollary 3.30. Let T ′ → T be a morphism of split tori over S .
(i) The right adjoint to the inverse image functor H(T )un → H(T ′)un takes LT ′ to LT .

(ii) The right adjoint to the inverse image functor H(T )qun → H(T ′)qun takes UT ′ to UT .

Proof. This follows immediately from Proposition 3.29. �

We now come to the definition of the nearby cycles functors.

Definition 3.31. Let T be a split torus-embedding over S and E◦ ⊂ T a stratum with closure E.
Let f : X → T be a finite type morphism and form a commutative diagram with Cartesian squares

Xη

j
//

fη
��

X

f
��

Xσ
i

oo

fσ
��

T ◦
j
// T E.i
oo
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We define functors Υ f , E, Ψ f , E : H(Xη)→ H(Xσ) by the formulae:

Υ f , E(−) = i∗ j∗(LT ◦ ⊗ −) and Ψ f , E(−) = i∗ j∗(UT ◦ ⊗ −).

These functors are called the unipotent and the quasi-unipotent nearby functors.

Remark 3.32. The functors Υ f , E and Ψ f , E are lax monoidal. Moreover, when the T -scheme X
varies, these functors form a specialisation system over (T, j, i), in the sense of [Ayo07b, Défini-
tion 3.1.1]. The proof of this is a straightforward application of the six-functor formalism; see for
instance the proof of [Ayo07b, Proposition 3.2.9]. Moreover, we have obvious natural transforma-
tions Υ f , E → Ψ f , E defining a morphism of specialisation systems.

For later use, we record the following lemma.

Lemma 3.33. If f is smooth, there are equivalences

f ∗σ(LE)
∼
−→ Υ f , E(1) and f ∗σ(UE)

∼
−→ Ψ f , E(1).

In particular, if the stratum E◦ has relative dimension 0, then we have equivalences

1 ' Υ f , E(1) ' Ψ f , E(1).

Proof. This follows from Lemma 3.27(iii) using the smooth base change theorem. �

We now come to the main players of this section, namely the monodromic nearby functors.
From now on, we assume that S is noetherian.

Definition 3.34. Let X be a regularly stratified S -scheme, and let C be a stratum of X. Consider
the following commutative diagram with Cartesian squares

X X × T◦X(C)
p

oo
j
//

ρη

��

DfX(C)

ρ

��

NX(C)i
oo

ρσ

��

T◦X(C)
j
// TX(C) oC.

i
oo

(See Construction 3.10.) We define the functors ‹ΥC, ‹ΨC : H(X)→ H(NX(C)) by the formulae‹ΥC = Υρ ◦ p∗ and ‹ΨC = Ψρ ◦ p∗.

The functors ‹ΥC and ‹ΨC are called the monodromic specialisation functors. The first one is said to
be unipotent and the second one is said to be quasi-unipotent.

Remark 3.35. We will also need a variant of Definition 3.34 where we employ the open deforma-
tion space Df[X(C) instead of DfX(C). More precisely, we consider the commutative diagram with
Cartesian squares

X◦
p′
// X◦ × T◦X(C)

j
//

ρ′η
��

Df[X(C)

ρ′

��

N◦X(C)i
oo

ρ′σ

��

T◦X(C)
j

// TX(C) oC
i

oo

and define the functors ‹ΥC, ‹ΨC : H(X◦)→ H(N◦X(C)) by the formulae‹ΥC = Υρ′ ◦ p′∗ and ‹ΨC = Ψρ′ ◦ p′∗.
82



These functors will be also called monodromic specialisation functors. They are related to the
previous ones by the following commutative squares

H(X)
Υ̃C (resp. Ψ̃C)

//

��

H(NX(C))

��

H(X◦)
Υ̃C (resp. Ψ̃C)

// H(N◦X(C))

where the vertical arrows are the obvious restriction functors.

Corollary 3.36. Let X be a regularly stratified S -scheme and C a stratum of X. There are equiva-
lences 1 ' ‹ΥC(1) ' ‹ΨC(1) in H(NX(C)).

Proof. This actually requires some hypotheses, such as S being regular and the unit object 1 ∈
H(S ) satisfying absolute purity as in [Ayo14a, Définition 7.1]. In case S is the spectrum of a field,
this follows immediately from Lemma 3.33 since DfX(C) is smooth over TX(C). �

We now give two results describing the rough functoriality of the monodromic specialisations
functors. More structured results will be discussed in Subsection 3.3.

Proposition 3.37. Let f : Y → X be a morphism of regularly stratified S -schemes. Let D ⊂ Y be a
stratum of Y and let C = f∗(D). We assume that f takes the relevant open stratum of Y to an open
stratum of X. Then, we have natural transformations

f ∗σ ◦ ‹ΥC →
‹ΥC ◦ f ∗η and f ∗σ ◦ ‹ΨC →

‹ΨC ◦ f ∗η ,

which are equivalences if f is smooth and D is open in f −1(C).

Proof. The construction of the natural transformations is easy and left to the reader. For the last
assertion, we remark that the hypotheses on f and D imply that TY(D)→ TX(C) is an isomorphism.
This said, the result follows immediately form the smooth base change theorem. �

Proposition 3.38. Let X be a regularly stratified S -scheme, and let C0 � C1 be strata of X. Let
E ⊂ NX(C0) be the largest stratum over C1 ⊂ C0 relative to the projection NX(C0) → C0. Modulo
the identifications NX(C1) ' NX(C0) ×C0

NC0
(C1) ' NNX(C0)(E), there are natural transformations‹ΥC1 →

‹ΥE ◦
‹ΥC0 and ‹ΨC1 →

‹ΨE ◦
‹ΨC0 .

Proof. Consider the commutative diagram with Cartesian squares

NX(C1)

i0
��

i′

yy

DfX(C1) DfX|C0(C1)
i′1

oo

X × T◦X(C1)
p′

��

j1
//

q′′

��

j′
11

DfX(C1) ×TX|C0 (C1) T◦X|C0
(C1)

q′

��

j′0

OO

NX(C0) × T◦X|C0
(C1)

i1
oo

j0

OO

q
��

X X × T◦X(C0)
j

//
p

oo DfX(C0) NX(C0).i
oo
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The composite functor ‹ΨE ◦
‹ΨC0 can be identified with

i∗0 j0, ∗(UT◦X|C0
(C1) ⊗ q∗i∗ j∗(UT◦X(C0) ⊗ p∗(−))). (3.12)

The morphism q′ being smooth, we have an equivalence q∗i∗ j∗ ' i∗1 j1, ∗q′′∗ by the smooth base
change theorem. Using the definition of UT◦X|C0

(C1), we see easily that the natural transformation

UT◦X|C0
(C1) ⊗ i∗1 j1, ∗(−)→ j1, ∗i∗1(UT◦X|C0

(C1) ⊗ −)

is an equivalence. It follows that the functor in (3.12) is equivalent to

i∗0 j0, ∗i∗1 j1, ∗(UT◦X|C0
(C1) ⊗ q′′∗(UT◦X(C0) ⊗ p∗(−))). (3.13)

Since UT◦X|C0
(C1) ⊗ q′′∗UT◦X(C0) ' UT◦X(C1), we obtain an equivalence‹ΨE ◦

‹ΨC0 ' i∗0 j0, ∗i∗1 j1, ∗(UT◦X(C1) ⊗ p′∗(−)). (3.14)

On the other hand, we have a natural transformation i′∗ j′∗ → i∗0 j0, ∗i∗1 j1, ∗ induced by the exchange
morphism i′∗1 j′0, ∗ → j0, ∗i∗1. This finishes the proof since ‹ΨC1 = i′∗ j′∗(UT◦X(C1) ⊗ p′∗(−)). �

A version of the following result was proven in [IS18, Theorems 4.1.1 & 4.2.1] in the case of
MShnis(−). We give below a considerably simpler proof which requires however étale descent (and
thus cannot be used in the case of MShnis(−)).

Proposition 3.39. Assume that H satisfies étale descent.
(i) Let X be a regularly stratified S -scheme and C ⊂ X a stratum. Then, for any M ∈ H(X◦),

the object ‹ΨC(M) ∈ H(N◦X(C)) is quasi-unipotent (see Notation 3.28).5 Thus ‹ΨC induced a
functor ‹ΨC : H(X◦)→ H(N◦X(C))qun.

(ii) Let T be a split torus-embedding admitting a stratum oT of relative dimension 0. Let X be
a regularly stratified S -scheme, f : X → T a morphism of stratified S -schemes and C ⊂ X
a stratum above oT . Assume that the induced morphism TX(C) → T is an isomorphism.
Then f determines a section s f : C → N◦X(C), and there is an equivalence

s∗f ◦ ‹ΨC
∼
−→ Ψ f , oT

between functors from H(X◦) to H(C).

Proof. In this statement, the functor ‹ΨC is the one discussed in Remark 3.35. There is a commuta-
tive diagram with Cartesian squares

X◦ × T◦X(C)
j
//

α′

��

Df[X(C)

α

��

N◦X(C)i
oo

α′′

��

X◦
j

// X C,i
oo

and the morphism α is smooth. Going back to the construction of ‹ΨC, we see that (i) follows from
the following assertion. The object i∗ j∗(idX◦ × er)∗α′∗M is quasi-unipotent for every r ≥ 1 and
M ∈ H(X◦). (As usual, er : T◦X(C) → T◦X(C) is elevation to the r-th power.) Given a Kummer
étale cover X′ → X, with X considered as a log scheme in the obvious way, the induced morphism
N◦X′(C

′)→ N◦X(C), with C′ a connected component of X′ ×X C, is étale. Moreover, letting C′ vary,
we obtain an étale cover (N◦X′(C

′)→ N◦X(C))C′ of N◦X(C). Using étale descent, we may thus replace

5Extended to torsors over torus in the obvious way.
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X with X′. Taking X′ sufficiently ramified around C, we reduce to the case r = 1. Said differently,
we are left to check that i∗ j∗α′∗M is quasi-unipotent. This is obvious since i∗ j∗α′∗M ' α′′i∗ j∗M by
the smooth base change theorem.

We now prove part (ii). Fix an identification T = Spec(OS [t1, . . . , tn]). There is a diagonal
embedding T → DfT (oT ) given by the OS -algebra homomorphism

OS

[
t1

t′1
, . . . ,

tn

t′n
, t′1, . . . , t

′
n

]
→ OS [t1, . . . , tn]

sending ti and t′i to ti. One immediately sees that the composition

DfX(C) ×DfT (oT ) T → DfX(C)→ X

is an isomorphism. Moreover, the induced map X → DfX(C) factors through Df[X(C). This given a
commutative diagram with Cartesian squares

X◦
j

//

β′

��

X
β

��

Ci
oo

β′′

��

X◦ × T◦X(C)
j
// Df[X(C) N◦X(C).i

oo

The section s f in the statement is the morphism β′′. We have an obvious natural transformation

β′′∗i∗ j∗ → i∗ j∗β′∗

and we need to show that it induces equivalences on objects of the form (idX◦ ×er)∗α′∗M with r ≥ 1
and M ∈ H(X◦). Arguing as in the proof of (i), we reduce to the case r = 1, which follows from
the smooth base change theorem. �

Notation 3.40. Let X be a regularly stratified S -scheme and C ⊂ X a stratum. We define a functor

χC : H(X◦)→ H(C)

by χC = i∗ j∗, with j : X◦ → X and i : C → X.

Proposition 3.41. Assume that H satisfies étale descent. Let X be a regularly stratified S -scheme
and C ⊂ X a stratum. We denote by q : N◦X(C) → C the obvious projection. Then, there are
equivalences

χC ' q∗ ◦ ‹ΥC ' q∗ ◦ ‹ΨC.

Proof. Consider the commutative diagram with Cartesian squares

X◦ × T◦X(C)
j
//

q′′

��

Df[X(C)

q′

��

N◦X(C)i
oo

q
��

X◦
j

// X C.i
oo

There is a natural transformation

q∗i∗ j∗ → i∗ j∗q′′∗ = χC ◦ q′′∗ . (3.15)

We claim that the natural transformation in (3.15) is an equivalence when evaluated at objects of
the form (idX◦ × er)∗q′′∗(M) for r ≥ 1 and M ∈ H(X◦). The question being local for the Kummer
log étale topology, we may assume that r = 1. In this case, the result follows from the fact that
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q∗q∗ is locally on X a direct sum of Tate twists. This said, we are left to show that the natural
transformation

id→ q′′∗ (UT◦X(C) ⊗ q′′∗(−))

is an equivalence. This follows from the fact that q′′∗ (UT◦X(C)) ' 1; see Lemma 3.27(ii). �

Lemma 3.42. Let p : Q → S be the projection of a torsor on S over a split torus. Consider
the functor H(Q) → H(S ; p∗1) sending M ∈ H(Q) to p∗M considered as a module over the
commutative algebra p∗1. This functor restricts to an equivalence of∞-categories

H(Q)un ' H(S ; p∗1).

Notation 3.43. Let X be a regularly stratified S -scheme and C ⊂ X a stratum. We denote by

χ̃C : H(X◦)→ H(C; χ1)

the functor sending M ∈ H(X◦) to χC(M) considered as a module over χC(1).

Corollary 3.44. Let X be a regularly stratified S -scheme and C ⊂ X a stratum. There a commuta-
tive triangle

H(X◦)
Υ̃C
//

χ̃C &&

H(N◦X(C))

∼

��

H(C; χ1)

where the vertical arrow is an equivalence of∞-categories.

Proof. Let q : N◦X(C) → C be the obvious projection, and denote by q̃∗ : H(N◦X(C)) ' H(C; q∗1)
the equivalence provided by Lemma 3.42. Using Corollary 3.36 and Proposition 3.41, we obtain
an equivalence of commutative algebras q∗1 ' χC(1). Modulo this identification, Proposition 3.41
gives an equivalence q̃∗ ◦ ‹Υ ' χ̃C as needed. �

3.3. Logarithmicity and tameness at the boundary.
In this section, we introduce and study the notions of logarithmicity and tameness at the bound-

ary of regularly stratified schemes. We fix a Voevodsky pullback formalism

H(−)⊗ : Sch/S → CAlg(PrL),

defined over a noetherian base scheme S , and assumed to satisfy absolute purity, étale descent and
compact generation.

Lemma 3.45. Let j : U → X be an open immersion.
(i) The functor j̃∗ : H(X; j∗1) → H(U), restricted the full sub-∞-category of H(X; j∗1)

spanned by the dualizable objects, is fully faithful.
(ii) Let j̃∗ : H(U) → H(X; j∗1) be the right adjoint to j̃∗. If N ∈ H(X; j∗1) is dualizable, then

the obvious morphism N → j̃∗ j̃∗N is an equivalence.

Proof. Properties (i) and (ii) follow from the following assertion. Given two j∗1-modules M and
N, with N dualizable, the map

MapH(X; j∗1)(M,N)→ MapH(U)( j̃∗(M), j̃∗(N))
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is an equivalence. Since the functor j̃∗ is monoidal, we may replace M with M ⊗ j∗1 N∨, and reduce
to the case where N = j∗1. Said differently, it is enough to show that the map

MapH(X; j∗1)(M, j∗1)→ MapH(U)( j̃∗(M), 1)

is an equivalence. This is clear since the right adjoint to j̃∗ takes 1 to j∗1 considered as a j∗1-module
in the obvious way. �

Notation 3.46. Let C⊗ be a symmetric monoidal ∞-category and M ∈ C a dualizable object. We
denote by 〈M〉⊗ the full monoidal sub-∞-category of C⊗ generated by M and its dual.

Proposition 3.47. Let X be a regularly stratified scheme, and let M ∈ H(X◦) be a dualizable
object. We denote by j : X◦ → X the obvious inclusion. The following conditions are equivalent.

(i) The restriction of the right-lax monoidal functor ‹ΥC : H(X◦)⊗ → H(N◦X(C))⊗ to 〈M〉⊗ is
monoidal for every stratum C ⊂ X.

(ii) The restriction of the right-lax monoidal functor χ̃C : H(X◦)⊗ → H(C; χ1)⊗ to 〈M〉⊗ is
monoidal for every stratum C ⊂ X.

(iii) The j∗1-module j∗M is dualizable as an object of H(X; j∗1)⊗.
(iv) There is a dualizable object N of H(X; j∗1)⊗ such that M ' j∗(N).

Proof. The equivalence between (i) and (ii) is immediate from Corollary 3.44 and the equivalence
between (iii) and (iv) follows from Lemma 3.45. We will prove the proposition by showing the
implications (ii)⇒ (iii) and (iv)⇒ (ii). We split the proof in two parts.

Part 1. Here we assume that M satisfies property (ii) and show that the j∗1-module j∗M is dualiz-
able. For this, it is enough to check that the obvious morphism

j∗M ⊗ j∗1 Hom j∗1( j∗M, j∗1)→ Hom j∗1( j∗M, j∗M)

is an equivalence. By adjunction, we may rewrite this morphism as

j∗M ⊗ j∗1 j∗Hom(M, 1)→ j∗Hom(M,M).

Since M is dualizable, we may rewrite again this morphism as

j∗M ⊗ j∗1 j∗M∨ → j∗(M ⊗ M∨)

where M∨ is the dual of M. By the localisation property, it is enough to show that the above
morphism becomes an equivalence after restriction to each stratum C ⊂ X. This restriction is the
obvious morphism

χ̃C(M) ⊗χC1 χ̃C(M∨)→ χ̃C(M ⊗ M∨)
which is indeed an equivalence by (ii).

Part 2. Assume that property (iv) is satisfied. By Lemma 3.45, the functor j∗ induces an equiv-
alence of symmetric monoidal ∞-categories 〈N〉⊗ → 〈M〉⊗ with inverse given by E 7→ j̃∗(E). It
follows that χ̃C |〈M〉⊗ is the composition of

〈M〉⊗ ' 〈N〉⊗ ↪→ H(X; j∗1)⊗
ι∗C
−→ H(C; χ1)⊗

where ιC : C → X is the obvious inclusion. Since ι∗C is symmetric monoidal, the same is true for
the functor χ̃C |〈M〉⊗ . This finishes the proof of the proposition. �

Definition 3.48. Let X be a regularly stratified S -scheme and M ∈ H(X◦) dualizable. We say that
M is logarithmic at the boundary of X if it satisfies the equivalent conditions of Proposition 3.47.
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Corollary 3.49. Let X and Y be regularly stratified S -schemes. Let f : Y → X be a morphism
of stratified S -schemes sending an open stratum to an open stratum, and let f ◦ : Y◦ → X◦ be the
induced morphism. The functor f ◦, ∗ : H(X◦)→ H(Y◦) preserves logarithmicity at the boundary.

Proof. It is easiest to see that f ◦, ∗ preserves property (iv) of Proposition 3.47. Indeed, let jX :
X◦ ↪→ X and jY : Y◦ ↪→ Y be the obvious inclusions. If M ∈ H(X◦) is equivalent to j∗XN, with N
a dualizable jX, ∗1-module, then f ◦, ∗M is equivalent to j∗Y( f ∗N ⊗ f ∗ jX, ∗1 jY, ∗1) and the jY, ∗1-module
f ∗N ⊗ f ∗ jX, ∗1 jY, ∗1 is dualizable. �

Lemma 3.50. Let X be a regularly stratified S -scheme and Y ⊂ X a regular constructible locally
closed subscheme. Denote by i : Y → X, jX : X◦ → X and jY : Y◦ → Y the obvious inclusions.
Let N be a dualizable jX, ∗1-module. Then i∗(N) is a dualizable jY, ∗1-module.

Proof. Since i∗ is monoidal, we see that i∗(N) is dualizable as a i∗ jX, ∗1-module. By [Lur17,
Proposition 4.6.4.4], it is enough to prove that i∗ jX, ∗1 is a dualizable jY, ∗1-module. By [Ayo07b,
Théorème 3.3.10] applied to the canonical specialisation system (in the sense of [Ayo07b, Exemple
3.1.4]), we have an equivalence i∗ jX, ∗1 ' jY, ∗ j∗Y(i∗ jX, ∗1) and j∗Y(i∗ jX, ∗1) is, locally for the Zariski
topology, a finite direct sum of Tate twists. �

Proposition 3.51. Let X be a regularly stratified S -scheme, and let M ∈ H(X◦) be dualizable and
logarithmic at the boundary of X.

(i) Let C be a stratum of X. Then χC(M) ∈ H(C) is dualizable and logarithmic at the boundary
of C.

(ii) Let C0 � C1 be strata of X. The natural morphism χC1(M) → χC1⊂C0
◦ χC0(M) is an

equivalence. (We write ‘χC1⊂C0
’ to indicate that C1 is considered as a stratum of C0.)

Proof. Property (i) follows from Lemma 3.50. In the situation considered in (ii), we denote by
j : X◦ → X, j0 : C0 → C0 and i : C1 → C0 the obvious inclusions, and we set N = j∗M. We
need to show that N|C1 → i∗ j0, ∗(N|C0) is an equivalence. By Lemma 3.50, the j0, ∗1-module N |C0

is
dualizable. By Lemma 3.45(ii), this implies that N|C0

→ j0, ∗(N|C0) is an equivalence. The result
follows since N|C1 ' (N|C0

)|C1 . �

Proposition 3.51 admits a variant for the functors ‹ΥC.

Proposition 3.52. Let X be a regularly stratified S -scheme, and let M ∈ H(X◦) be dualizable and
logarithmic at the boundary.

(i) Let C be a stratum of X. Then ‹ΥC(M) ∈ H(N◦X(C)) is dualizable and logarithmic at the
boundary of NX(C).

(ii) Let C0 � C1 be strata of X. Let E ⊂ NX(C0) be the largest stratum over C1 ⊂ C0 relative
to the projection NX(C0) → C0. The natural morphism ‹ΥC1(M) → ‹ΥE ◦

‹ΥC0(M) is an
equivalence. (See Proposition 3.38.)

Proof. To prove (i), we apply Proposition 3.51(i) to the regularly stratified scheme DfX(C) and the
object LT◦X(C)⊗ p′∗M in H(X◦×T◦X(C)). (Here, we use the notations of Definition 3.34 and Remark
3.35.) It follows that ‹ΥC(M) is a filtered colimit of dualizable objects which are logarithmic at
the boundary. Thus, it remains to see that ‹ΥC(M) is dualizable. This follows immediately from
the characterisation (i) in Proposition 3.47. A proof of (ii) can be obtained similarly by applying
Proposition 3.51(ii) to DfX(C). �
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Our next task is to prove a variant of Proposition 3.52 for the functors ‹ΨC and for a larger class
of dualizable objects in H(X◦), namely those which we call tame at the boundary (see Definition
3.54 below). We will need the following result.

Proposition 3.53. Let X be a regularly stratified S -scheme, C a stratum of X, and M ∈ H(X◦)
dualizable and logarithmic at the boundary. Then, the morphism ‹ΥC(M) → ‹ΨC(M) is an equiva-
lence.

Proof. As usual, we consider the commutative diagram with Cartesian squares

X◦ × T◦X(C)
j
//

q′′

��

Df[X(C)

q′

��

N◦X(C)i
oo

q
��

X◦
j

// X C.i
oo

By Corollary 3.49, q′′∗M is logarithmic at the boundary of Df[X(C). It follows that the obvious
morphism

j∗(UT◦X(C)) ⊗ j∗1 j∗(q′′∗(M))→ j∗(UT◦X(C) ⊗ q′′∗(M)) (3.16)
is an equivalence, since it can be identified with the equivalence

Hom j∗1( j∗(q′′∗(M∨)), j∗(UT◦X(C))) ' j∗Hom(q′′∗(M∨),UT◦X(C)).

Applying i∗ to the morphism in (3.16), we deduce an equivalence‹ΨC(M) ' ‹ΨC(1) ⊗i∗ j∗1 i∗ j∗(q′′∗(M)). (3.17)

Arguing similarly with LT◦X(C) instead of UT◦X(C), we also obtain an equivalence‹ΥC(M) ' ‹ΥC(1) ⊗i∗ j∗1 i∗ j∗(q′′∗(M)). (3.18)

The result follows now from Corollary 3.36. �

Definition 3.54. Let X be a regularly stratified S -scheme and M ∈ H(X◦) dualizable. We say
that M is tame at the boundary of X if, locally for the Kummer log étale topology on X, M is
logarithmic at the boundary of X.

Theorem 3.55. Let X be a regularly stratified S -scheme, and let M ∈ H(X◦) be dualizable and
tame at the boundary of X.

(i) Let C be a stratum of X. Then ‹ΨC(M) ∈ H(N◦X(C)) is dualizable and tame at the boundary
of NX(C). Moreover, the restriction of ‹ΨC to 〈M〉⊗ is monoidal.

(ii) Let C0 � C1 be strata of X. Let E ⊂ NX(C0) be the largest stratum over C1 ⊂ C0 relative
to the projection NX(C0) → C0. The natural morphism ‹ΨC1(M) → ‹ΨE ◦

‹ΨC0(M) is an
equivalence. (See Proposition 3.38.)

Proof. Since the problem is local for the Kummer log étale topology on X, we may reduce to the
case where M is logarithmic at the boundary of X. In this case, the theorem follows by combining
Propositions 3.52 and 3.53. �

Definition 3.56. Let X be a stratified S -scheme. An object M ∈ H(X) is said to be constructible
(resp. ind-constructible) if M|C ∈ H(C) is dualizable (resp. ind-dualizable) for every stratum
C ⊂ X. We denote by Hct(X) (resp. Hict(X)) the full sub-∞-category of H(X) spanned by the
constructible (resp. ind-constructible) objects. We note that the ∞-category Hict(X) is equivalent
to the indization of Hct(X).
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Definition 3.57. Let X be a regularly stratified S -scheme, and U ⊂ X an open stratum of X. We
denote by Htame(U/X) (resp. Hlog(U/X)) the full sub-∞-category of H(U) spanned by dualizable
objects which are tame (resp. logarithmic) at the boundary of X. We also denote by Hitame(U/X)
(resp. Hilog(U/X)) for the full sub-∞-category of H(U) generated under colimits by Htame(U/X)
(resp. Hlog(U/X)). If X is understood and there is no risk of confusion, we simply write Htame(U)
and Hitame(U) (resp. Hlog(X) and Hilog(X)).

Definition 3.58. Let X be a regularly stratified S -scheme, and U ⊂ X a constructible open sub-
scheme.

(i) An object M ∈ H(U) is said to be tamely constructible (resp. logarithmically constructible)
with respect to X if M|C ∈ H(C) is dualizable and tame (resp. dualizable and logarithmic)
at the boundary of C for every stratum C ⊂ U. (Here the closure C is taken in X.) We
denote by Hct-tm(U/X) (resp. Hct-log(U/X)) the full sub-∞-category of H(U) spanned by
the tamely (resp. logarithmically) constructible objects. When X is understood and there
is no risk of confusion, we sometimes write simply Hct-tm(U) (resp. Hct-log(U)); this is for
instance systematically used when U = X.

(ii) We denote by Hict-tm(U/X) (resp. Hict-log(U/X)) the full sub-∞-category of H(U) generated
under colimits by the objects of Hct-tm(U/X) (resp. Hct-log(U/X)). Objects in Hict-tm(U/X)
(resp. Hict-log(U/X)) are said to be tamely (resp. logarithmically) ind-constructible. When
X is understood and there is no risk of confusion, we sometimes write Hict-tm(U) (resp.
Hict-log(U)); this is for instance systematically used when U = X.

Remark 3.59. The sub-∞-categories Hict(−) ⊂ H(−) are stable under tensor product and pullback
along morphisms of stratified S -schemes. In particular, we obtain a CAlg(PrL)-valued presheaf

Hict(−)⊗ : (Sch-Σ/S )op → CAlg(PrL).

Similarly, letting (Sch-Σ/S )op
open be the category of constructible open immersions of regularly strat-

ified S -schemes, we obtain two CAlg(PrL)-valued presheaves

Hict-log(−/−)⊗ and Hict-tm(−/−)⊗ : (Reg-Σ/S )op
open → CAlg(PrL).

(This relies on Corollary 3.49.)

Proposition 3.60. Let X be a regularly stratified S -scheme, U ⊂ X a constructible open subscheme
and Y ⊂ X a regular constructible locally closed subscheme. We form the Cartesian square

V
j′
//

i′

��

Y

i
��

U
j
// X.

Assume that V is dense in Y. Then, for any M ∈ Hict-tm(U/X), the natural morphism

i∗ j∗M → j′∗i
′∗M

is an equivalence.

Proof. Without loss of generality, we may assume that X and Y are connected. The question is
local on X for the étale topology. Thus, we may assume that M = e′∗M

′, where e : X′ → X is a
finite Kummer log étale morphism, e′ : U′ → U its base change and M′ ∈ Hct-log(U′/X′). Using
the finite base change theorem, we are reduced to treat the case where M is itself logarithmically
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constructible. We may even assume that M = ιC, ∗N, where C ⊂ X is a stratum contained in U,
ιC : C → U its inclusion and N ∈ H(C) dualizable and logarithmic at the boundary of C. If C is
disjoint from Y or U, there is nothing to prove. Thus, we may assume that C ⊂ U and that C∩Y , ∅.
Since X is regularly stratified, this actually implies that Y ⊂ C. Thus, we may replace X with C
and assume that C = X◦. We now write u : X◦ → X and v : Y◦ → Y for the obvious inclusions. We
see that it is enough to show that the morphism i∗u∗N → v∗v∗i∗u∗N is an equivalence. Now, recall
that the u∗1-module u∗N is dualisable. It follows that the i∗u∗1-module i∗u∗N is also dualisable.
Using [Ayo07b, Théorème 3.3.10] in the case of the canonical specialisation system (in the sense
of [Ayo07b, Exemple 3.1.4]), we obtain an equivalence of commutative algebras i∗u∗1 ' v∗v∗i∗u∗1.
Since v∗v∗i∗u∗1 is dualizable as a v∗1-module, we deduce that i∗u∗N is a dualizable v∗1-module.
We conclude using Lemma 3.45. �

Corollary 3.61. Let X be a regularly stratified S -scheme and C ⊂ X a stratum. We denote by
j : X◦ → X and j′ : N◦X(C) → NX(C) the obvious inclusions. Then, we have commutative squares
of∞-categories

Hict-log(X◦)
Υ̃C
//

j∗
��

Hict-log(N◦X(C))

j′∗
��

and

Hict-tm(X◦)
Ψ̃C
//

j∗
��

Hict-tm(N◦X(C))

j′∗ j′∗

��

Hict-log(X)
Υ̃C
// Hict-log(NX(C)), Hict-tm(X)

Ψ̃C
// Hict-tm(NX(C)).

The same holds true if we replace j∗ and j′∗ with j! and j′! respectively. (In the squares above,
logarithmic and tame constructibility is taken relatively to X and NX(C).)

Proof. This follows immediately from Proposition 3.60 applied to DfX(C) and well-chosen open
and locally closed subschemes. �

Corollary 3.62. Let X be a regularly stratified S -scheme, Y ⊂ X a regular locally closed con-
structible subscheme, C a stratum of X and D a stratum of Y. We assume that D is open in Y ∩ C.
Let i : Y → X and i′ : NY(D) → NX(C) be the obvious inclusions. Then, we have commutative
squares of∞-categories

Hict-log(X)

Υ̃C
��

i∗
// Hict-log(Y)

Υ̃D
��

and

Hict-tm(X)

Ψ̃C
��

i∗
// Hict-tm(Y)

Ψ̃D
��

Hict-log(NX(C)) i′∗
// Hict-log(NY(D)), Hict-tm(NX(C)) i′∗

// Hict-tm(NY(D)).

Moreover, if Y ⊂ X is closed, the above squares are right adjointable.

Proof. This follows immediately from Proposition 3.60 applied to DfX(C) and well-chosen open
and locally closed subschemes. �

Theorem 3.63. Let X be a regularly stratified S -scheme.

(i) Let C be a stratum of X. The functors ‹ΥC and ‹ΨC restrict to symmetric monoidal functors

Hict-log(X)⊗
Υ̃C
−−→ Hict-log(NX(C))⊗ and Hict-tm(X)⊗

Ψ̃C
−−→ Hict-tm(NX(C))⊗. (3.19)
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(ii) Let C0 � C1 be strata of X. Let E ⊂ NX(C0) be the largest stratum over C1 ⊂ C0 relative
to the projection NX(C0) → C0. The natural transformations in Proposition 3.38 induce
commutative triangles of symmetric monoidal functors

Hict-log(X)⊗
Υ̃C0
//

Υ̃C1 ((

Hict-log(NX(C0))⊗

Υ̃E
��

Hict-tm(X)⊗
Ψ̃C0
//

Ψ̃C1 ((

Hict-tm(NX(C0))⊗

Ψ̃E
��

Hict-log(NX(C1))⊗, Hict-tm(NX(C1))⊗.

Proof. The ∞-category Hict-tm(X) is generated under colimits by objects of the form ιE, !M where
E ⊂ X is a stratum, and M ∈ H(E) is dualizable and tame at the boundary of E. Thus, using
Corollaries 3.61 and 3.62, we are reduced to prove the Theorem with Hict-tm(X) replaced with its
sub-∞-category spanned by objects of the form u!M, with u : X◦ → X the obvious inclusion and
M ∈ H(X◦) dualizable and tame at the boundary of X. Using Corollarie 3.61 again, the result
follows from Theorem 3.55. (The case of ‹Υ is similar; one uses Proposition 3.52 instead.) �

In the remainder of this subsection, we consider the notions of logarithmicity and tameness at
the boundary in the Betti realisation, and more generally for sheaves in the classical topology on
complex varieties. We fix a commutative ring spectrum Λ ∈ CAlg(Sp).

Lemma 3.64. Let D be a 1-dimension complex open disc, o ∈ D its center and D∗ = D r {o}. Let
n ≥ 0 be an integer and denote by q : (D∗)n → pt the obvious projection. The functor

q̃∗ : Perfq∗Λ → LS((D∗)n; Λ), (3.20)

sending a perfect q∗Λ-module M to q∗M⊗q∗q∗Λ Λ, is fully faithful with image the stable idempotent
complete full sub-∞-category of LS((D∗)n; Λ) generated by the constant local system Λcst.

Proof. This is immediate. �

Definition 3.65. We denote by LS((D∗)n; Λ)un the essential image of the functor q̃∗ in (3.20). A
local system over (D∗)n which belongs to LS((D∗)n; Λ)un is said to be unipotent.

Proposition 3.66. Let D be a 1-dimension complex open disc, o ∈ D its center and D∗ = D r {o}.
Let n ≥ 0 be an integer and denote by j : (D∗)n → Dn the obvious inclusion. Let L be a local
system of Λ-modules on (D∗)n. The following conditions are equivalent.

(i) The j∗Λ-module j∗L is dualizable.
(ii) The local system L is unipotent.

Proof. The implication (ii)⇒ (i) is obvious, so we only need to show that (i) implies (ii). We split
the proof in two parts. In the first part, we treat the case n = 1. In the second part, we treat the
general case by induction on n.

Part 1. Let L be a local system on D∗ such that the j∗Λ-module j∗L is dualizable. Let i : o → D
be the complement of j, and let q : D∗ → pt be the obvious projection. Since L is a local system,
we have an equivalence q∗L ' i∗ j∗L. (Indeed, there is a cofinal system of deleted neighbourhoods
of o whose cohomology with values in L is precisely q∗L.) Since i∗ is monoidal, we deduce that
q∗L is a dualizable q∗Λ-module. We define a new local system L′ on D∗ by

L′ = cofib(q∗q∗L ⊗q∗q∗Λ Λ→ L).
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The local system L0 = q∗q∗L ⊗q∗q∗Λ Λ is unipotent by definition, so that we are left to show that
L′ is unipotent. Since q̃∗ is fully faithful (by Lemma 3.64), the unit morphism id → q̃∗q̃∗ is an
equivalence. This implies that the morphism L0 → L induces an equivalence q∗L0 ' q∗L. Thus,
we may replace L with L′ and assume that q∗L ' 0. As explained above, this is equivalent to the
condition that i∗ j∗L ' 0. Arguing as in the proof of Proposition 3.47, we see that this property
holds true for any object in 〈L〉⊗. In particular, we see that q∗(L⊗Λ L∨) ' 0. Thus, the coevaluation
morphism Λ→ L ⊗Λ L∨ is necessarily zero, and this implies that L ' 0.

Part 2. Here we assume that n ≥ 2 and that the implication (i)⇒ (ii) is known for n − 1. Consider
the commutative diagram

Dn−1 × D∗ //

q

��

Dn−1 × D

p

��

(D∗)n−1 × D∗
j′
//

q′ ''

j′′′
66

(D∗)n−1 × D

p′

��

77

(D∗)n−1 j′′
// Dn−1.

By assumption, the j′∗Λ-module j′∗L is dualizable. Thus, by Step 1, we have an equivalence

q′∗q′∗L ⊗q′∗q′∗Λ Λ
∼
−→ L. (3.21)

Set L′ = q′∗L considered as an object of LS((D∗)n−1; q′∗Λ). We claim that L′ satisfies the property
(i) of the statement, i.e., that j′′∗ L′ is a dualizable j′′∗ q′∗Λ-module. (Note that q′∗Λ ' Λ ⊕ Λ[−1]
is a constant sheaf of commutative ring spectra on (D∗)n−1.) To prove this, we note that we have
an equivalence j′′∗ q′∗Λ ' q∗ j′′′∗ Λ. Moreover, by a relative version of Lemma 3.64, we have a fully
faithful symmetric monoidal functor

q̃∗ : Sh(Dn−1; q∗ j′′′∗ Λ)→ Sh(Dn−1 × D∗; j′′′∗ Λ).

Thus, it is enough to show that q̃∗ j′′∗ L′ is dualizable. We have a chain of equivalences

q̃∗ j′′∗ L′
(1)
' q∗ j′′∗ L′ ⊗q∗q∗ j′′′∗ Λ j′′′∗ Λ
(2)
' j′′′∗ q′∗L′ ⊗ j′′′∗ q′∗q′∗Λ j′′′∗ Λ
(3)
' j′′′∗ q′∗L′ ⊗q∗q∗Λ Λ
(4)
' j′′′∗ (q′∗q′∗L ⊗q′∗q′∗Λ Λ)
(5)
' j′′′∗ L,

where (1) is by definition, (2) by the smooth base change theorem, (3) follows from the obvious
equivalence j′′′∗ q′∗q′∗Λ ' j′′′∗ Λ⊗Λ q∗q∗Λ, (4) is given by the projection formula and (5) follows from
the equivalence in (3.21). Our claim follows now since j′′′∗ L is dualizable over j′′′∗ Λ by assumption.
This said, we may apply the induction hypothesis to L′ to deduce that it is unipotent as a local
system of q′∗Λ-modules on (D∗)n−1. We conclude using again the equivalence in (3.21). �

Lemma 3.67. Let D be a 1-dimension complex open disc, o ∈ D its center and D∗ = D r {o}. Fix
an integer n ≥ 0, and let γ1, . . . , γn be the generators of the fundamental group π1((D∗)n, x) ' Zn

at some base point x. Let L be a local system on (D∗)n.
(i) If L is unipotent, then the γi’s act unipotently on Lx.
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(ii) When Λ is an ordinary regular ring, the converse is also true: L is unipotent if and only if
the γi’s act unipotently on Lx.

Proof. Part (i) follows immediately from the fact that Lx, as a Λ-module with an action by Zn, is
a successive extension of Λ endowed with the trivial action of Zn. If Λ is regular, the ordinary
sheaves Hi(L) are also local systems. Thus, to prove the converse when Λ is regular, we may
assume that L is an ordinary local system. Since a finite type ordinary Λ-module with a unipotent
action by Zn is a successive extension of finite type ordinary Λ-modules with a trivial action, we
reduce to the case of a constant sheaf, which is clear. �

Definition 3.68. A local system of Λ-modules L over (D∗)n is said to be quasi-unipotent if there
is a finite étale cover of the form e : (D′∗)n → (D∗)n such that e∗L is unipotent. We denote
by LS((D∗)n; Λ)qun the full sub-∞-category of LS((D∗)n; Λ) spanned by the quasi-unipotent local
systems.

More generally, we make the following definition.

Definition 3.69. Let W be a smooth complex variety and W◦ ⊂ W an open subset. We assume
that every point of W admits a neighbourhood U such that the pair (U,U ∩ W◦) is isomorphic to
a pair of the form (Dn, (D∗)m × Dn−m) for some integers 0 ≤ m ≤ n. (Said differently, W r W◦

is locally a normal crossing divisor on W.) A local system L on W◦ is said to be quasi-unipotent
(resp. unipotent) near the boundary of W if for every U as above the local system L|U∩W◦ is quasi-
unipotent (resp. unipotent).

We now fix a base field k endowed with a complex embedding σ : k ↪→ C.

Proposition 3.70. Let X be a smoothly stratified k-variety, and let L ∈ LS(X◦; Λ) be a local system.
Then, L is tame (resp. logarithmic) at the boundary of X if and only if it is quasi-unipotent (resp.
unipotent) near the boundary of Xan.

Proof. The equivalence between logarithmicity at the boundary of X and unipotence near the
boundary of Xan is clear using the characterisation (iii) in Proposition 3.47 and Proposition 3.66.
Indeed, with j : X◦ → X the obvious inclusion, the property that the j∗Λ-module j∗L is dualizable
is local on Xan for the analytic topology.

It follows readily from the respective case that if L is tame at the boundary of X then it is also
quasi-unipotent near the boundary of Xan. For the converse, assume that L is quasi-unipotent near
the boundary of Xan. Let (Ui)i∈I be an analytic cover of Xan such that the pairs (Ui,Ui ∩ X◦, an) are
isomorphic to (Dn, (D∗)m × Dn−m) for some integers 0 ≤ m ≤ n. For every i ∈ I, we fix a finite
cover ei : U′i → Ui, unramified over U◦i = Ui ∩ X◦, an and such that e◦, ∗i L|U◦ is unipotent. (Here, we
write e◦i : U′◦i → U◦i for the finite étale cover obtained from ei by base change.) We let di be the
degree of ei, which we assume to be minimal. Let C be a stratum of X. For the Ui’s intersecting
Can, it is easy to see that the numbers di’s are the same. Thus, we may find a Kummer log étale
cover e : X′ → X such that X′an ×Xan Ui dominates U′i whenever Ui intersects Can. Since X admits
finitely many strata, we can actually assume that X′an ×Xan Ui dominates U′i for every i ∈ I. Letting
e◦ : X′◦ → X◦ be the base change of e, it follows that e′◦, ∗L is unipotent near the boundary of X′an,
and thus logarithmic at the boundary of X′ as needed. �

Theorem 3.71. Assume that Λ is connective. Let X be a smoothly stratified k-variety, and let
L ∈ LSgeo(X◦; Λ) be a local system of geometric origin. Then L is tame at the boundary of X.

Proof. We split the proof in two steps. In the first step, we treat the case Λ = Z which is essentially
well-known. In the second step, we explain how to treat the general case.
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Step 1. Here we assume that Λ = Z. In this case, it is enough to treat the case where L is an
ordinary local system. Using Lemma 3.67(ii) and Proposition 3.70, we only need to check that the
action of loops around 1-codimensional strata in X act quasi-unipotently on the fibers of L. For
this, it is enough to show that for every morphism i : E → X from a smooth curve E transversal
to X r X◦, the local system i◦, ∗L is tame at the boundary of E. (As usual, i◦ : E◦ → X◦ is the
base change of i.) Said differently, we are reduced to the case where X itself is a smooth curve.
We may even assume that X is affine and X◦ = X r o for some rational point o ∈ X. We may
also replace X with the pro-system of open neighbourhoods of o. In this case, the result follows
immediately from the Grothendieck local monodromy theorem (see [SGA72a, Exposé I, Corollaire
3.4] or [Ill94, Théorème 2.1.2]) and the definition of constructible sheaves of geometric origin (see
Definition 1.88(i)).

Step 2. Here we explain how to deduce the general case from the case Λ = Z. We start by treating
the case where Λ is a general ordinary commutative ring. In this case, by Corollary 1.106(ii), we
have an equivalence of∞-categories

ModΛ(L̂Sgeo(X◦;Z)) ' L̂Sgeo(X◦; Λ).

It follows that the stable idempotent complete ∞-category LSgeo(X◦; Λ) is generated by the image
of the functor − ⊗Z Λ : LSgeo(X◦;Z) → LSgeo(X◦; Λ). Thus, the property that every object of
LSgeo(X◦; Λ) is tame follows from the first step.

We now assume that Λ is any connective commutative ring spectrum. Let L ∈ LSgeo(X◦; Λ)
and let L′ = L ⊗Λ π0Λ considered as an object of LSgeo(X◦; π0Λ). By the previous discussion, we
know that L′ is tame at the boundary of X. Thus, replacing X by a Kummer log étale cover, we
may assume that L′ is logarithmic at the boundary of X. In this case, we will show that L is also
logarithmic at the boundary of X using the characterisation (i) in Proposition 3.47. Let C ⊂ X be a
stratum. We have a commutative square of right-lax symmetric monoidal functors

〈L〉⊗
Υ̃C

//

−⊗Λπ0Λ

��

Shgeo(N◦X(C); Λ)⊗

−⊗Λπ0Λ

��

〈L′〉⊗
Υ̃C
// Shgeo(N◦X(C); π0Λ)⊗

where the lower horizontal arrow is monoidal and the vertical arrows are monoidal and conserva-
tive. This implies that the upper horizontal arrow is monoidal as needed. �

Corollary 3.72. Assume that Λ is connective. Let X be a smoothly stratified k-variety.

(i) Let C be a stratum of X. The functor ‹ΨC restricts to a symmetric monoidal functor‹ΨC : L̂Sgeo(X◦; Λ)⊗ → L̂Sgeo(N◦X(C); Λ)⊗. (3.22)

(ii) Let C0 � C1 be strata of X. Let E ⊂ NX(C0) be the largest stratum over C1 ⊂ C0 relative
to the projection NX(C0) → C0. The natural transformation in Proposition 3.38 induces a
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commutative triangle of symmetric monoidal functors

L̂Sgeo(X◦; Λ)⊗
Ψ̃C0
//

Ψ̃C1 ((

L̂Sgeo(N◦X(C0); Λ)⊗

Ψ̃E
��

L̂Sgeo(N◦X(C1); Λ)⊗.

Proof. This follows immediately from Theorems 3.55 and 3.71, or directly from Theorem 3.63. �

3.4. Some∞-categorical constructions.
Here we gather some general∞-categorical constructions needed in Subsection 3.5 for building

a highly structured formalism of monodromic specialisations for tamely constructible sheaves.
These constructions are rather tedious and technical. We recommend the reader who is willing to
assume the existence of a lax 2-functor as described in Remark 3.98 below (or to supply his own
construction of such a lax 2-functor), to skip this subsection and go directly to Subsection 3.5.

Construction 3.73. Let C be an ∞-category admitting pushouts, and let p : Ξ→ C be a coCarte-
sian fibration. For u : A → B in C, we denote by u! : ΞA → ΞB the induced functor on the fibers
of p. We assume that p is also a Cartesian fibration, i.e., that u! admits a right adjoint u! for every
morphism u in C. Consider the coCartesian fibrations

p′ : Ξ′ = C∆1
×ev0,C Ξ→ C∆1

and p′′ : Ξ′′ = C∆1
×ev1,C Ξ→ C∆1

(3.23)

obtained from p by base change. (Here, for i ∈ {0, 1}, evi : C∆1
→ C denotes the evaluation functor

at the point i ∈ ∆1.) The obvious natural transformation θ : ev0 → ev1 induces a morphism of
coCartesian fibrations

Ξ′
θ!

//

p′ !!

Ξ′′

p′′}}

C∆1
.

(3.24)

The fiber of θ! at a morphism u : A→ B, considered as an object of C∆1
, is the functor u!. Thus, by

[Lur17, Proposition 7.3.2.6], θ! admits a relative right adjoint θ!. The endofunctor θ!θ! of Ξ′ gives
rise to a commutative triangle of∞-categories

C∆1
×ev0,C Ξ

Θ0
//

ev0◦p′
%%

Ξ

p
��

C.

(3.25)

We set E0 = C∆1
and write e0 : E0 → C for the functor ev0. Thus, the diagram in (3.25) can be

considered as a morphism

Θ0 : E0 ×C Ξ→ Ξ (3.26)

in the ∞-category CAT∞/C. Since C admits pushouts, we see that e0 is a coCartesian fibration
classified by the functor C−/ : C → CAT∞. The projection e0 admits a section s0 : C → E0 sending
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an object A of C to the initial object of CA/. It follows immediately from [Lur17, Proposition
7.3.2.5] and the construction that there is a commutative triangle

C ×C Ξ
(s0,idΞ)

//

∼
''

E0 ×C Ξ

Θ0
��

Ξ

(3.27)

in the∞-category CAT∞/C.

Remark 3.74. The functor Θ0 in (3.26) admits the following informal description. An object of
E0 ×C Ξ is a pair ( f : A→ B,M), where f is a morphism in C and M is an object of ΞA. To such a
pair, the functor Θ0 associates the object f ! f!M of Ξ. A morphism

( f : A→ B,M)→ (g : C → D,N)

in E0 ×C Ξ, corresponding to a commutative square

A
f
//

u
��

B
v
��

C
g
// D

and a morphism u!M → N in ΞC, is sent by Θ0 to the composition of

u! f ! f!M → g!v! f!M ' g!g!u!M → g!g!N.

Construction 3.75. Keep the notations and assumptions from Construction 3.73. Recall that the
endofunctor of CAT∞/C given by fiber product with a coCartesian fibration over C admits a right
adjoint. In particular, we have an ∞-category EndFunC(Ξ) in CAT∞/C obtained by taking the
internal hom of Ξ with itself. An n-simplex of this ∞-category is a pair consisting of a functor
∆n → C and an endofunctor of ∆n ×C Ξ respecting the projection to ∆n. In fact, by [Lur17,
Corollary 4.7.1.40], EndFunC(Ξ) underlies a monoid object EndFunC(Ξ) c© in CAT∞/C, acting on Ξ

on the left, and where multiplication is given by composition. The functor Θ0 in (3.26) gives rise
to a functor Θ′0 : E0 → EndFunC(Ξ) over C. From the commutative triangle in (3.27), we deduce
that the composition of

C
s0
−→ E0

Θ′0
−−→ EndFunC(Ξ) (3.28)

is the identity morphism of the monoid object EndFunC(Ξ) c©. Said differently, we may view Θ′0 as
a morphism of E0-algebras in the symmetric momoidal ∞-category CAT×∞/C. By [Lur17, Proposi-
tions 3.1.3.2 & 3.1.3.3], Θ′0 extends uniquely to a morphism of monoids

Θ′ : E⊗ → EndFunC(Ξ) c©, (3.29)

where E⊗ is the free E1-algebra object associated to the E0-algebra object E0. Moreover, the under-
lying∞-category E of E⊗ admits the following description. Let Ě• be the semi-cosimplicial object
in CAT∞/C given in degree n by

Ěn =

n+1 times︷             ︸︸             ︷
E0 ×C . . . ×C E0
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and where the i-th coface map Ěn → Ěn+1, for 0 ≤ i ≤ n + 1, is given by inserting the section s0 at
the i-th place. Then

E = colim
[n]∈∆′

Ěn '

(∫
[n]∈∆′

Ěn

)
[W−1

cocart]

is the localisation of the domain of the coCartesian fibration classified by Ě• with respect to the
coCartesian edges. In particular, we see immediately that the projection e : E → C is a coCartesian
fibration whose fiber at A ∈ C is the free monoid associated to the E0-algebra object CA/ in CAT∞.
By adjunction, the functor Θ′ in (3.29) gives rise to a commutative triangle

E ×C Ξ
Θ

//

##

Ξ

p
��

C.

(3.30)

The functor Θ underlies a left E⊗-module structure on Ξ in CAT×∞/C.

Remark 3.76. Objects of the ∞-category Ěm are families ( fi : A → Ci)0≤i≤m of morphisms in C

emanating from a single object. It follows that
∫
∆′
Ě has the following informal description:

• objects are pairs ([m], ( fi : A→ Ci)0≤i≤m) where the fi’s are morphisms in C;
• a morphism

(r, u, (vi)0≤i≤m) : ([m], ( fi : A→ Ci)0≤i≤m)→ ([n], (g j : B→ Di)0≤ j≤n)

between two such pairs consists of a strictly increasing map r : [m] → [n], a morphism
u : A→ B, a family of morphisms (vi : Ci → Dr(i))0≤i≤m and commutative squares

A
fi
//

u
��

Ci

vi

��

B
gr(i)
// Dr(i).

The category E is obtained from the previous one by localising with respect to those morphisms
(r, u, (vi)0≤i≤m) as above, such that u, the vi’s, for 0 ≤ i ≤ m, and the g j’s, for j < r([m]), are all
equivalences. The tensor product

([m], ( fi : A→ Ci)0≤i≤m) ⊗ ([n], (gi : A→ D j)0≤ j≤n)

in E⊗A is given by ([m + n + 1], ( fi)0≤i≤m t (gi−m−1)m+1≤i≤m+n+1). Finally, the left action of a pair
([m], ( fi : A→ Ci)0≤i≤m) on ΞA takes an object M to the object f !

0 f0, ! ◦ . . . ◦ f !
m fm, !M.

Remark 3.77. In order to fix ideas, we explicitly state our conventions concerning monoids and
their actions. Recall that a monoid object in an ∞-category with finite products is a simplicial
object M• such that M0 is a final object and, for every m ≥ 1, the morphism Mm →

∏m
i=1 M1,

induced by the inclusions {i − 1, i} ⊂ {0, . . . ,m}, is an equivalence. The object M1 is called the
underlying object; it is endowed with the multiplication given by the composition of

M1 × M1
(d0,d2)−1

−−−−−−→ M2
d1
−→ M1.

Note that we use the equivalence (d0, d2) instead of (d2, d0) for compatibility with the nerve con-
struction. (In this way, if M is an ordinary monoid, the nerve of the ordinary category associated to
M gives back the multiplication of M using the above composition.) Similarly, a left action of the
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monoid M• is a morphism of simplicial objects a• : X• → M• such that, for m ≥ 1, the morphism
(i0, am) : Xm → X0 × Mm, where i0 : {0} ↪→ {0, . . . ,m} is the obvious inclusion, is an equivalence.
The underlying object of X• is X0. The left action of M1 on X0 in the homotopy category is the
composition of

M1 × X0
(a1,d1)−1

−−−−−−→ X1
d0
−→ X0.

A right action of M• is defined similarly: instead if i0 one uses the inclusions im : {0} ↪→ {0, . . . ,m}
with image m.

We need to express the outcome of Construction 3.75 using the language of (∞, 2)-category.
There are several ways to convey the idea of what an (∞, 2)-category is ought to be; see [Lur09b,
Theorem 0.0.3] for a comparison between some of the different approaches. Here, we choose to
work with the following definition (as in [GR17, Chapter 10, §2.1]).

Definition 3.78.
(i) A category object in CAT∞ is a simplicial object D• in CAT∞ such that, for every m ≥ 2,

the obvious functor

Dm →

m times︷                 ︸︸                 ︷
D1 ×D0 . . . ×D0 D1,

induced by the inclusions {i − 1, i} ⊂ {0, . . . ,m}, for 1 ≤ i ≤ m, is an equivalence.
(ii) A Segal∞-category is a category object D• in CAT∞ such that D0 is an∞-groupoid.

(iii) A Segal ∞-category D• is said to be complete if it is local with respect to the morphism
of simplicial ordinary discrete categories N•({0}) ↪→ N•({0 � 1}), where N• denotes the
usual nerve.

A complete Segal∞-category is also called an (∞, 2)-category. We denote by SGL the∞-category
of Segal∞-categories and by cSGL its full sub-∞-category spanned by the complete ones.

Remark 3.79. The condition for a Segal ∞-category D• to be complete depends only on the un-
derlying Segal space D'• . In fact, a Segal ∞-category D• is complete if and only if its underlying
Segal space D'• is complete in the sense of Rezk [Rez01, §6]. Since the ∞-category of Segal
∞-categories is presentable, the obvious inclusion admits a left adjoint c : SGL→ cSGL.

Example 3.80.
(i) Let C be an∞-category. We define a Segal space Seg•(C) by the formula

Seg•(C) = MapCAT∞([•],C).

It is easy to see that Seg•(C) is complete and thus defines an (∞, 2)-category where every
2-morphism is invertible.

(ii) Let E⊗ be a monoidal ∞-category. Being a monoid object in CAT∞, E⊗ is a category
object in CAT∞. Since E⊗[0] = ?, we see that E⊗ is a Segal ∞-category which is however
incomplete in general. We think of the associated complete Segal ∞-category c(E⊗) as the
(∞, 2)-category with one object having E⊗ as its∞-category of endomorphisms.

The following construction generalises both (i) and (ii) in Example 3.80.

Construction 3.81. Let C be an∞-category and E⊗ → C×∆op be a coCartesian fibration defining
a monoid object in CAT∞/C. (For example, C and E⊗ can be as in Construction 3.75.) Our goal is to
associate to E⊗ an (∞, 2)-category endowed with a functor to C whose fiber at A ∈ C is equivalent
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to the (∞, 2)-category associated to the monoidal∞-category E⊗A as in Example 3.80(ii). For m ≥ 0,
we denote by [̃m] the poset

[̃m] = {(i, j); 0 ≤ i ≤ j ≤ m}
ordered by (i, j) ≤ (i′, j′) if i′ ≤ i ≤ j ≤ j′. We have a functor [̃m] → [m], given by (i, j) 7→ j,
which is a coCartesian fibration. For n ≥ 0, we set

Gn =

(∫
[m]→[n]∈∆/[n]

[̃m]
op
)op

.

Explicitly, an object of Gn is a pair ([m]→ [n], (i, j)) with (i, j) ∈ [̃m]. A morphism

r : ([m]→ [n], (i, j))→ ([m′]→ [n], (i′, j′)) (3.31)

in Gn is a morphism r : [m′] → [m] in ∆/[n] such that (i, j) ≤ (r(i′), r( j′)) in the poset [̃m]. In
particular, we have an obvious functor Gn → [n] sending ([m]→ [n], (i, j)) to the image of j in [n].
This defines a cosimplicial category G• endowed with a cosimplicial functor G• → [•]. Consider
the simplicial∞-category R•(E/C) given by

R•(E/C) = Fun(G•,E⊗) ×Fun(G•,C) Fun([•],C).

Thus, the objects of Rn(E/C) are the commutative squares of∞-categories

Gn B
//

��

E⊗

��

[n] A
// C.

(3.32)

We define a simplicial ∞-category Seg•(E/C) by specifying sub-∞-categories of the Rn(E/C)’s.
To do so, we note that there is a functor gn : Gn → ∆op sending a pair ([m]→ [n], (i, j)) to [i] and a
morphism r as in (3.31) to the map r|[i′] : [i′] → [i] considered as an arrow in ∆op. A commutative
square as in (3.32) belongs to Segn(E/C) if the following condition is satisfied.

(?) The following triangle is commutative

Gn B
//

gn
""

E⊗

��

∆op.

Moreover, the functor B sends every morphism in Gn to a coCartesian edge of E⊗ with
respect to the coCartesian fibration E⊗ → C × ∆op.

A morphism (A, B)→ (A′, B′) in Rn(E/C) between two squares as in (3.32) satisfying the condition
(?) belongs to Segn(E/C) if for every 0 ≤ j ≤ n, the induced map A( j) → A′( j) in C is an
equivalence. By Lemma 3.82 below, Seg•(E/C) is a Segal∞-category. Its completion cSeg•(E/C)
is the (∞, 2)-category we set to construct.

Lemma 3.82. The ∞-category Seg0(E/C) is equivalent to the groupoid C'. Moreover, for n ≥ 1
and a functor A : [n]→ C, there is an equivalence of∞-categories

Segn(E/C) ×Segn(C) {A} '
n∏

s=1

EA(s). (3.33)

In particular, Seg•(E/C) is a Segal∞-category.
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Proof. Only the equivalence in (3.33) requires a proof. Let (A, B) be an object of Segn(E/C)
given by a square as in (3.32). From property (?), it follows that B is uniquely determined by its
restriction to ›[n]. Thus the left hand side in (3.33) is equivalent to the ∞-category of coCartesian
sections of

E⊗ ×∆op×C
›[n]→ ›[n], (3.34)

where the base change is with respect to the functor ›[n] → ∆op × C given by (i, j) 7→ ([i], A( j)).
Since the functor ›[n] → ∆op, given by (i, j) 7→ [i], factors through the wide subcategory of inert
morphisms in ∆op, we see that the functor in (3.34) decomposes as a direct product of coCartesian
fibrations E

(s)
A → ›[n], for 1 ≤ s ≤ n, admitting the following description. Let ›[n]s be the full

subcategory of ›[n] spanned by the objects (i, j) with i ≥ s. Then, E(s)
A ×‹[n]

›[n]s coincides with
EA ×[n]

›[n]s, where ›[n]s → [n] is the functor given by (i, j) 7→ j. On the other hand, for (i, j) ∈ ›[n]
with 0 ≤ i < s, the fiber of E(s)

A at (i, j) is the final category. It is immediate to see that a coCartesian
section of E(s)

A →
›[n] is uniquely determined by its value at (s, s), which is an object of EA(s). This

finishes the proof. �

Remark 3.83. The (∞, 2)-category cSeg•(E/C) obtained in Construction 3.81 admits the following
informal description.

(i) Its objects are the objects of C.
(ii) Given two objects A and B, a 1-morphism between A and B in is a pair (E, u) where

u : A→ B is a morphism in C and E is an object of EB.
(iii) A 2-morphism (E, u)→ (E′, u′) between two 1-morphisms as above is a pair consisting of

an equivalence between u and u′ and a morphism E → E′ in EB.
(iv) Composition of two 1-morphisms (E, u) : A → B and (F, v) : B → C is given by the pair

(F ⊗ v!(E), v ◦ u).
In particular, we see that the hypothesis that E⊗ → C×∆op is a Cartesian fibration is directly related
to the associativity of composition of 1-morphisms.

To go further, we introduce the (∞, 2)-category of ∞-categories. We start with some notations
which will be also useful later on.

Notation 3.84. Given a simplicial set S , we denote by CAT∞/S the ∞-category of inner fibra-
tions with codomain S . (When S is an ∞-category, this equivalent to the over ∞-category of ∞-
categories with functors to S .) We denote by CATcart

∞/S (resp. CATcocart
∞/S ) the full sub-∞-categories

of CAT∞/S spanned by the Cartesian (resp. coCartesian) fibrations. We write CATst-cart
∞/S (resp.

CATst-cocart
∞/S ) for the wide sub-∞-category of CATcart

∞/S (resp. CATcocart
∞/S ) where the functors are re-

quired to respect Cartesian (resp. coCartesian) edges. On the other hand, we denote by CATloc-cart
∞/S

(resp. CATloc-cocart
∞/S ) the full sub-∞-categories of CAT∞/S spanned by the locally Cartesian (resp.

locally coCartesian) fibrations.

Definition 3.85. The (∞, 2)-category CAT∞ of ∞-categories is the complete Segal ∞-category
given in degree n by the wide sub-∞-category of CATcart

∞/[n]op defined as follows. Given two Carte-
sian fibrations C → [n]op and D → [n]op, a commutative triangle

C
F

//

!!

D

}}

[n]op
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is a morphism in CAT∞([n]) if F induces equivalences Ci ' Di on the fibers, for every 0 ≤ i ≤ n.

In the remainder of this subsection, we will be concerned with the following problem. Assume
we are given a coCartesian fibration Ξ → C underlying a left E⊗-module in CAT∞/C; construct a
lax 2-functor from cSeg•(E/C) to CAT∞ extending the functor C → CAT∞ associated to Ξ. We
start by explicitly describing the situation we will consider.

Situation 3.86. Let C be an ∞-category, and let E⊗ → C × ∆op be a coCartesian fibration defining
a monoid object in CAT∞/C. Let Ξ → C be a coCartesian fibration endowed with a left module
structure over E⊗ in the∞-category CAT∞/C. Thus, we have a commutative diagram

M //

!!

E⊗ //

��

C × ∆op

zz

∆op,

(3.35)

with the following properties:

(i) the functor M → ∆op is a coCartesian fibration and the functor M → E⊗ preserves co-
Cartesian edges over ∆op;

(ii) M[0] is equivalent to Ξ compatibly with the projection to C;
(iii) for all n ≥ 0, the induced functors

M[n] →M[0] ×C E⊗[n] = Ξ ×C E⊗[n] (3.36)

are equivalences.

(In (3.36), we use the functors i0, ! : M[n] → M[0] corresponding to the obvious inclusions i0 :
[0] ↪→ [n]; see Remark 3.77 for our convention on left actions.)

Remark 3.87. By [Lur09a, Proposition 2.4.2.11], the properties (i) and (iii) in Situation 3.86 imply
that M → E⊗ is a locally coCartesian fibration. For later use, we describe some of the locally
coCartesian edges of M → E⊗. An object of E⊗[n] is a tuple (A, E1, . . . , En) where A ∈ C and Ei ∈ EA.
Let u : A→ B be a morphism in C, and consider the unique morphism ũ : (A, E1, . . . , En)→ (B, ∅)
over u and the map in : [0] → [n] given by in(0) = n. Furthermore, consider an object in M over
(A, E1, . . . , En) given by a tuple (A, X0, E1, . . . , En) where X0 is an object of ΞA. Then, a locally
coCartesian edge over ũ with domain (A, X0, E1, . . . , En) is of the form

(A, X0, E1, . . . , En)→ (B, u!(En ⊗ . . . ⊗ E1 ⊗ X0)). (3.37)

We note also that the commutative triangle

(A, E1, . . . , En)

�� ))

(B, u!(E1) ⊗ . . . ⊗ u!(En)) // (B, ∅)

induces the morphism

(B, u!(En ⊗ . . . ⊗ E1 ⊗ X0))→ (B, u!(En) ⊗ . . . ⊗ u!(E1) ⊗ u!(X0)) (3.38)

which is not an equivalence in general.
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Notation 3.88. Consider the twisted arrow category ∆tw whose objects are maps r : [m] → [n] in
∆ and where a morphism (a, b) : r → r′ from r : [m] → [n] to r′ : [m′] → [n′] is given by a
commutative square

[m] r
// [n]

b
��

[m′] r′
//

a

OO

[n′].

(3.39)

Thus, sending [m] → [n] to [m] (resp. [n]) yields a functor ∆tw → ∆op (resp. ∆tw → ∆) which is a
coCartesian fibration. We will write ∆twop instead of (∆tw)op. Let

H =

(∫
[m]→[n]∈∆twop

[m]
)op

(3.40)

be the codomain of the Cartesian fibration H → ∆tw corresponding to the functor ∆twop → Cat
sending r : [m] → [n] to [m]op. Explicitly, an object of H is a pair (r : [m] → [n], j), with j ∈ [m],
and a morphism

(a, b) : (r : [m]→ [n], j)→ (r′ : [m′]→ [n′], j′) (3.41)

is a pair of maps a : [m′] → [m] and b : [n] → [n′] making the square in (3.39) commutative, and
such that a( j′) ≤ j. We denote by

h : H→ ∆ and k : H→ ∆ (3.42)

the functors sending an object (r : [m] → [n], j) to [[r( j), n]] and [n] respectively. We have an
obvious natural transformation h→ k given by the obvious inclusions [[r( j), n]] ↪→ [n].

Construction 3.89. We work in Situation 3.86. We denote by M′ → ∆ and E′⊗ → ∆ the Cartesian
fibrations which are dual to the coCartesian fibrations M → ∆op and E⊗ → ∆op, i.e., which are
classified by the same functors. (For an explicit construction of the dual Cartesian fibration, see
[BGN18].) We have a commutative diagram

M′ //

!!

E′⊗ //

��

C × ∆

{{

∆,

(3.43)

where the slanted arrows are Cartesian fibrations, and both triangles are morphisms of Cartesian
fibrations. By base change along h : H→ ∆, we obtain a morphism of Cartesian fibrations

M′ ×∆, h H //

$$

E′⊗ ×∆, h H

zz

H.

(3.44)

Moreover, the natural transformation h→ k gives rise to a morphism of Cartesian fibrations

E′⊗ ×∆, k H //

$$

E′⊗ ×∆, h H

zz

H.

(3.45)
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We define the∞-category N′ as the base change of M′ along the composite functor

E′⊗ ×∆, k H→ E′⊗ ×∆, h H→ E′⊗, (3.46)

so to have a Cartesian square of∞-categories

N′ //

��

E′⊗ ×∆, k H

��

M′ ×∆, h H // E′⊗ ×∆, h H.

(3.47)

In particular, we see that the projection N′ → H is a Cartesian fibration. Composing with the
obvious Cartesian fibration H→ ∆tw, we obtain the Cartesian fibration N′ → ∆tw.

Lemma 3.90. Consider the commutative triangle of∞-categories

N′
ρ′

//

!!

E′⊗ ×∆ ∆
tw

yy

∆tw.

(3.48)

The slanted arrows are Cartesian fibrations and the functor ρ′ preserves Cartesian edges over ∆tw.
(Said differently, the triangle in (3.48) is a morphism of Cartesian fibrations.) Given an object
r : [m]→ [n] in ∆tw, we denote by ρr : Nr → E⊗[n] the functor induced on fibers and, if r = id[n], we
write ρ[n] : N[n] → E⊗[n] instead. Then, the following properties are satisfied.

(i) For every r : [m]→ [n] in ∆tw, we have a functor Nr → [m]op and, for every a : [m′]→ [m],
we have an equivalence Nr◦a ' Nr ×[m]op, a [m′]op.

(ii) For every r : [m]→ [n] in ∆tw, the functor ρr : Nr → E⊗[n] is a coCartesian fibration.
(iii) For every morphism (a, b) : r → r′ in ∆tw as in (3.39), the functor (a, b)∗ : Nr′ → Nr takes

a ρr′-coCartesian edge to a ρr-coCartesian edge.
(iv) For (A, E1, . . . , En) an object of E⊗[n], with A ∈ C and E1, . . . , En ∈ EA, the induced functor

(N[n])A,E1,...,En → [n]op is the Cartesian fibration classified by the sequence of functors

ΞA
E1⊗−
−−−−→ ΞA

E2⊗−
−−−−→ . . .

En⊗−
−−−−→ ΞA.

Proof. We only sketch the proof of (ii) and (iii). For (ii), we simply describe the functor induced
by a morphism

(u, e1, . . . , en) : (A, E1, . . . , En)→ (B, F1, . . . , Fn)

where u : A → B is a morphism in C and ei : u!(Ei) → Fi is a morphism in EB. Recall that we
need to specify a functor between the∞-categories

(N[n])A,E1,...,En → (N[n])B,F1,...,Fn .

Informally, an object of the domain is a pair (i, X) where 0 ≤ i ≤ n and X ∈ ΞA. Our functor
takes (i, X) to (i, u!(X)). A morphism ( j, X′) → (i, X) in the domain exists if i ≤ j and corresponds
to a morphism X′ → E j ⊗ . . . ⊗ Ei ⊗ X. Our functor takes such a morphism to a morphism
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( j, u!(X′))→ (i, u!(X)) corresponding to the composition of

u!(X′) // u!(E j ⊗ . . . ⊗ Ei ⊗ X) // u!(E j) ⊗ . . . ⊗ u!(Ei) ⊗ u!(X)

��

u!(F j) ⊗ . . . ⊗ u!(Fi) ⊗ u!(X).

We now check (iii). Assume for simplicity that (a, b) is of the form

(r, id[n]) : id[n] → (r : [m]→ [n]).

In this case, we need to check that the square

(Nr)A,Er(1),...,Er(m)
//

��

(Nr)B,Fr(1),...,Fr(m)

��

(N[n])A,E1,...,En
// (N[n])B,F1,...,Fn

is commutative. This follows immediately form the fact that the vertical arrows are the obvious
functors sending an object (i, X), with 1 ≤ i ≤ m and X ∈ ΞA, to (r(i), X). �

Corollary 3.91. Keep the notations as in Construction 3.89. Let N → ∆twop be the coCarte-
sian fibration which is dual to the Cartesian fibration N′ → ∆tw. Then, we have a morphism of
coCartesian fibrations

N
ρ

//

!!

E⊗ ×∆op ∆twop

xx

∆twop.

(3.49)

Moreover, the functor ρ is a coCartesian fibration.

Construction 3.92. We continue working in Situation 3.86 and keep the notations above. The
coCartesian fibration ρ is classified by a functor

F : E⊗ ×∆op ∆twop → CAT∞

endowed with a natural transformation to the composite functor

E⊗ ×∆op ∆twop → ∆twop ([m]→[n])7→[m]op

−−−−−−−−−−−−→ CAT∞.

Consider the functor p : E⊗ ×∆op ∆twop → E⊗, which is a Cartesian fibration. Let

F̃ : E⊗ → CAT∞

be the right Kan extension of F along p. Using [Lur09a, Proposition 4.3.3.10], we have an equiv-
alences of∞-categories

F̃([n], E1, . . . , En) ' lim
r:[m]→[n]

(Nr)E1,...,En ' (N[n])E1,...,En .

Moreover, there is a natural transformation from F̃ to the composite functor

E⊗ → ∆op [n]7→[n]op

−−−−−−→ CAT∞.

This gives a simplicial functor E⊗• → CAT∞/[•]op which obviously lands in CATcart
∞/[•]op .
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Remark 3.93. If in Situation 3.86 we have C = pt, the functor E⊗• → CAT∞/[•]op obtained in
Construction 3.92 already defines a 2-functor c(E⊗)→ CAT∞. In the general case, we still need to
work a little bit more.

Construction 3.94. We continue working in Situation 3.86 and keep the notations above. We will
also use some notation from Construction 3.81. We have a morphism of coCartesian fibrations‹N ρ̃

//

  

E⊗

}}

∆op

(3.50)

where ρ̃ is the coCartesian fibration classified by the functor F̃ obtained in Construction 3.92.
Consider the obvious evaluation functor Segn(E/C) × Gn → E⊗ and form the Cartesian square

Kn
µ
//

��

Segn(E/C) × Gn

��‹N ρ̃
// E⊗

The functor µ being a coCartesian fibration, we obtain a simplicial functor

Seg•(E/C)→ CATst-cocart
∞/G• .

(See Notation 3.84.) The obvious functor Gn → [n] admits a left adjoint δn : [n] → Gn sending
j ∈ [n] to the object (id[n], (0, j)). Thus, for each n ≥ 0, the functor CATst-cocart

∞/[n] → CATst-cocart
∞/Gn admits

a right adjoint given by pullback along δn. Using [Lur17, Proposition 7.3.2.6], we obtain a relative
right adjoint functor ∫

[n]∈∆op
Segn(E/C)→

∫
[n]∈∆op

CATst-cocart
∞/[n] . (3.51)

It is easy to see that this functor sends an object

O = (A0
u1
−→ A1

u2
−→ . . .

un
−→ An, E1, . . . , En) (3.52)

to the domain of the coCartesian fibration classified by the functor [n]→ CAT∞ sending i ∈ [n] to
the domain of the Cartesian fibration classified by the sequence

ΞAi

ui, !...u2, !(E1)⊗−
−−−−−−−−−−→ ΞAi

ui, !...u3, !(E2)⊗−
−−−−−−−−−−→ . . .

Ei⊗−
−−−→ ΞAi . (3.53)

It follows from this that the functor in (3.51) preserve coCartesian edges over ∆op. Thus, it is
induced by a simplicial functor Seg•(E/C)→ CATst-cocart

∞/[•] . On the other hand, we have a simplicial
equivalence CATst-cocart

∞/[•] ' CATst-cart
∞/[•]op . In this way, we obtain a simplicial functor

Seg•(E/C)→ CATloc-cart
∞/[̂•]op (3.54)

sending the object O in (3.52) to a locally Cartesian fibration with codomain ”[n]op. Restricting
further along the diagonal embedding [•] ↪→ ”[•], given by i 7→ (i, i), we obtain a simplicial functor

Seg•(E/C)→ CATloc-cart
∞/[•]op . (3.55)

Applying [Lur17, Proposition 7.3.2.6] and Lemma 3.95 below, we obtain a relative right adjoint∫
[n]∈∆op

Segn(E/C)→
∫

[n]∈∆op
CATcart

∞/[n]op . (3.56)
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This functor factors through ∫
[n]∈∆op

cSegn(E/C)→
∫

[n]∈∆op
CAT∞([n]) (3.57)

which is the lax 2-functor we set to construct.

Lemma 3.95. For every n ∈ N, the inclusion CATcart
∞/[n] ⊂ CATloc-cart

∞/[n] admits a right adjoint. More-
over, for every r : [m]→ [n] in ∆, the commutative square

CATcart
∞/[n]

//

−×[n][m]
��

CATloc-cart
∞/[n]

−×[n][m]
��

CATcart
∞/[m]

// CATloc-cart
∞/[m]

is right adjointable.

Proof. Let in : CATcart
∞/[n] → CATloc-cart

∞/[n] be the obvious inclusion. We define a functor

fn : CATloc-cart
∞/[n] → CATcart

∞/[n]

as follows. Consider the simplicial subset An ⊂ ∆n given by the union of the edges ∆{i−1,i}, for
1 ≤ i ≤ n. If M → ∆n is a locally Cartesian fibration, then M×∆n An → An is a Cartesian fibration.
Since the inclusion An → ∆n is anodyne, there is an equivalence of ∞-categories CATcart

∞/∆n '

CATcart
∞/An , and we define fn by the composition of

CATloc-cart
∞/[n]

−×∆n An

−−−−−→ CATcart
∞/An ' CATcart

∞/[n].

Explicitly, given a locally Cartesian fibration F → [n], the Cartesian fibration fn(F) is given by
NC(F×∆n An)fib where N is the simplicial nerve, C its left adjoint and (−)fib is a fibrant replacement
in the model category of simplicially enriched categories. In particular, we see that the obvious
inclusion F ×∆n An → F extends uniquely into a functor in ◦ fn(F) → F. This gives a natural
transformation in ◦ fn → id which is easily seen to be a counit of an adjunction. �

Remark 3.96. Using the informal description of the (∞, 2)-category cSeg•(E/C) given in Remark
3.83, we can informally describe the lax 2-functor in (3.57) as follows. It takes an object A ∈ C to
the∞-category ΞA. It takes a pair (E, u) : A→ B to the functor (E⊗−)◦u!. Given two composable
1-morphisms (E, u) : A→ B and (F, v) : B→ C, it associates the natural transformation

(F ⊗ −) ◦ v! ◦ (E ⊗ −) ◦ u! → (F ⊗ g!(E) ⊗ −) ◦ (v ◦ u)!

which is not invertible in general.

3.5. Monodromic specialisation, II. Functoriality.
It is of the utmost importance for the proof of our second main theorem to keep track of the

coherence properties of the monodromic specialisation functors introduced in Subsection 3.2, at
the ∞-categorical level. This will be achieved in this subsection. We fix a base scheme S and a
presentable Voevodsky pullback formalism

H⊗ : (Sch/S )op → CAlg(PrL).

(See Definitions 1.14 and 2.4.) We will gradually impose several conditions on S and H⊗.
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Construction 3.97. Let

CH =

∫
X∈(Sch/S )op

CAlg(H(X)) (3.58)

to be the codomain of the coCartesian fibration classified by CAlg(H)op : (Sch/S )op → CAT∞. An
object of CH is a pair (X,AX) where X ∈ Sch/S is a finite type S -scheme and AX ∈ CAlg(H(X))
is a commutative algebra in H(X)⊗. A morphism ( f , θ) : (X,AX) → (Y,AY) between two such
pairs consists of a morphism f : Y → X of S -schemes and a morphism of commutative algebras
θ : f ∗AX →AY in H(Y)⊗. There is a functor

H(−;−)⊗ : CH → CAlg(PrL) (3.59)

sending a pair (X,AX) to the symmetric monoidal∞-category H(X;AX)⊗ = ModAX (H(X))⊗. (See
for example [AGV20, §3.4] for the construction of a similar functor.) Note also that CH admits
pushouts. We apply Construction 3.75 to the coCartesian fibration

Ξ⊗H =

∫
CH

H(−;−)⊗ → CH (3.60)

classified by H(−;−)⊗. This yields a monoid object E⊗
H

in CAT∞/CH
acting on Ξ⊗

H
by lax symmetric

monoidal functors. With the notations of Construction 3.81, we set

DH = cSeg(EH/CH)1-op, 2-op. (3.61)

Let CAT∞/Fin∗ be the (∞, 2)-category of∞-categories endowed with a functor to Fin∗, defined by re-
placing the ∞-categories CATcart

∞/[n]op in Definition 3.85 with the ∞-categories (CATcart
∞/[n]op)/Fin∗×[n]op .

By Construction 3.94 applied to the coCartesian fibration Ξ⊗
H
→ CH with its left E⊗

H
-module struc-

ture, we have a lax 2-functor
cSeg(EH/CH) CAT∞/Fin∗ , (3.62)

and it follows from Remark 3.96 that it factors through the sub-(∞, 2)-category SMCAT∞ ⊂
CAT∞/Fin∗ spanned by the symmetric monoidal ∞-categories and right-lax monoidal functors be-
tween them. This gives a lax 2-functor

H(−;−)⊗ : D1-op, 2-op
H

 SMCAT∞. (3.63)

This is essentially the only take we need from Subsection 3.4.

Combining Remarks 3.76, 3.83 and 3.96, we obtain the following.

Remark 3.98. To ease notations, we denote an object of C
op
H

by X, Y , etc., instead of (X,AX),
(Y,AY), etc. Similarly, a morphism in C

op
H

is simply denoted by f , g, etc., instead of ( f , θ), (g, θ),
etc. Thus, a morphism f : Y → X in C

op
H

consists of a morphism of finite type S -schemes
f : Y → X together with a morphism of commutative algebras f ∗AX → AY in H(Y)⊗. This said,
the (∞, 2)-category DH admits the following informal description.

(i) The objects of DH are precisely the objects of Cop
H

.
(ii) A 1-morphism ( f , ([m], (ui)0≤i≤m)) : Y → X in DH consists of a morphism f : Y → X

in C
op
H

, an object [m] in ∆′ and a sequence (ui : Yi → Y)0≤i≤m of morphisms in C
op
H

with
codomain Y . Given a second 1-morphism (g, ([n], (v j)0≤ j≤n)) : Z → Y the composite 1-
morphism Z → X is given by ( f ◦ g, ([m + n + 1], (ũi)0≤i≤mt (v j−m−1)m+1≤ j≤m+n+1)) where the
ũi’s are the base change of the ui’s along g.
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(iii) A 2-morphism
( f ′, ([m′], (u′j)0≤ j≤m′))⇒ ( f , ([m], (ui)0≤i≤m)) (3.64)

between two 1-morphisms from Y to X as in (ii) can exist only when f is equivalent to
f ′. Assuming that f = f ′, an effective 2-morphism (r, (ei)0≤i≤m) as in (3.64) is given by a
strictly increasing map r : [m] ↪→ [m′] and a sequence of commutative triangles

•

u′r(i) ��

ei
// •

ui

��

Y

in C
op
H

. A general 2-morphism is obtained from the effective ones by localisation with
respect to those effective 2-morphisms (r, (ei)0≤i≤m) as above such that the ei’s, for i ∈ [m],
and the u j’s, for j < r([m]), are equivalences.

Moreover, the lax 2-functor in (3.63) admits the following informal description.
(iv) It takes an object X = (X,AX) to the symmetric monoidal∞-category H(X;AX)⊗.
(v) It takes a 1-morphism ( f , ([m], (ui)0≤i≤m)) : Y → X to the composite functor

um, ∗ ◦ u∗m ◦ . . . ◦ u0, ∗ ◦ u∗0 ◦ f ∗ : H(X;AX)⊗ → H(Y;AY)⊗.

Given a second 1-morphism (g, ([n], (v j)0≤ j≤n)) : Z → Y , it associates the obvious natural
transfromation

(vn, ∗ ◦ v∗n ◦ . . . ◦ v0, ∗ ◦ v∗0 ◦ g∗) ◦ (um, ∗ ◦ u∗m ◦ . . . ◦ u0, ∗ ◦ u∗0 ◦ f ∗)

→ vn, ∗ ◦ v∗n ◦ . . . ◦ v0, ∗ ◦ v∗0 ◦ ũm, ∗ ◦ ũ∗m ◦ . . . ◦ ũ0, ∗ ◦ ũ∗0 ◦ ( f ◦ g)∗.
(vi) It takes a 2-morphism (r, (ei)0≤i≤m) to the natural transformation induced by the unit mor-

phisms id→ ei, ∗ ◦ e∗i , for 0 ≤ i ≤ m, and id→ u′j, ∗u
′∗
j , for j ∈ [m′] r r([m]).

For later use, we introduce a simpler version of the (∞, 2)-category DH.

Construction 3.99. Let DS the ordinary bicategory admitting the same description as DH but with
C

op
H

replaced by Sch/S . The objects of DS are the finite type S -schemes. The 1-morphisms and
the 2-morphisms are as in (ii) and (iii) of Remark 3.98 with the difference that the f , ui’s, u′j’s, etc.,
are just morphisms of S -schemes. The informal description in Remark 3.98, (ii) and (iii), gives a
rigorous definition of DS since Sch/S is an ordinary category. This said, we have a 2-functor

DS ×Sch/S C
op
H
→ DH (3.65)

identifying the domain with the wide 2-full sub-(∞, 2)-category ofDH spanned by the 1-morphisms
of the form ( f , ([m], (ui : Yi → Y)0≤i≤m)) such that the ui’s induce equivalences u∗i AY

∼
−→AYi .

Notation 3.100. In order to simplify notations when speaking of 1-morphisms in DS , we employ
the following conventions.

(i) We identify Reg-Σ/S with the image of the functor Reg-Σ/S → DS , which is the identity
on objects and sends a morphism f : Y → X of regularly stratified S -schemes to the 1-
morphism ( f , ([0], idY)). In particular, we write f to indicate the 1-morphism ( f , ([0], idY)).

(ii) Given a morphism h : Z → X of regularly stratified S -schemes, we denote by [Z] or [h]
the 1-endomorphism of X given by (idX, ([0], h)).

With these conventions, a general 1-morphism ( f , ([m], (ui : Yi → Y)0≤i≤m)) can be written as the
composite f ◦ [Y0] ◦ . . . ◦ [Ym] or f ◦ [u0] ◦ . . . ◦ [um].
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Definition 3.101.

(i) Recall the functor P : SCH-Σ→ Cat sending a stratified scheme X to the poset (PX,�) of
strata of X. We denote by P+ : SCH-Σ → Cat the functor sending a stratified scheme X to
the poset (PX,+,�) obtained by adding a greatest element to PX which is preserved by the
functors f∗ : PY,+ → PX,+ for all morphisms f : Y → X. We set

SCH-Σm =

∫
SCH-Σ

P and SCH-Σm
+ =

∫
SCH-Σ

P+.

An object of SCH-Σm is called a marked stratified scheme; it is a pair (X,C) consisting
of a stratified scheme X and a stratum C ⊂ X. A morphism of marked stratified schemes
f : (Y,D) → (X,C) is a morphism of stratified schemes f : Y → X such that f∗(D) � C.
We have an obvious fully faithful functor SCH-Σ → SCH-Σm

+ which we use to identify
the complement of SCH-Σm in SCH-Σm

+ to SCH-Σ. We define similarly the categories
REG-Σm

(+), Sch-Σm
(+)/S , Reg-Σm

(+)/S and Sm-Σm
(+)/S .

(ii) Recall the functor P′ : SCH-Σ → Cat sending a stratified scheme X to the poset P′X; see
Notations 3.21. We denote by P′+ : SCH-Σ → Cat the functor sending a stratified scheme
X to the poset P′X,+ obtained by adding a greatest element to P′X which is preserved by the
functors f∗ for all morphisms f : Y → X. We set

SCH-Σdm =

∫
SCH-Σ

P′ and SCH-Σdm
+ =

∫
SCH-Σ

P′+.

An object of SCH-Σdm is called a demarcated stratified scheme; it is a triple (X,C−,C+)
consisting of a stratified scheme X and strata C− � C+ of X. A morphism of demarcated
stratified schemes f : (Y,D−,D+) → (X,C−,C+) is a morphism of stratified schemes f :
Y → X such that

f∗(D−) � C− � C+ � f∗(D+).

We have an obvious fully faithful functor SCH-Σ → SCH-Σdm
+ which we use to identify

the complement of SCH-Σdm in SCH-Σdm
+ to SCH-Σ. We define similarly the categories

REG-Σdm
(+), Sch-Σdm

(+)/S , Reg-Σdm
(+)/S and Sm-Σdm

(+)/S .

Notation 3.102.

(i) Let (X,C−,C+) be a demarcated regularly stratified scheme. We denote by N�X(C−,C+) the
constructible open subscheme of NX(C+) making the following square Cartesian

N�X(C−,C+)

��

// NX(C+)

��

N◦
C−

(C+) // NC−(C+).

We denote by iC−,C+
: N�X(C−,C+)→ DfX(C+) the obvious inclusion.

(ii) More generally, let X be a regularly stratified scheme and (C−,C0,C+) in P′′X . (See Nota-
tion 3.21.) We denote by Df�X|C0

(C−,C+) the constructible open subscheme of DfX|C0(C+)
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making the following square Cartesian

Df�X|C0
(C−,C+)

��

// DfX|C0(C+)

��

N�X(C−,C0) // NX(C0).

We denote by iC−,C0,C+
: Df�X|C0

(C−,C+) → DfX(C+) the obvious inclusion. Note that when
C0 = C+, we get back the morphism iC−,C+

of (i).

By Theorem 3.20, we have a functor

Df : Reg-Σdm
+ /S → Sch/S (3.66)

sending a demarcated regularly stratified S -scheme (X,C−,C+) to the S -scheme DfX(C+). The
following proposition provides a lift of this functor into an oplax 2-functor with values in DS .

Proposition 3.103. There is an oplax 2-functor

Df : Reg-Σdm
+ /S  DS (3.67)

admitting the following description.

(i) It extends the obvious functor Reg-Σ/S → DS and sends a demarcated regularly stratified
S -scheme (X,C−,C+) to the S -scheme DfX(C+).

(ii) Let (Y,D−,D+) be a demarcated regularly stratified S -scheme and let f : Y → X be a
morphism of regularly stratified S -schemes. Then Df sends f : (Y,D−,D+) → X to the
1-morphism f ◦ q ◦ [iD−,D+

], where q : DfY(D+)→ Y is the obvious morphism.
(ii′) Let f : (Y,D−,D+) → (X,C−,C+) be a morphism of demarcated regularly stratified S -

schemes. Then Df sends f to the 1-morphism

[iC−,C+
] ◦ Df( f ) ◦ [iD−,D+

]

where Df( f ) : DfY(D+)→ DfX(C+) is the morphism induced by f .
(iii) The image by Df of the identity of a demarcated regularly stratified S -scheme (X,C−,C+)

is related to the identity 1-morphism by the obvious 2-morphism

[iC−,C+
]◦2 → idDfX(C+).

(iv) Let f : Y → X be a morphism of regularly stratified S -schemes and let g : (Z, E−, E+) →
(Y,D−,D+) be a morphism of demarcated regularly stratified S -schemes. Then, the associ-
ated 2-morphism Df( f ) ◦ Df(g)→ Df( f ◦ g) is the composition of

f ◦ q ◦ [iD−,D+
] ◦ [iD−,D+

] ◦ Df(g) ◦ [iE−,E+
]

→ f ◦ q ◦ idDfY (D+) ◦ Df(g) ◦ [iE−,E+
]

' f ◦ g ◦ q′ ◦ [iE−,E+
]

where q′ : DZ(E+)→ Z is the obvious morphism.
111



(iv′) Let f : (Y,D−,D+) → (X,C−,C+) and g : (Z, E−, E+) → (Y,D−,D+) be two composable
morphisms between demarcated regularly stratified S -schemes. Then, the associated 2-
morphism Df( f ) ◦ Df(g)→ Df( f ◦ g) is the composition of

[iC−,C+
] ◦ Df( f ) ◦ [iD−,D+

] ◦ [iD−,D+
] ◦ Df(g) ◦ [iE−,E+

]

→ [iC−,C+
] ◦ Df( f ) ◦ idDfY (D+) ◦ Df(g) ◦ [iE−,E+

]

' [iC−,C+
] ◦ Df( f ◦ g) ◦ [iE−,E+

].

Proof. This is proven by an easy direct verification. The details are omitted. �

Our next task is to define a functor from Reg-Σdm
+ /S to C

op
H

.

Definition 3.104. We define the category TEmb of split torus-embeddings as follows. An object of
TEmb is a triple (T,T ◦, jT ) where T is a smooth affine Z-scheme, T ◦ is a split torus over Z acting
on T and jT : T ◦ ↪→ T is an equivariant dense open immersion. Such an object will be simply
denoted by T ; it is isomorphic to a triple of the form

((A1 r 0)m × An, (Gm)m+n, j),

with m, n ∈ N and j the obvious inclusion. An object T of TEmb is regularly stratified by the
orbits of the action of T ◦. The kernel of the action of T ◦ on an orbit E◦ of T can be identified with
the split torus T◦T (E). (See Notation 3.8.) The closure of the T◦T (E)-orbit of 1 ∈ T ◦ intersect E◦

in a Z-point. This induces an equivariant isomorphism E◦ ' T ◦/T◦T (E) and, in particular, gives
E◦ the structure of a split torus. The closure E of the strata E◦ in T is then an object of TEmb.
We can now complete the description of the category TEmb: a morphism T ′ → T in TEmb is a
morphism of stratified schemes, inducing a morphism of tori from T ′◦ to a stratum E◦, and such
that the morphism T ′ → E is T ′◦-equivariant. When E◦ = T ◦ we call such a morphism strict. Strict
morphisms form a wide subcategory of TEmb which we denote by TEmb′. We also write STor for
the full subcategory of TEmb (and TEmb′) spanned by split tori.

Given a split torus-embedding T , we will also write T for its base change to S . Our next task
is to construct, for every T ∈ TEmb, a commutative algebra UT in H⊗(T ), which is functorial in
morphisms in TEmb. We first construct these algebras functorially for strict morphisms.

Construction 3.105. Since the diagram YT described in Construction 3.23 is functorial in the split
torus T , we have sections

LSTor, USTor : STorop →

∫
STorop

CAlg(H) (3.68)

sending a split torus T to the commutative algebras LT and UT . Alternatively, one can construct
these sections using Proposition 3.29 and [Lur17, Proposition 7.3.2.6]. Using the obvious functor
TEmb′ → STor, given by T 7→ T ◦, and its left adjoint given by the obvious inclusion, one may
extend LSTor and USTor to sections

L′, U′ : TEmb′op
→

∫
TEmb′op

CAlg(H) (3.69)

sending a split torus-embedding T to the commutative algebras LT = jT, ∗LT ◦ and UT = jT, ∗UT ◦

where jT : T ◦ → T is the structural embedding.
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Construction 3.106. We form the diagram of functors and natural transformations

⇒

∫
TEmbop CAlg(H)

p
��

TEmb′op
ι
//

L′,U′
22

TEmbop
L,U

77

TEmbop

(3.70)

where ι is the obvious inclusion, L′ and U′ are the functors deduced from the sections in (3.69),
and

L, U : TEmbop
→

∫
TEmbop

CAlg(H) (3.71)

are the left Kan extensions of L′ and U′ relative to the coCartesian fibration p. Said differently,
for a split torus-embedding T , we have

L(T ) = colim
e:T→T ′

e∗L′(T ′) and U(T ) = colim
e:T→T ′

e∗U′(T ′) (3.72)

where the colimit is over TEmb′ ×TEmb TEmbT/. By Lemma 3.107 below, L and U are extensions
of L′ and U′ in the usual sense. Thus, the functors L and U take a split torus-embedding T to the
commutative algebras LT and UT defined in Construction 3.105.

Lemma 3.107. The natural transformations L′ → L ◦ ι and U′ → U ◦ ι depicted in the diagram
(3.70) are equivalences.

Proof. We fix T ∈ TEmb and use the formulae in (3.72). We have an adjunction

βT : TEmb′ ×TEmb TEmbT/ � TEmb′T/ : ιT

where ιT is the obvious inclusion. The functor βT sends an object e : T → T ′ to the object
ẽ : T → ‹T ′, where ‹T ′ ⊂ T ′ is the closure of the stratum of T ′ containing e(T ◦). The unit map
id→ ιT ◦ βT is given, at e : T → T ′, by the commutative triangle

T e
//

ẽ ��

T ′

p
��‹T ′

where p : T ′ → ‹T ′ is the quotient map identifying ‹T ′ with the quotient of T ′ by the kernel of the
action of T ′◦ on the stratum of T ′ containing e(T ◦). It follows from Lemma 3.27 that the obvious
morphisms e∗p∗LT̃ ′ → e∗LT ′ and e∗p∗UT̃ ′ → e∗UT ′ are equivalences. Thus, we are left to compute
colim F ◦ βop

T for a functor F with domain (TEmb′T/)
op. (We are interested in the case where F is

given by (e : T → T ′) 7→ e∗LT ′ or by (e : T → T ′) 7→ e∗UT ′ .) The functor F 7→ F ◦ βop
T being left

adjoint to the functor G 7→ G ◦ ιop
T , we deduce that F ◦ βop

T is the left Kan extension of F along the
inclusion ιop

T . It follows that colim F ◦ βop
T ' colim F ' F(idT ). This finishes the proof. �

Construction 3.108. The sections L and U in (3.71) give rise to functors L, U : TEmb → C
op
H

sending a split torus-embedding T to the pairs (T,LT ) and (T,UT ) respectively. Consider the
functor

T : Reg-Σdm
+ /S → TEmb (3.73)

sending a regularly stratified S -scheme to the trivial torus and a demarcated regularly stratified
S -scheme (X,C−,C+) to the split torus-embedding TX|C−(C+). We have a natural transformation
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Df → T from the functor (3.66) to the composition of (3.73) with TEmb→ Sch/S . Base changing
along this natural transformation, we deduce functors

L, U : Reg-Σdm
+ /S → C

op
H

(3.74)

admitting the following description. They send a regularly stratified S -scheme X to the pair
(X, 1), and a demarcated regularly stratified S -scheme (X,C−,C+) to the pairs (DfX(C+),LC−,C+

)
and (DfX(C+),UC−,C+

) respectively, where LC−,C+
and UC−,C+

are the pullbacks of LTX|C− (C+) and
UTX|C− (C+) along the natural map DfX(C+) → TX|C−(C+). Combining the oplax 2-functor in (3.67)
with the 2-functors in (3.74) we deduce two oplax 2-functors

(Df,L), (Df,U) : Reg-Σdm
+ /S → DH. (3.75)

Combining the oplax 2-functors in (3.75) with the lax 2-functor in (3.63), we obtain two lax 2-
functors

H(Df(−);L)⊗, H(Df(−);U)⊗ : (Reg-Σdm
+ /S )op  SMCAT∞. (3.76)

By construction, the restriction of these lax 2-functors to (Reg-Σ/S )op yield the obvious functor
sending a regularly stratified S -scheme X to H(X)⊗.

Remark 3.109. We now give an informal description of the lax 2-functors in (3.76). We only
discuss the case of H(Df(−),U)⊗.

(i) It takes a regularly stratified S -scheme X to H(X)⊗. It takes a demarcated regularly strati-
fied S -scheme (X,C−,C+) to H(DfX(C+);UC−,C+

)⊗.
(ii) Let (Y,D−,D+) be a demarcated regularly stratified S -scheme and let f : Y → X be a

morphism of regularly stratified S -schemes. It sends the morphism f : (Y,D−,D+)→ X to
the composition of

H(X)
f ∗
// H(Y)

q∗
// H(DfY(D+);UD−,D+

)

(iD− ,D+ )∗(iD− ,D+ )∗

��

H(DfY(D+);UD−,D+
).

(ii′) It sends a morphism f : (Y,D−,D+) → (X,C−,C+) of demarcated regularly stratified S -
schemes to the composition of

H(DfX(C+);UC−,C+
)

Df( f )∗
// H(DfY(D+);UD−,D+

)

(iD− ,D+ )∗(iD− ,D+ )∗(i′C− ,C+
)∗(i′C− ,C+

)∗

��

H(DfY(D+);UD−,D+
)

where i′C−,C+
is the base change of iC−,C+

along Df( f ).

The lax compatibility with composition in Reg-Σdm
+ /S is witnessed by obvious natural transforma-

tions given by composing units of inverse-direct image adjunctions. We will abstain from writing
these explicitly now; instead, we will describe them below when needed.

The next step in our construction consists in defining sub-lax 2-functors of the ones in (3.76)
which are particularly well-behaved. We will need the following lemma.
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Lemma 3.110. Let (X,C−,C+) be a demarcated regularly stratified S -scheme. Then, the functors

H(N◦
C−

(C+))→ H(N�X(C−,C+)), H(N�X(C−,C+))
(iC− ,C+ )∗
−−−−−−→ H(DfX(C+);LC−,C+

)

and H(N�X(C−,C+))
(iC− ,C+ )∗
−−−−−−→ H(DfX(C+);UC−,C+

)

are fully faithful.

Proof. For the first functor, this follows from A1-invariance and the fact that N�X(C−,C+) is a vector
bundle over N◦

C−
(C+). For the second and third functors, this follows from the fact that iC−,C+

is a
locally closed immersion and that 1 ' (iC−,C+

)∗LC−,C+
' (iC−,C+

)∗UC−,C+
. �

Definition 3.111. We define sub-lax 2-functors

HΥ
+ (−)⊗ ⊂ H(Df(−);L)⊗ and HΨ

+ (−)⊗ ⊂ H(Df(−);U)⊗

as follows. If X is a regularly stratified S -scheme, we set

HΥ
+ (X) = Hict-log(X) and HΨ

+ (X) = Hict-tm(X).

If (X,C−,C+) is a demarcated regularly stratified S -scheme, we define

HΥ
+ (X,C−,C+) ⊂ H(DfX(C+);LC−,C+

)

to be the essential image of the composite functor

Hilog(N◦
C−

(C+))→ H(N�X(C−,C+))
(iC− ,C+ )∗
−−−−−−→ H(DfX(C+);LC−,C+

)

which is fully faithful by Lemma 3.110. Similarly, we define

HΨ
+ (X,C−,C+) ⊂ H(DfX(C+);UC−,C+

)

to be the essential image of the fully faithful composite embedding

Hitame(N◦C−(C+))→ H(N�X(C−,C+))
(iC− ,C+ )∗
−−−−−−→ H(DfX(C+);UC−,C+

).

It follows from Remark 3.109 that this indeed defines sub-lax 2-functors

HΥ,⊗
(+) , H

Ψ,⊗
(+) : (Reg-Σdm

(+)/S )op  SMCAT∞ (3.77)

of the ones in (3.76). See also the proof of part (ii) of Theorem 3.112 below, from which an
argument can be easily extracted.

Theorem 3.112. For a demarcated regularly stratified S -scheme (X,C−,C+), there is an equiva-
lence of symmetric monoidal∞-categories

HΨ
+ (X,C−,C+)⊗ ' Hitame(N◦C−(C+))⊗ (3.78)

where ind-tameness is with respect to the boundary of NC−(C+). Modulo these equivalences, the
lax 2-functor HΨ admits the following description.

(i) A morphism in Reg-Σdm
+ /S of the form f : (Y,D−,D+) → X is sent to the inverse image

functor
N◦( f )∗ : Hict-tm(X)→ Hitame(N◦D−(D+))

along the morphism N◦( f ) : N◦
D−

(D+)→ X induced by f .
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(ii) A morphism in Reg-Σdm
+ /S of the form f : (Y,D−,D+) → (X,C−,C+) is sent to the compo-

sition of

Hitame(N◦C−(C+))
Ψ̃C′+
−−−→ Hitame(N◦C−(C

′
+))

N◦( f )∗
−−−−→ Hitame(N◦D−(D+))

where C′+ = f∗(D+) and N◦( f ) : N◦
D−

(D+)→ N◦
C−

(C′+) is the morphism induced by f .

Moreover, the restriction of HΨ,⊗
+ to the subcategory Reg-Σdm/S ⊂ Reg-Σdm

+ /S is strict, i.e., is a
functor

HΨ,⊗ : (Reg-Σdm/S )op → CAlg(PrL). (3.79)

Finally, the previous properties hold also for the lax 2-functor HΥ,⊗ when replacing “tameness”
with “logarithmicity” at the boundary.

Proof. The equivalence in (3.78) is clear by construction. Part (i) is also clear. We now prove part
(ii). By definition, the functor HΨ( f ) is given by the composition of

H(N�X(C−,C+)) // H(Z;UD−,D+
)

(i′C− ,C+
)∗

��

H(DfY(D+);UD−,D+
)

(iD− ,D+ )∗
// H(N�Y(D−,D+)),

(3.80)

where Z = N�X(C−,C+) ×DfX(C+) DfY(D+). Set C′− = f∗(D−) and Z′ = N�X(C′−,C+) ×DfX(C+) DfY(D+).
It is easy to see that there is a constructible neighbourhood of N�Y(D−,D+) which intersects Z with
Z′. Thus, the composition of (3.80) is equivalent to the composition of

H(N�X(C−,C+)) // H(N�X(C′−,C+)) // H(Z′;UD−,D+
)

(i′
C′− ,C+

)∗
��

H(DfY(D+);UD−,D+
)

(iD− ,D+ )∗
// H(N�Y(D−,D+)).

(3.81)

Thus, we may replace C− with C′− and assume that f∗(D−) = C−. In this case, we may replace X
and Y by C− and D−, and assume that X and Y are connected, f takes Y◦ to X◦, and that C− = X◦

and D− = Y◦. The functor HΨ( f ) is then given by the composition of

H(N◦X(C+)) // H(Z;UD+
)

(i′C+
)∗

��

H(DfY(D+);UD+
)

(iD+ )∗
// H(N◦Y(D+))

(3.82)

where Z = N◦X(C+) ×DfX(C+) DfY(D+), and i′C+
and iD+

are the obvious inclusions. Let Z be the
closure of Z in DfY(D+), and consider the Cartesian square

Z
g′
//

j′

��

N◦X(C+)

j
��

Z
g
// NX(C+).
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It follows from Lemma 3.45 that we have an induced commutative square

Hitame(N◦X(C+))
g′∗

//

j∗
��

H(Z;UD+
)

j′∗
��

Hict-tm(NX(C+))
g∗⊗g∗ j∗1UD+ |Z

// H(Z;UD+
).

From this, we deduce that, after restriction to ind-tame objects, the composition of (3.82) is equiv-
alent to the composition of

H(N◦X(C+)) // H(Df◦X|C+
(C′+);UC′+)

u∗
��

H(DfX|C+
(C′+);UC′+)

(iC′+ )∗
// H(N◦X(C′+)) // H(N◦Y(D+))

(3.83)

where u : Df◦X|C+
(C′+) → DfX|C+

(C′+) is the obvious inclusion. The composition of the first three
functors in (3.83) is equivalent to ‹ΨC′+ as needed.

It remains to show that the restriction of HΨ,⊗
+ to Reg-Σdm/S is strict. We start by noting that the

above argument shows that HΨ,⊗ takes a commutative triangle of the form

(Y,D−,D+) //

''

(X,C′−,C
′
+)

��

(X,C−,C+)

to a commutative diagram in CAlg(PrL). Thus, we are left to check that HΨ,⊗ takes a commutative
triangle of the form

(X,C′′− ,C
′′
+ ) //

''

(X,C′−,C
′
+)

��

(X,C−,C+)

to a commutative diagram in CAlg(PrL). This follows from Theorem 3.63 combined with Corollary
3.61. We leave the details to the reader. �

3.6. An exit-path theorem.
We keep the notations and assumptions from Subsection 3.5. Here, we use Theorem 3.112 to

show how to reconstruct, under some hypothesis, the presentable Voevodsky pullback formalism
H⊗ from the functor HΨ,⊗ : (Reg-Σdm/S )op → CAlg(PrL). This reconstruction is reminiscent to an
exit-path type phenomenon, which we will not pursue here.

We start with some general∞-categorical preliminaries. We need a result about Cartesian fibra-
tions which is probably well-known, but for which we do not know a reference. To state it, we
recall a few facts in the following remark.

Remark 3.113. For a simplicial set S , we have the category (Set+∆)/S of marked simplicial sets over
S endowed with the Cartesian model structure (see [Lur09a, Proposition 3.1.3.7]). Given a marked
simplicial set (T, A) and a map p : T → S , we have an adjunction

p∗A : (Set+∆)/S � (Set+∆)/T : pA
∗
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where p∗A takes a marked simplicial set (X, E) over S to (X ×S T, E ×S 1 A). The right adjoint pA
∗

takes a marked simplicial set (Y, F) over T to the marked simplicial set (p∗(Y), FA) admitting the
following description.

• An n-simplex of p∗(Y) consists of morphisms ∆n → S and s : ∆n ×S T → Y in (Set∆)/T .
• An edge of p∗(Y) consisting of morphisms ∆1 → S and s : ∆1 ×S T → Y is marked if s

sends (∆1)1 ×S 1 A into F.
In general, the adjunction (p∗A, pA

∗ ) is not Quillen with respect to the Cartesian model structures.
Nevertheless, we have the following result.

Proposition 3.114. Keep the notations as in Remark 3.113, and assume that p : T → S is a
coCartesian fibration and that A consists of the p-coCartesian edges. Then the adjunction (p∗A, pA

∗ )
is Quillen with respect to the Cartesian model structures.

Proof. We will adapt the proof of [Lur09a, Proposition 4.1.2.15]. Arguing as in the proof of
[Lur09a, Proposition 4.1.2.8], we reduce to showing that p∗A takes a marked right anodyne mor-
phism in (Set+∆)/S to a trivial cofibration in (Set+∆)/T for the Cartesian model structure. The class of
marked anodyne morphisms is the weakly saturated class of morphisms (in the sense of [Lur09a,
Definition A.1.2.2]) generated by the those listed in [Lur09a, Definition 3.1.1.1]. Thus, it is enough
to check the required property for the morphisms listed in [Lur09a, Definition 3.1.1.1]. We will
only treat the case of the inclusions

(Λn
n, E

′) ⊂ (∆n, E), (3.84)

for n ≥ 1, where E is the set of all degenerate edges together with the final edge ∆{n−1,n}, and
E′ = E ∩ (Λn

n)1; the remaining ones can be treated similarly.
By base change along the map ∆n → S , we reduce to the case where S = ∆n. In this case, we

use [Lur09a, Proposition 3.2.2.7(1)], to find a composable sequence of simplicial sets

φ : C0 → . . .→ Cn

and a quasi-equivalence Mop(φ)→ T in the sense of [Lur09a, Definition 3.2.2.6]. Let A′ be the set
of edges in Mop(φ) of the form

([1]
r
−→ [n], [1]→ [0]→ Cr(0)).

Given a marked simplicial set (Q, J) over ∆n, we claim that

(Mop(φ), A′) ×∆n (Q, J)→ (T, A) ×∆n (Q, J)

is a Cartesian equivalence in (Set+∆)/Q. This follows from [Lur09a, Proposition 3.2.2.7(2)], which
implies that the underlying morphism Mop(φ) ×∆n Q → T ×∆n Q is a categorical equivalence, and
the observation that every edge in A can be obtained from an edge in A′ by composing with an
equivalence, and that this property is preserved by fiber product with (Q, J). Applying this with
the domain and codomain of the inclusion in (3.84), we are reduced to showing that

(Mop(φ), A′) ×∆n (Λn
n, E

′)→ (Mop(φ), A′) ×∆n (∆n, E)

is right anodyne. But this map is a pushout of C0 × (Λn
n, E

′)→ C0 × (∆n, E). �

Corollary 3.115. Let p : C → B be a coCartesian fibration of ∞-categories. We denote by
p∗ : CAT∞/B → CAT∞/C the base change functor, and by p∗ its right adjoint. Then p∗ preserves
Cartesian fibrations. More precisely, if D → C is a Cartesian fibration, so is p∗(D)→ B, and the
latter is classified by a functor Bop → CAT∞ admitting the following informal description.
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(i) It sends an object A ∈ B to the ∞-category Sect(DA/CA) of sections of the Cartesian
fibration DA → CA.

(ii) It sends a morphism u : B→ A in B to a functor u∗ : Sect(DA/CA)→ Sect(DB/CB) which
can be informally described as follows. Fix a section s : CA → DA. For Y ∈ CB, we
consider the coCartesian edge v : Y → u!(Y) in C over u, and then the Cartesian edge
v∗s(u!(Y))→ s(u!(Y)) in D over v. Then the section u∗(s) : CB → DB takes Y to v∗s(u!(Y)).

Proof. This follows readily from Proposition 3.114 since a fibrant object for the Cartesian model
structure is precisely a Cartesian fibration marked by its Cartesian edges. �

Construction 3.116. Let C be an∞-category, and let

F : ∆1 × C CAT∞ (3.85)

be a lax 2-functor whose restrictions to {0} × C and {1} × C are strict, i.e., define functors

F0 : C → CAT∞ and F1 : C → CAT∞. (3.86)

The lax 2-functor F gives rise to a commutative triangle of the form

∆1 ×
∫

[n]∈∆op Map([n],C)
ξ

//

((

∫
[n]∈∆op CATcart

∞/[n]op

xx

∆op,

(3.87)

and hence to a natural transformation ξ0 → ξ1 over ∆op between the functors

ξ0, ξ1 :
∫

[n]∈∆op
Map([n],C)→

∫
[n]∈∆op

CATcart
∞/[n]op (3.88)

incarnating the functors F0 and F1. We denote by ∆op
C

the domain of the functors in (3.88) which is
also the domain of the coCartesian fibration classified by the simplicial ∞-groupoid Map([•],C).
We may view ξ0 and ξ1 as defining sections ξ′0 and ξ′1 of the coCartesian fibration

∆
op
C
×∆op

∫
[n]∈∆op

CATcart
∞/[n]op → ∆

op
C
. (3.89)

Since F0 and F1 are strict functors, the sections ξ′0 and ξ′1 are coCartesian. Thus, the induced natural
transformation ξ′0 → ξ′1 defines an edge in the∞-category

lim
[n]→C∈∆

op
C

CATcart
∞/[n]op ' CATcart

∞/Cop . (3.90)

We obtain in this way a commutative triangle

D0
θ

//

p0 !!

D1

p1}}

Cop

(3.91)

where p0 and p1 are the Cartesian fibrations classified by the functors F0 and F1.

Construction 3.117. Consider the forgetful functor

p : Reg-Σdm/S → Reg-Σ/S (3.92)
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given by p(X,C−,C+) = X. Also, denote by

i0 : Reg-Σ/S ↪→ Reg-Σdm
+ /S and i1 : Reg-Σdm/S ↪→ Reg-Σdm

+ /S (3.93)

the obvious fully faithful inclusions. We have a natural transformation i1 → i0◦ p sending an object
(X,C−,C+) to the morphism (X,C−,C+)→ X given by the identity of X. We denote by

φ : (∆1)op × Reg-Σdm/S → Reg-Σdm
+ /S (3.94)

the functor classified by this natural transformation. Precomposing with φop, yields a lax 2-functor

HΨ,⊗
+ ◦ φ : ∆1 × (Reg-Σdm/S )op → SMCAT∞ (3.95)

whose restrictions to {ε} × (Reg-Σdm/S )op, for ε ∈ {0, 1}, are strict by Theorem 3.112. Applying
Construction 3.116 to HΨ,⊗

+ ◦ φ yields a commutative triangle

←

∫
Reg-Σdm/S

HΨ,⊗
+ ◦ i0 ◦ p θ

//

((

←

∫
Reg-Σdm/S

HΨ,⊗
+ ◦ i1

ww

Reg-Σdm/S

(3.96)

where the slanted arrows are Cartesian fibrations. We denote by p∗ the base change along the
functor p, and p∗ its right adjoint. The domain of θ can be rewritten as

p∗
(
←

∫
Reg-Σ/S

H⊗ict-tm

)
.

Thus, by adjunction, the triangle in (3.96) gives rise to the following commutative triangle

←

∫
Reg-Σ/S

H⊗ict-tm
θ′

//

&&

p∗

(
←

∫
Reg-Σdm/S

HΨ,⊗

)

ww

Reg-Σ/S

(3.97)

where the slanted arrows are Cartesian fibrations: for the left one, this is by construction and, for
the right one, this follows from Corollary 3.115 since the functor p is a coCartesian fibration.

The following result describes the fibers of functor θ′.

Theorem 3.118. The triangle in (3.97) is a morphism of Cartesian fibrations, i.e., the functor θ′

preserves Cartesian edges. For a regularly stratified S -scheme X, the functor

θ′X : Hict-tm(X)→ Sect
←∫

P′X

HΨ

/
P′X

 (3.98)

induced by θ′ on the fibers at X admits the following informal description. Fix an object M ∈

Hict-tm(X). The section θ′X(M) takes (C−,C+) ∈ P′X to M|N◦
C−

(C+) ∈ Hitame(N◦C−(C+)). It takes an
arrow (C′−,C

′
+)→ (C−,C+) in P′X to the morphism corresponding to the composition of

M|N◦
C′−

(C′+) ' (M|N◦
C−

(C′+))|N◦
C′−

(C′+) →
‹ΨC′+(M|N◦

C−
(C+))|N◦

C′−
(C′+). (3.99)

Moreover, the functor θ′X is fully faithful with essential image the sub-∞-category spanned by those
sections sending an arrow of the form (C′−,C+)→ (C−,C+) to a Cartesian edge.
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Proof. The description of the functor θ′X follows readily from the constructions. The assertion that
θ′ preserves Cartesian edges reduces to the following property: given a morphism of regularly
stratified S -schemes f : Y → X, an object (D−,D+) ∈ P′Y with image (C−,C+) ∈ P′X, and an object
M ∈ Hict-tm(X), the natural morphism

N◦( f )∗θ′X(M)(C−,C+)→ θ′Y( f ∗M)(D−,D+),

with N◦( f ) : N◦
D−

(D+) → N◦
C−

(C+) the morphism induced by f , is an equivalence. This is im-
mediate using the description of the sections θ′X(M) and θ′Y( f ∗M) on the objects of P′X and P′Y . It
remains to prove the last assertion concerning the fully faithfulness of θ′X and its essential image.
We divide the proof of this in three steps.

Step 1. For a regularly stratified S -scheme X, we denote by SectX the codomain of the functor θ′X
in (3.98), and Sect′X the full sub-∞-category of SectX spanned by those sections sending an arrow
of the form (C′−,C+) → (C−,C+) to a Cartesian edge. Clearly, θ′X factors through Sect′X, and we
need to show that it induces an equivalence of ∞-categories Hict-tm(X) ' Sect′X. We denote by
αX : Sect′X → SectX the obvious inclusion, and by βX : SectX → Sect′X its right adjoint.

Let iZ : Z ⊂ X be the inclusion of a regular constructible locally closed subscheme of X. We
have a pair of adjoint functors

i∗Z : SectX � SectZ : iZ, ∗, (3.100)
where i∗Z is the restriction along the inclusion P′Z ↪→ P′X and iZ, ∗ is the relative right Kan extension
along P′Z ↪→ P′X. Since

←

∫
P′X

HΨ → P′X

is a Cartesian fibration, the functor iZ, ∗ admits a very simple description: for a section s defined
over P′Z, the section iZ, ∗(s) evaluated at (C−,C+) is given by

iZ, ∗(s)(C−,C+) = lim
(C−,C+)→(E−,E+), (E−,E+)∈P′Z

‹ΨC+
s(E−, E+)|N◦

C−
(C+). (3.101)

The adjunction (i∗Z, iZ, ∗) gives rise to an adjunction

i′∗Z : Sect′X � Sect′Z : i′Z, ∗, (3.102)

where i′∗Z ' βZ ◦ i∗Z ◦ αX and i′Z, ∗ ' βX ◦ i′Z, ∗ ◦ αZ. We claim that the following commutative square

Hict-tm(X)
i∗Z
//

θ′X
��

Hict-tm(Z)

θ′Z
��

Sect′(X)
i′∗Z
// Sect′(Z)

(3.103)

is right adjointable. This will be proven in the second step. In the third step, we use this to conclude
the proof.

Step 2. Here we prove that the square (3.103). Note that this is evident when iZ is a closed immer-
sion. Indeed, in this case, the formula in (3.102) gives

iZ, ∗(s)(C−,C+) =

{
s(E−,C+)|N◦

C−
(C+) if C+ ⊂ Z,

0 if C+ 1 Z,

where E− is the open stratum of Z∩C−. It follows that iZ, ∗ takes Sect′Z to Sect′X, so that its is enough
to show that the natural transformation θ′X ◦ iZ, ∗ → iZ, ∗ ◦ θ

′
Z is an equivalence, which is clear. Thus,
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it is enough to treat the case of an open immersion iU : U → X and we may assume that U is the
complement of a closed stratum C0 ⊂ X.

Fix a section s ∈ Sect′U . We will give a formula for i′U, ∗(s). First, note that iU, ∗(s)(C−,C+) '
s(C−,C+) when C+ , C0. On the other hand, we have:

iU, ∗(s)(C−,C0) = lim
C−�C+≺C0

‹ΨC0 s(C−,C+). (3.104)

Let ι : Q = (Pop
X )C0/ ↪→ P′X be the inclusion of the sub-poset of P′X consisting of those elements of

the form (C−,C0). We also have two pairs of adjoint functors

ι∗ : SectX � SectQ : ι∗ and αQ : Sect′Q � Sect′Q : βQ ,

where

SectQ = Sect
(
←

∫
Q

HΨ

/
Q

)
and Sect′Q is the full sub-∞-category of SectQ spanned by the Cartesian sections. We claim that
i′U, ∗(s) is the section rendering the following square of SectX Cartesian

i′U, ∗(s) //

��

iU, ∗(s)

��

ι∗βQι
∗iU, ∗(s) // ι∗ι

∗iU, ∗(s).

Indeed, the section rendering this square Cartesian belongs clearly to Sect′X since it coincides with
iU, ∗(s) on (C−,C+), when C+ , C0, and with βQι∗iU, ∗(s) on (C−,C0), for C− � C0. On the other
hand, given t ∈ Sect′X, we have equivalences

Map(t, ι∗βQι∗iU, ∗(s)) ' Map(ι∗(t), βQι∗iU, ∗(s))

' Map(ι∗(t), ι∗iU, ∗(s))

' Map(t, ι∗ι∗iU, ∗(s)),

which implies the required property Map(t, i′U, ∗(s)) ' Map(t, iU, ∗(s)). Thus, we only need to
describe βQ . Since Q admits a final object, we have an equivalence of ∞-categories Sect′Q '
Hitame(C0). We also denote by βQ : SectQ → Hitame(C0) the functor obtained from βQ using this
identification. For strata E � D � C, let pE,D : NE(C0)→ ND(C0) be the obvious morphism. Given
a section r ∈ SectQ , we have

βQ(r) = lim
C−�C+�C0

(pC−,C0)∗(pC−,C+
)∗r(C+,C0).

Note that for C′− � C− � C+ � C′+ � C0, the map r(C+,C0) → (pC+,C′+)∗r(C′+,C0) gives rise to a
morphism in Hitame(C0):

(pC−,C0)∗(pC−,C+
)∗r(C+,C0)→ (pC′−,C0)∗(pC′−,C

′
+
)∗r(C′+,C0).

We are now ready to finish the proof of the right adjointability of the square in (3.103).
Fix an object M ∈ Hict-tm(U), and assume that s = θ′U(M). We need to prove that βQ(ι∗iU, ∗(s)) is

canonically equivalent to iU, ∗(M)|C0 . Said differently, we need to show that the map

iU, ∗(M)|C0 → lim
C−�C+�C0

(pC−,C0)∗(pC−,C+
)∗iU, ∗(θ′U(M))(C+,C0)
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is an equivalence. To do so, we may assume that M = j!M′ where j is the inclusion of a stratum
of U. We easily reduce to the case where j : X◦ ↪→ U is the inclusion of the open stratum of X. In
this case, M|N◦

C−
(C+) is zero unless C− = C+ = X◦. Thus, the formula in (3.104) gives us

iU, ∗(θ′U(M))(C+,C0) '

 ‹ΨC0(M′)[1 − c0] if C+ = X◦

0 if C+ , X◦

where c0 is the codimension of C0 in X. Hence, we need to show that the morphism

(iU, ∗ j!M′)|C0 → (pX◦,C0)∗‹ΨC0(M′)[1 − c0]

is an equivalence. Since pX◦,C0 is the obvious projection N◦X(C0) → C0, we have an equivalence
(pX◦,C0)∗‹ΨC0(M′) ' (iU, ∗ j∗M′)|C0 . Finally, we are left to show that

(iU, ∗ j!M′)|C0 → (iU, ∗ j∗M′)|C0[1 − c0]

is an equivalence, which is an easy exercise left to the reader.

Step 3. We now use the right adjointability of the square in (3.103) to prove that the functor
θ′X : Hict-tm(X)→ Sect′(X) is an equivalence. To prove that θ′X is fully faithful, it is enough to show
that the map

MapHict-tm(X)(M, iC, ∗N)→ MapSect′X
(θ′X(M), θ′X(iC, ∗N))

is an equivalence for every stratum C of X, and every objects M ∈ Hict-tm(X) and N ∈ Hitame(C). By
the the right adjointability of the square in (3.103), we have a natural equivalence θ′X◦iC, ∗ ' i′C, ∗◦θ

′
C.

Using the adjunction (i′∗C , i
′
C, ∗) and the commutation i′∗C ◦ θ

′
X ' θ

′
C ◦ i∗C, we reduce to showing that

MapHitame(C)(i
∗
C M,N)→ MapSect′C

(θ′C(i∗C M), θ′CN)

is an equivalence, which is obvious since θ′C is an equivalence of∞-categories.
To prove essential surjectivity for θ′X, we argue by induction on the number of strata of X. Thus,

if C0 ⊂ X is a closed stratum and U = X r C0 its complement, we may assume that the functor
θ′U : Hict-tm(U) → Sect′U is an equivalence. Using the right adjointability of the square in (3.103),
we deduce that every object in the image of i′U, ∗ : Sect′U → Sect′X belongs to the essential image of
θ′X. Now, if s is a general section in Sect′X, we may consider a fiber sequence

F → s→ i′U, ∗i
′∗
U (s)

in Sect′X. Since θ′X is a fully faithful exact functor between stable∞-categories, we are left to show
that F belongs to its image. But the section F has the property that F(C−,C+) = 0 unless C+ = C0.
Since it belongs to Sect′X, we see that it is isomorphic to i′C0, ∗

F(C0,C0) ' θ′X(iC0, ∗F(C0,C0)) as
needed. This finishes the proof. �

Corollary 3.119 (Exit-path Theorem). Denote by p : Reg-Σdm/S → Reg-Σ/S the functor forget-
ting the demarcation. Then, the functor

θ′ :←
∫

Reg-Σ/S
H⊗ict-tm → p∗

(
←

∫
Reg-Σdm/S

HΨ,⊗

)
(3.105)

is fully faithful and its essential image consists of those pairs (X, s), with X a regularly stratified
S -scheme and

s : P′X →←
∫

P′X

HΨ

a section taking the edges (C′−,C+)→ (C−,C+), with C′− � C− � C+, to Cartesian edges.
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Proof. This follows immediately form Theorem 3.118. �

4. The main theorem for local systems

This section is devoted to extracting from Theorem 2.10 a description of Gmot(k, σ) as the group
of autoequivalences of the functor

LSgeo(−)⊗ : (Sm/k)op → CAlg(CAT∞).

As explained in the introduction, this can be viewed as a motivic non truncated version of the
Ihara–Matsumoto–Oda Conjecture. Our method relies on the machinery developed in Section 3
and, in particular, on our exit-path theorem (see Corollary 3.119).

4.1. Stratification, constructibility and cdh descent.
We fix a field k endowed with a complex embedding σ : k ↪→ C. In this subsection, we prove

a version of Theorem 2.10 where the ∞-categories of sheaves are replaced with ∞-categories of
sheaves that are locally constant over the strata of a given stratification; see Corollary 4.7 below.
We need to introduce the cdh topology on the category of stratified schemes.

Definition 4.1. A family ( fi : Xi → X)i in SCH-Σ is said to be a cdh-cover if it is so after forgetting
the stratifications. We denote by cdh the topology generated by cdh-covers on SCH-Σ or similar
categories such as Sch-Σ/S , for a noetherian scheme S , and Reg-Σ/S , for an excellent scheme S
of characteristic zero.

We will use the following simple fact.

Lemma 4.2. Let S be a noetherian scheme.
(i) The forgetful functor βS : Sch-Σ/S → Sch/S induces an equivalence of∞-topoi

βS , ∗ : Shvcdh(Sch/S )
∼
−→ Shvcdh(Sch-Σ/S ). (4.1)

(ii) Assume that S is excellent of characteristic zero. Then, the obvious inclusions ιS and
forgetful functors βS induce a commutative square of equivalences of∞-topoi

Shvcdh(Sch/S ) ∼

βS , ∗
//

∼ ιS , ∗

��

Shvcdh(Sch-Σ/S )

∼ ιS , ∗

��

Shvcdh(Reg/S ) ∼

βS , ∗
// Shvcdh(Reg-Σ/S ).

(4.2)

Proof. To prove (i), we note that the functor βS admits a right adjoint αS : Sch/S → Sch-Σ/S
sending an S -scheme X to itself endowed with the trivial stratification (i.e., the strata are the con-
nected components). Moreover, the counit morphism βS ◦ αS → id is invertible. We deduce from
this a pair of adjoint functors

β∗S : Shvcdh(Sch-Σ/S )� Shvcdh(Sch/S ) : α∗S
such that β∗S ◦ α

∗
S ' id. We will prove that the unit morphism id → α∗S ◦ β

∗
S is an equivalence.

Since α∗S and β∗S commute with arbitrary colimits, it is enough to show that id → α∗S ◦ β
∗
S is an

equivalence when applied to objects of the form Lcdhy(X), for X ∈ Sch-Σ/S . Thus, we are left
to show that the morphism X → αSβS (X) induces an equivalence after cdh sheafification. This is
clear since X → αSβS (X) is both a monomorphism and a cdh-cover.
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To prove (ii), it is enough to show that the inclusions ιS : Reg(-Σ)/S → Sch(-Σ)/S induce
equivalences of topoi. By resolution of singularities for excellent schemes [Tem08], every (strati-
fied) S -scheme X admits a cdh-cover by (regularly stratified) regular S -schemes. Thus, the result
follows from [SGA72b, Exposé III, Théorème 4.1] �

Proposition 4.3. Let H⊗ : (Sch/S )op → CAlg(PrL) be a presentable Voevodsky pullback formal-
ism. Then H⊗ is a CAlg(PrL)-valued cdh-sheaf.

Proof. The proof of [Hoy17, Proposition 6.24], which deals with the case of MShnis(−), is also
valid for a general presentable Voevodsky pullback formalism. For the reader’s convenience, we
include a proof. It follows from [Voe10, Theorem 4.5] that the ∞-category Shvcdh(Sch/S ) is the
localisation of P(Sch/S ) with respect to the following morphisms of presheaves.

(i) The inclusion of the empty presheaf ∅ ↪→ y(∅).
(ii) The morphism y(U)

∐
y(U′) y(X′)→ y(X) associated to a Nisnevich square

U′
j′
//

e′

��

X′

e
��

U
j
// X.

Recall that the square is Cartesian, e is étale, j is an open immersion and the induced
morphism X′ r U′ → X r U is an isomorphism.

(iii) The morphism y(Z)
∐

y(Z′) y(X′)→ y(X) associated to an abstract blowup square

Z′ i′
//

e′

��

X′

e
��

Z i
// X.

Recall that the square is Cartesian, e is proper, i is a closed immersion and the induced
morphism X′ r Z′ → X r Z is an isomorphism.

Thus, it is enough to check that the left Kan extension of H along the Yoneda embedding y :
Sch/S → P(Sch/S ) tranforms the above morphisms into equivalences. This is clear for (i) since
H(∅) is the final ∞-category. We only treat the case of (iii) since (ii) is entirely similar. We need
to show that the obvious functor

θ∗ : H(X)
(i∗,e∗)
−−−−→ H(Z) ×H(Z′) H(X′)

is an equivalence. This functor admits a right adjoint θ∗ sending an object (A, B, u : e′∗(A) ' i′∗(B))
to the limit of the diagram

e∗(B)

��

i∗(A) // i∗e′∗e
′∗(A) u

∼
// e∗i′∗i

′∗(B).
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We claim that the unit morphism id→ θ∗θ
∗ is an equivalence. Writing s : Z′ → X for the composite

morphisms e ◦ i′ = i ◦ e′, we need to show that the square

M //

��

i∗i∗(M)

��

e∗e∗(M) // s∗s∗(M)

is Cartesian for all M ∈ H(X). Let j : X r Z → X and j′ : X′ r Z′ → X′ be the obvious inclusions.
Since the pair ( j∗, i∗) is conservative, it is enough to show that the above square becomes Cartesian
after applying j∗ and i∗. This is clear for j∗ and follows from the proper base change theorem for
i∗. It remains to see that θ∗ is essentially surjective. But a general object (A, B, u) as above is part
of a triangle where the first and third terms are

(0, j′! j′!B, 0 ' i′∗ j′! j′!B) and (A, i′∗e
′∗A, e′∗A ' i′∗i′∗e

′∗A).

Both these objects are clearly in the image of θ. This finishes the proof. �

Proposition 4.4. Let β : Sch-Σ/k → Sch/k be the functor sending a smoothly stratified k-variety
to its underlying k-variety. Then, the morphism of CAlg(PrL)-valued presheaves

Shgeo, ict(−; Λ)⊗ → Shgeo(−; Λ)⊗ ◦ β (4.3)

exhibits Shgeo(−; Λ)⊗ ◦ β as the cdh-sheafification of Shgeo, ict(−; Λ)⊗.

Proof. In fact, more is true: the morphism in (4.3) exhibits Shgeo(−; Λ) ◦ β as the τ-sheafification
of Shgeo, ict(−; Λ), where τ is the topology on Sch-Σ/k generated by the morphisms of stratified
k-varieties of the form idX : (X,P′)→ (X,P). Indeed, for a k-variety X, we have an equivalence

colim
P

Shgeo((X,P); Λ)
∼
−→ Shgeo(X; Λ),

where the colimit is taken in PrL and is indexed by the stratifications of X. �

Proposition 4.5. Let S be an excellent scheme of characteristic 0, and let

H⊗ : (Sch/S )op → CAlg(PrL)

be a presentable Voevodsky pullback formalism. Assume that the conclusion of Proposition 4.4
is satisfied for H⊗, i.e., that the natural transformation H⊗ict → H⊗ ◦ β exhibits H⊗ ◦ β as the
cdh-sheafification of H⊗ict. There is a commutative square of equivalences of group objects in S:

Auteq(H⊗ict)
∼
//

∼

��

Auteq(H⊗ict|Reg-Σ/S )

∼

��

Auteq(H⊗) ∼
// Auteq(H⊗|Reg/S ).

(4.4)

Proof. By Lemma 4.2, we have an equivalence of∞-categories

Shvcdh(Sch/S ; CAlg(PrL))
ι∗
−→ Shvcdh(Reg/S ; CAlg(PrL))

sending the CAlg(PrL)-valued sheaf H⊗ to H⊗|Reg/S and inducing the bottom horizontal equiva-
lence of the square in (4.4). We will prove the proposition by showing that the vertical morphisms
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in this square are equivalences. Using Lemma 4.2, we may replace the commutative square in (4.4)
by the following one:

Auteq(H⊗ict) //

��

Auteq(H⊗ict|Reg-Σ/S )

��

Auteq(H⊗ ◦ β) // Auteq(H⊗ ◦ β|Reg-Σ/S ).

(4.5)

The vertical morphisms in this square are induced by the cdh-sheafification functors

Lcdh : Psh(Sch-Σ/S ; CAlg(PrL)) → Shvcdh(Sch-Σ/S ; CAlg(PrL))

Lcdh : Psh(Reg-Σ/S ; CAlg(PrL)) → Shvcdh(Reg-Σ/S ; CAlg(PrL))

which, by Proposition 4.4 (and Lemma 4.2), send H⊗ict and H⊗ict|Reg-Σ/S to H⊗ ◦ β and H⊗ ◦ β|Reg-Σ/S

respectively. We denote by t : H⊗ict → H⊗ ◦ β the obvious natural transformation. By Lemma 4.6
below, the obvious maps

Auteq(t)→ Auteq(H⊗ict) and Auteq(t|Reg-Σ/S )→ Auteq(H⊗ict|Reg-Σ/S )

are equivalences. Thus, it remains to see that the the obvious maps

Auteq(t)→ Auteq(H⊗ ◦ β) and Auteq(t|Reg-Σ/S )→ Auteq(H⊗ ◦ β|Reg-Σ/S )

are also equivalences. We will only deal with the first map; the case of the second map is entirely
similar. We first note that the map Auteq(t) → Auteq(H⊗ ◦ β) is an epimorphism. Indeed, let θ be
an autoequivalence of H⊗ ◦ β. For X ∈ Sch-Σ/S , the endofunctor θX of H(X) preserves the full
sub-∞-category Hict(X) since its compact generators are characterised by the property of being
dualizable over every stratum of X. (Here we use that θX(−)|C ' θC(−|C) for a stratum C of X.)
Thus, θ extends to an autoequivalence of the inclusion t : H⊗ict ↪→ H⊗ ◦ β as needed. It remains to
show that the map Auteq(t)→ Auteq(H⊗ ◦ β) is a monomorphism. We have a Cartesian square

Map(t, t) //

��

Map(H⊗ ◦ β,H⊗ ◦ β)

��

Map(H⊗ict,H
⊗

ict) // Map(H⊗ict,H
⊗ ◦ β).

Since the bottom horizontal map is a monomorphism, the result follows. �

Lemma 4.6. Let C be an ∞-category and let C′ ⊂ C be a reflexive sub-∞-category (in the sense
of [Lur09a, Remark 5.2.7.9]). Let D ⊂ C∆1

be the full sub-∞-category spanned by the edges
C0 → C1 in C exhibiting C1 as the localisation of C0 relative de C′. Then, evaluating at 0 yields
an equivalence of∞-categories D → C.

Proof. The functor is essentially surjective since every object C0 admits a localisation relative to
C′. So, it remains to show that the functor is fully faithful. Given two objects c : C0 → C1 and
d : D0 → D1 in D, we have a Cartesian square

MapD(c, d) //

��

MapC(C1,D1)

��

MapC(C0,D0) // MapC(C0,D1).
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Since D1 belongs to C′, and C1 is the localisation of C0 relatively to C′, the right vertical map of
this square is an equivalence. Thus, its left vertical map is also an equivalence as needed. �

Corollary 4.7. We have a commutative square of equivalences of derived group S-prestacks

Auteq(Sh⊗geo, ict)
∼
//

∼

��

Auteq(Sh⊗geo, ict|Sm-Σ/k)

∼

��

Auteq(Sh⊗geo) ∼
// Auteq(Sh⊗geo|Sm/k).

(4.6)

In particular, we have an equivalence of derived group S-prestacks

Gmot(k, σ)
∼
−→ Auteq(Sh⊗geo, ict|Sm-Σ/k). (4.7)

Proof. This follows from Proposition 4.5. For the last assertion, we use Theorem 2.10. �

4.2. An application of the exit-path theorem.
We fix a field k endowed with a complex embedding σ : k ↪→ C. In this subsection, we use our

exit-path theorem, i.e., Corollary 3.119, to prove a version of Theorem 2.10 where the∞-categories
of sheaves are replaced with∞-categories of local systems.

Remark 4.8. For a commutative connective ring spectrum Λ, the functor ShΨ
geo(−; Λ)⊗, obtained

by applying Theorem 3.112 with H(−)⊗ = Shgeo(−; Λ)⊗, takes a demarcated smoothly stratified
k-variety (X,C−,C+) to the symmetric monoidal∞-category L̂Sgeo(N◦

C−
(C+); Λ)⊗. Indeed, by The-

orem 3.71, every local system of geometric origin on N◦
C−

(C+) is tame on the boundary of NC−(C+).

For this reason, the functor ShΨ
geo(−; Λ)⊗ will be denoted instead by

L̂SΨ
geo(−; Λ)⊗ : (Sm-Σdm/k)op → CAlg(PrL). (4.8)

Taking the sub-∞-categories of dualizable objects, we also obtain a functor

LSΨ
geo(−; Λ)⊗ : (Sm-Σdm/k)op → CAlg(CAT∞). (4.9)

In fact, the functor L̂SΨ
geo(−; Λ)⊗ can be obtained from the functor LSΨ

geo(−; Λ)⊗ by indization. In
particular, an autoequivalence of the former induces an autoequivalence of the latter and vice versa.

Definition 4.9. We define the spectral group S-prestack Auteq(LSΨ,⊗
geo ) as in Definition 2.9. Namely,

we apply Construction 1.51 to
• the functor C : (SpAFFnc)op → CAT∞ sending Spec(Λ) to the∞-category

Psh(Sm-Σdm/k; CAlg(PrL)Mod⊗
Λ
/)

of CAlg(PrL)Mod⊗
Λ
/-valued presheaves on Sm-Σdm/k, and

• the natural transformation pt→ C sending Spec(Λ) to the functor

L̂SΨ
geo(−; Λ)⊗ : (Sm-Σdm/k)op → CAlg(PrL)Mod⊗

Λ
/.

If we want to stress that Auteq(LSΨ,⊗
geo ) depends on σ, we will write Auteq(LSΨ,⊗

σ-geo) .

In this subsection, we will prove the following version of Theorem 2.10.
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Theorem 4.10. Let k be a field and σ : k ↪→ C a complex embedding. There is an equivalence of
spectral group S-prestacks

Gmot(k, σ)
∼
−→ Auteq(LSΨ,⊗

σ-geo). (4.10)
In particular, the right hand side is a spectral affine group scheme.

By Corollary 4.7, we only need to show that there is an equivalence

Auteq(LSΨ,⊗
geo )

∼
−→ Auteq(Sh⊗geo, ict). (4.11)

This relies on the exit-path theorem, i.e., Corollary 3.119. For later use, we will prove this in a
greater generality; see Theorem 4.15 below. We recall the Kummer étale topology.

Definition 4.11. Let f : Y → X be a morphism in Reg-Σ/S . We say that f is Kummer étale if it
satisfies the following conditions.

(i) Locally for the étale topology on X and Y , the morphism f is of the form

Spec(OX[t1, . . . , tm]/(te1
1 − u1, . . . , t

em
1 − um))→ X

where t1, . . . , tm are indeterminates, e1, . . . , em are positive integers invertible on X, and
u1, . . . , um ∈ O(X) define distinct reduced irreducible constructible divisors of X.

(ii) The stratification of Y is the pullback of the stratification of X.
The Kummer étale topology on Reg-Σ/S is the topology generated by the jointly surjective families
of Kummer étale morphisms. We also define a Kummer étale topology on Reg-Σdm/S as follows:
it is the one generated by the families (ei : (Xi,Ci,−,Ci,+) → (X,C−,C+))i such that the ei’s are
Kummer étale and the induced family (Ci,+,C+)i is jointly surjective (and hence a Kummer étale
cover). Similarly, we have a Kummer étale topology on Reg-Σdm

+ /S . We denote all these topologies
by két.

Proposition 4.12. Let Λ be a commutative ring spectrum. The functor Shgeo(−; Λ)⊗, restricted to
Sm-Σ/S , satisfies Kummer étale hyperdescent.

Proof. Given a Kummer étale hypercover X• → X−1 in Sm-Σ/k, we need to show that

Shgeo(X−1; Λ)→ lim
[n]∈∆

Shgeo(Xn; Λ) (4.12)

is an equivalence. We argue by induction on the number of strata in X−1. We fix a closed stratum
Z−1 ⊂ X−1 and set U−1 = X−1 r Z−1. We also set U• = X• ×X−1 U−1 and Z• = (X• ×X−1 Z−1)red, and
denote by j• : U• → X• and i• : Z• → X• the obvious inclusions. Then U• → U−1 is a Kummer
étale hypercover and Z• → Z−1 is an étale hypercover. Every object (Fn)n in the codomain of the
functor in (4.12) is part of a cofiber sequence

( jn, ! j!
nFn)n → (Fn)n → (in, ∗i∗nFn)n.

Using the induction hypothesis and étale hyperdescent, we deduce that ( jn, ! j!
nFn)n and (in, ∗i∗nFn)n

belong to the essential image of the functor in (4.12). (Note that étale hyperdescent for Shgeo(−; Λ)
can be deduced from Theorem 1.93 and the corresponding property for MSh(X; Λ); see for ex-
ample [AGV20, Proposition 3.2.1].) Thus, it is enough to show that the functor in (4.12) is fully
faithful. Said differently, given F ∈ Shgeo(X−1; Λ), we need to show that

F → lim
[n]∈∆

en, ∗e∗nF (4.13)

is an equivalence. To do so, we may assume that Λ = S. We claim that F is Postnikov complete
in the sense of [CM19, Definition 2.4]. To prove this, we may assume that F is uniquely divisible,
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i.e., is a sheaf of Q-vector spaces, or that F is `-torsion for some prime `. In the first case, Post-
nikov completeness was discussed in the proof of Lemma 1.109. In the second case, we use the
equivalences of∞-categories

Shgeo(−)`-nil ' Shvét(Ét/(− ×k C))`-nil

to reduce to the Postnikov completeness of étale sheaves on small étale sites of varieties of bounded
cohomological dimension. (See for example [AGV20, Lemma 2.4.5].) This said, we can write
F = limm∈N τ≤mF. Since e∗n is exact, we also have e∗nF = limm∈N e∗nτ≤mF. Thus, we are reduced to
showing that the morphism in (4.13) is an equivalence when F is truncated. In this case, we may
assume that X• → X−1 is a Čech nerve. Using étale hyperdescent, we reduce to the case where
X• → X−1 is the Čech nerve of a finite Kummer étale cover X0 → X−1. In this case, all the en’s are
finite. Given a stratum C of X−1, we denote by ιC : C → X−1 its inclusion. It is enough to show
that the morphism in (4.13) is an equivalence after applying ι∗C, for all the strata C ⊂ X−1. Using
that F is truncated and that the en’s are finite, we have equivalences

ι∗C lim
[n]∈∆

en, ∗ e∗n F ' lim
[n]∈∆

ι∗C en, ∗ e∗n F ' lim
[n]∈∆

eC, n, ∗ e∗C, n ι
∗
C F,

where eC, • : (X• ×X C)red → C is the obvious morphism. Thus, we are reduced to showing that

ι∗C F → lim
[n]∈∆

eC, n, ∗ e∗C, n ι
∗
C F

is an equivalence, which is true by étale descent since eC, • is the Čech nerve of a finite étale cover
of C. �

In the reminder of this subsection, we fix an excellent scheme S of characteristic 0 and a pre-
sentable Voevodsky pullback formalism H⊗ : (Sch/S )op → CAlg(PrL).

Proposition 4.13. Assume that H⊗ satisfies Kummer étale hyperdescent. Then, the lax 2-functor
HΨ,⊗

+ admits Kummer étale hyperdescent, and the morphism HΥ,⊗
+ → HΨ,⊗

+ exhibits HΨ,⊗
+ as the

Kummer étale hypersheafification of HΥ,⊗
+ computed in CAlg(PrL).

Proof. We may prove the statement after restriction to Reg-Σ/S and Reg-Σdm/S , in which cases
the lax 2-functors become strict functors. We split the proof in three small steps.

Step 1. Let e• : X• → X−1 be a hypercover in Reg-Σ/S . By assumption, we have an equivalence
of∞-categories

H(X−1)
∼
−→ lim

[n]∈∆
H(Xn).

Since Hict-tm(Xn) ⊂ H(Xn) is a full sub-∞-category, for every n ≥ −1, we see that it is enough to
prove the following property: an object M ∈ H(X−1) belongs to Hict-tm(X−1) if and only if M|X0

belongs to Hict-tm(X0). It is enough to prove this for the objects ιC, !ι∗C M, where ιC : C → X is
the inclusion of a stratum of X. In this case, it is enough to show that M|C belongs to Hitame(C/C)
assuming that M|D belongs to Hitame(D/D), for every stratum D ⊂ X0 over C. Consider the obvious
morphism eC, • : (X•×X−1 X•)red → C. This is an étale hypercover. By étale hyperdescent, we deduce
an equivalence

M|C ' colim
[n]∈∆

eC, n, ] e∗C, n (M|C).

For n ≥ 0, e∗C, n (M|C) is a pullback of e∗C, 0(M|C), and hence is ind-tame at the boundary. This
implies tha M|C is ind-tame as needed.
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Step 2. Now, let e• : (X•,C•,−,C•,+) → (X−1,C−1,−,C−1,+) be a Kummer étale hypercover in
Reg-Σdm/S . We need to show that we have an equivalence of∞-categories

HΨ(X−1,C−1,−,C−1,+)
∼
−→ lim

[n]∈∆
HΨ(Xn,Cn,−,Cn,+).

This follows from the first step since N◦
C•,−

(C•,+) → N◦
C−1,−

(C−1,+) is a Kummer étale hypercover

and, for every n ≥ −1, HΨ(Xn,Cn,−,Cn,+) is equivalent to Hitame(N◦Cn,−
(Cn,+)) and hence, to the full

sub-∞-category of Hict-tm(NCn,−
(Cn,+)) spanned by those objects whose restriction to the boundary

is zero.

Step 3. It remains to prove the assertion about the hypersheafification of HΥ
+ . We only treat the case

of Hict-log; the case of HΥ follows then easily using the reasoning in the second step. We fix X ∈
Reg-Σ/S . For an integer d ≥ 1, we denote by Hd ⊂ y(X) the sieve consisting of those Kummer étale
morphisms X′ → X whose ramification index divides d on each constructible irreducible divisor
of X. Clearly, Hd is a covering sieve for the Kummer étale topology. Let Hict-log(Hd) be the value
at Hd of the right Kan extension of Hict-log(−) along the Yoneda embedding of Reg-Σ/S . Arguing
as in the first step, we see that Hict-log(Hd) is the full sub-∞-category of H(X) generated under
colimit by the constructible sheaves which are logarithmic after locally extracting d-th roots of the
equations defining the irreducible constructible divisors. In particular, Hict-log(Hd) is compactly
generated and we have an equivalence in PrL

colim
d∈N×

Hict-log(Hd) ' Hict-tm(X).

This finishes the proof. �

Corollary 4.14. Assume that H⊗ satisfies Kummer étale hyperdescent. Then, we have natural
equivalences of group objects in S:

Auteq(H⊗ict-log)
∼
−→ Auteq(H⊗ict-tm) and Auteq(HΥ,⊗)

∼
−→ Auteq(HΨ,⊗). (4.14)

Proof. The strategy is similar to the one used in the proof of Proposition 4.5. We consider the
natural transformations t : H⊗ict-log → H⊗ict-tm and t′ : HΥ,⊗ → HΨ,⊗. By Proposition 4.13 and
Lemma 4.6 we have equivalences of group objects in S:

Auteq(t)
∼
−→ Auteq(H⊗ict-log) and Auteq(t′)

∼
−→ Auteq(HΥ,⊗).

Thus, it remains to show that the obvious maps

Auteq(t)→ Auteq(H⊗ict-tm) and Auteq(t′)→ Auteq(HΨ,⊗)

are equivalences. Using that the natural transformations t and t′ are given by fully faithful embed-
dings, and arguing as in the proof of Proposition 4.5, we only need to show that these maps are
epimorphisms. Said differently, given autoequivalences (θX)X∈Reg-Σ/S and (θ′X,C−,C+

)(X,C−,C+)∈Reg-Σdm/S

of H⊗ict-tm and HΨ,⊗, we need to show that they preserve the sub-functors H⊗ict-log and HΥ,⊗.
We first consider the case of (θX)X∈Reg-Σ/S . It is enough to show, that every stratum C ⊂ X, the

autoequivalence θC preserves Hlog(C/X). Note that θC preserves Htame(C/X) which is the essential
image of Htame(X) by the inverse image functor; in the next few lines, we will denote by θC the
induced equivalence on Htame(C/X). Let j : C ↪→ C be the obvious inclusion. Since θC◦ j∗ ' j∗◦θC,
we deduce that θC ◦ j∗ ' j∗ ◦ θC. Now, for F ∈ Hlog(C/X), the j∗1-module j∗F is dualizable. Since
θC is symmetric monoidal, we deduce that θC j∗F ' j∗θCF is dualizable over θC j∗1 ' j∗1. This
show that θCF belongs to Hlog(C/X) as needed.
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We now consider the case of (θ′X,C−,C+
)(X,C−,C+)∈Reg-Σdm/S . Fix M ∈ Hlog(N◦

C−
(C+)). We need to show

that θ′X,C−,C+
(M) is also logarithmic at the boundary. We first note that M is unipotent with respect

to the projection p : N◦
C−

(C+) → C+. Thus, we may assume that M = p∗N with N ∈ Hlog(C+/C+).
Since θ′X,C−,C+

◦p∗ ' p∗◦θ′X,C+,C+
, we may replace M with N and assume that C− = C+. We may even

replace X with C+, and assume that X is connected and C+ = X◦. Said differently, we are reduced
to showing that θ′X,X◦,X◦ preserves the sub-∞-category Hlog(X◦/X) of Htame(X◦/X). By Proposition
3.47, this sub-∞-category can be characterised as the largest one satisfying the following properties
(see Notations 3.40 and 3.43):

• this sub-∞-category is stable by the tensor product;
• the restriction of the lax monoidal functor χ̃C : Htame(X◦/X) → ModχC1(Htame(C/C)) to

this sub-∞-category is monoidal for every stratum C ⊂ X.
Thus, to conclude, it is enough to show that there is an equivalence χC ◦ θ

′
X,X◦,X◦ ' θ

′

C,C,C
◦ χC. This

follows from the fact that χC ' q∗ ◦ ‹ΨC where q : N◦X(C)→ C is the obvious projection. �

We can now state the main result of this subsection.

Theorem 4.15. Assume that H⊗ satisfies Kummer étale hyperdescent. Then, there is a commutative
square of equivalences of group objects in S:

Auteq(H⊗ict-log) ∼
//

∼

��

Auteq(HΥ,⊗)

∼

��

Auteq(H⊗ict-tm) ∼
// Auteq(HΨ,⊗).

(4.15)

The vertical equivalences of the square in (4.15) are the ones provided by Corollary 4.14. We
now construct the horizontal maps of this square.

Construction 4.16. We call a morphism f : (Y,D−,D+) → (X,C−,C+) in Reg-Σdm/S inert when
f : Y → X is an isomorphism of stratified S -schemes and f∗(D+) = C+. We denote by

CATst-inr-cart
∞/(Reg-Σdm/S ) ⊂ CATcart

∞/(Reg-Σdm/S ) (4.16)

the wide sub-∞-category whose morphisms are those functors respecting Cartesian edges over
inert morphisms. Let p : Reg-Σdm/S → Reg-Σ/S be the forgetful functor as in Construction
3.117. The base change functor p∗ : CATcart

∞/(Reg-Σ/S ) → CATst-inr-cart
∞/(Reg-Σdm/S ) admits a right adjoint

pinr
∗ : CATst-inr-cart

∞/(Reg-Σdm/S ) → CATcart
∞/(Reg-Σ/S ) (4.17)

sending a Cartesian fibration M → Reg-Σdm/S to the full sub-∞-category of p∗M spanned by
those sections respecting Cartesian edges over inert morphisms. By Corollary 3.119, the functor
pinr
∗ takes the Cartesian fibration classified by HΨ,⊗ to the Cartesian fibration classified by H⊗ict-tm.

The same applies with “Υ” and “ict-log” instead of “Ψ” and “ict-tm”. Thus, the functor pinr
∗ induces

a map of group objects in S:

Auteq(HΨ,⊗)→ Auteq(H⊗ict-tm) and Auteq(HΥ,⊗)→ Auteq(H⊗ict-log). (4.18)

In fact, the group object Auteq(HΨ,⊗) acts, not only on H⊗ict-tm, but also on the counit morphism
p∗H⊗ict-tm → HΨ,⊗, which gives an action on the lax 2-functor HΨ,⊗

+ . The same applies with “Υ”
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and “ict-log” instead of “Ψ” and “ict-tm”. Thus, we obtain commutative triangles of maps of group
objects in S:

Auteq(HΨ,⊗) Auteq(HΥ,⊗)

Auteq(HΨ,⊗) //

((

Auteq(HΨ,⊗
+ )

��

OO

and Auteq(HΥ,⊗) //

((

Auteq(HΥ,⊗
+ )

��

OO

Auteq(H⊗ict-tm) Auteq(H⊗ict-log)

(4.19)

where the vertical arrows are given by restriction along the subcategories Reg-Σ/S and Reg-Σdm/S
of Reg-Σdm

+ /S .

By Corollary 4.14, Theorem 4.15 follows if we can prove that the map of group objects

Auteq(HΥ,⊗)→ Auteq(H⊗ict-log)

is an equivalence. This will be obtained as the conjunction of Propositions 4.17 and 4.18 below.

Proposition 4.17. There is an equivalence of group objects in S:

Auteq(HΥ,⊗)
∼
−→ Auteq(HΥ,⊗

+ ). (4.20)

Proof. As explained in Construction 4.16, the obvious map Auteq(HΥ,⊗
+ ) → Auteq(HΥ,⊗) admits

a section, and hence is an epimorphism. Thus, it is enough to show that the kernel

ker(Auteq(HΥ,⊗
+ )→ Auteq(HΥ,⊗)) (4.21)

is contractible. Let C = CATcart
∞/(Reg-Σ/S ) and D = CATst-inr-cart

∞/(Reg-Σdm/S ). The kernel in (4.21) can be
identified with the group of autoequivalences of the object(

←

∫
Reg-Σ/S

H⊗ict-log, p∗
(
←

∫
Reg-Σ/S

H⊗ict-log

)
θ
−→ ←

∫
Reg-Σdm/S

HΥ,⊗

)
(4.22)

in the ∞-category C ×p∗,D D/HΥ,⊗; see Construction 3.117. Since the functor θ induces an equiva-
lence

θ′ :←
∫

Reg-Σ/S
H⊗ict-log

∼
−→ pinr

∗

(
←

∫
Reg-Σdm/S

HΥ,⊗

)
,

the object in (4.22) is a final object of C ×p∗,D D/HΥ,⊗ . In particular, it has a contractible space of
autoequivalences as needed. �

Proposition 4.18. There is an equivalence of group objects in S:

Auteq(HΥ,⊗
+ )

∼
−→ Auteq(H⊗ict-log). (4.23)

Proof. We split the proof in several steps.
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Step 1. We will construct a section

Auteq(H⊗ict-log)→ Auteq(HΥ,⊗
+ ) (4.24)

to the obvious map. For this, we need to go through the construction of HΥ,⊗
+ , checking that an

autoequivalence of H⊗ict-log gives rise in a coherent way to an autoequivalence of HΥ,⊗
+ . It will be

convenient to denote by K the classifying space of the group object Auteq(H⊗ict-log). We view K as
an∞-groupoid, so that we may extend H⊗ict-log into a functor

H⊗
K

: K × (Reg-Σ/S )op → CAlg(PrL). (4.25)

We apply Construction 3.97 with H⊗
K

instead of H⊗. This gives rise to a lax 2-functor

HK(−;−)⊗ : D1-op, 2-op
HK

 SMCAT∞. (4.26)

This can be informally described as in Remark 3.98. We only mention that the objects of DHK
are

the objects of the∞-category

CHK
=

∫
K×(Reg-Σ/S )op

CAlg(HK). (4.27)

Given a split torus-embedding T , the logarithmic sheaf LT ∈ H(T ) belongs to Hict-log(T ) and is
naturally fixed by the action of Auteq(H⊗ict-log). This can be easily seen by inspecting Construction
3.24. More is true: the section L obtained in Construction 3.106 can be extended to a section

L : K × TEmbop
→

∫
K×TEmbop

CAlg(HK). (4.28)

Adapting Construction 3.108, we thus obtain an oplax 2-functor

(Df,L) : Kop × Reg-Σdm
+ /S → DHK

. (4.29)

Composing with the lax 2-functor in (4.26), we obtain a lax 2-functor

HK(Df(−);L)⊗ : K × (Reg-Σdm
+ /S )op  SMCAT∞. (4.30)

Finally, passing to a sub-2-functor as in Definition 3.111, yields a lax 2-functor

HΥ,⊗
K,+

: K × (Reg-Σdm
+ /S )op  SMCAT∞ (4.31)

whose restriction to Reg-Σdm
+ /S is HΥ,⊗

+ . This gives an action of Auteq(H⊗ict-log) on HΥ,⊗
+ extending

the tautological action on H⊗ict-log as needed.

Step 2. Now that we know that the obvious map ρ : Auteq(HΥ,⊗
+ )→ Auteq(H⊗ict-log) has a section,

it is enough to show that its kernel ker(ρ) is contractible. With the notations as in Construction
3.117, we have an equivalence

Auteq(HΥ,⊗
+ ) ' Auteq(θ) ×Auteq(H⊗ict-log◦p) Auteq(H⊗ict-log). (4.32)

We claim that the map Auteq(H⊗ict-log) → Auteq(H⊗ict-log ◦ p) is an equivalence. Indeed, writing tq
for the topology generated by the jointly surjective families of clopen immersions, the functor

p∗ : Shvtq(Reg-Σ/S ; CAlg(PrL))→ Psh(Reg-Σdm/S ; CAlg(PrL)) (4.33)

is fully faithful. To prove this, we may show that the unit map id → p∗p∗ is an equivalence.
Using [Lur09a, Proposition 4.3.3.10], this follows from the fact that p is a coCartesian fibration
whose fiber at a connected X ∈ Reg-Σ/S has contractible geometric realisation. This said, we
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deduce from the formula in (4.32) an equivalence Auteq(HΥ,⊗
+ ) ' Auteq(θ). Therefore, to show

that ker(ρ) is contractible, we can as well show that ker(ρ′) is contractible, where ρ′ : Auteq(θ) →
Auteq(H⊗ict-log ◦ p) is the obvious map.

Step 3. Consider the natural transformation θ in (3.96) as a functor from ∆1 to CAT∞/(Reg-Σdm/S ).
Taking the associated coCartesian fibration, we get a diagram∫

∆1
θ

q
//

r
��

Reg-Σdm/S

∆1

where q is a Cartesian fibration and r is a coCartesian fibration. The Cartesian fibration q is
classified by a functor admitting the following informal description.

• It takes an object (X,C−,C+) to the∞-category∫
∆1
θX,C−,C+

whose objects are pairs (ε,M) where ε ∈ {0, 1}, and M is an object of Hict-log(X), if ε = 0,
and an object of Hilog(C+), if ε = 1.
• It takes a morphism f : (Y,D−,D+)→ (X,C−,C+) to the functor

f ∗ :
∫

∆1
θX,C−,C+

→

∫
∆1
θY,D−,D+

.

Over 0 ∈ ∆1, this is just the pullback functor f ∗ : Hict-log(X) → Hict-log(Y). Over 1 ∈ ∆1,
this the composite functor

Hilog(C+)
χC′+
−−→ Hilog(C′+)→ Hilog(D+)

where C′+ = f∗(D+). Finally, this functor takes a coCartesian edge (M, idM|C+
), at M ∈

Hict-log(X), to the edge ( f ∗M, ( f ∗M)|D+
→ χC′+(M|C+

)|D+
).

Taking the dual coCartesian fibration to q, we obtain a diagram

W
q′
//

r′

��

(Reg-Σdm/S )op

∆1

where q′ is a coCartesian fibration and r′ is a Cartesian fibration. (The last property follows from
the fact that, for every (X,C−,C+), the projection rX,C−,C+

:
∫

∆1 θX,C−,C+
→ ∆1 is a biCartesian fibra-

tion.) Taking the functor classifying the Cartesian fibration r′, we obtain a commutative triangle

W1 =

∫
(Reg-Σdm/S )op

HΥ,⊗ ξ
//

((

W0 =

∫
(Reg-Σdm/S )op

H⊗ict-log ◦ p

uu

(Reg-Σdm/S )op

(4.34)
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where the slanted arrows are coCartesian fibrations. The fiber of ξ at (X,C−,C+) is the functor

q∗ : H⊗ilog(N◦
C−

(C+))→ H⊗ict-log(X)

induced by the obvious morphism q : N◦
C−

(C+) → X. Clearly, we have Auteq(θ) ' Auteq(ξ).
Therefore, to show that ker(ρ′) is contractible, we may as well show that ker(ρ′′) is contractible,
where ρ′′ : Auteq(ξ)→ Auteq(W0) is the obvious map.

Step 4. Let W′
0 ⊂ W0 be the full sub-∞-category spanned by the objects ((X,C−,C+),M) with M

in the essential image of the fully faithful embedding (ιC+
)∗ : H⊗ilog(C+) → H⊗ict-log(X). (Here, we

denote by ιC+
: C+ ↪→ X the obvious inclusion.) The following properties are easily checked.

• The functor W′
0 → (Reg-Σdm/S )op is a coCartesian fibration classified by the functor

Hχ,⊗ : (Reg-Σdm/S )op → SMCAT∞

sending (X,C−,C+) to H⊗ilog(C+) and f : (Y,D−,D+)→ (X,C−,C+) to the composition of

H⊗ilog(C+)
χC′+
−−→ H⊗ilog(C′+)→ H⊗ilog(D+).

(As usual, we set C′+ = f∗(D+).)
• The functor ξ factors through W′

0 inducing a commutative triangle

W1 =

∫
(Reg-Σdm/S )op

HΥ,⊗ ξ′
//

((

W′
0 =

∫
(Reg-Σdm/S )op

Hχ,⊗

vv

(Reg-Σdm/S )op.

(4.35)

Moreover, this triangle is a morphism of coCartesian fibrations, i.e., ξ′ preserves coCarte-
sian edges.

Let ρ′′′ : Auteq(ξ′) → Auteq(W′
0) be the obvious morphism. Since W′

0 → W0 is fully faithful, the
induced functor CAT∞/W′0 → CAT∞/W0 is also fully faithful. It follows that we have an equivalence
ker(ρ′′′) ' ker(ρ′′). Thus, to prove that ker(ρ′′) is contractible, we may as well show that ker(ρ′′′)
is contractible.

Step 5. We also denote by ξ′ : HΥ,⊗ → Hχ,⊗ the natural transformation deduced from the mor-
phism of coCartesian fibrations in (4.35). It factors as follows

HΥ,⊗ ξ̃
−→ Modξ(1)(Hχ)⊗

φ
−→ Hχ,⊗

with φ given by the forgetful functors. The natural transformation ξ̃ is an equivalence. Thus,
to show that ker(ρ′′′) is contractible, we may as well show that ker(ρ′′′′) is contractible, where
ρ′′′′ : Auteq(φ) → Auteq(Hχ,⊗) is the obvious map. It follows from the commutative version of
[Lur17, Theorem 4.8.5.11] (see also [Lur17, Corollary 4.8.5.21]) that ker(ρ′′′′) is equivalent to the
group Auteq(ξ(1)) of autoequivalences of the section

ξ(1) : (Reg-Σ/S )op →

∫
(Reg-Σ/S )op

CAlg(Hχ).
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Thus, we may as well prove that Auteq(ξ(1)) is contractible. For this, we remark that ξ(1) is the
initial object of the full sub-∞-category of

Sect
(∫

(Reg-Σ/S )op
CAlg(Hχ)

/
(Reg-Σ/S )op

)
spanned by those sections taking a morphism of the form (X,C−,C′+) → (X,C−,C+), for C− �
C+ � C′+, to a coCartesian edge. �

4.3. Motivic exit-path spaces.
In this subsection, we introduce some universal motivic sheaves that will play a key role in the

proof of our second main theorem, i.e., Theorem 4.37. These are naturally commutative algebras,
and could be considered as algebras of functions on motivic exit-path spaces. For later use, we
present the construction in a general Voevodsky pullback formalism H⊗ over an excellent scheme
S of characteristic zero. We start by developing a “coCartesian” version of Corollary 3.119 which
will be more convenient in this subsection.

Construction 4.19. The equivalence of Cartesian fibrations provided by Corollary 3.119, gives
rise to an equivalence of CAlg(PrL)-valued presheaves on Reg-Σ/S :

H⊗ict-tm
∼
−→
←−
σ ⊗H, (4.36)

where
←−
σH is the PrL-valued presheaf given, for X ∈ Reg-Σ/S , by the full sub-∞-category

←−
σH(X) ⊂ Sect

←∫
P′X

HΨ

/
P′X

 (4.37)

spanned by those sections sending an arrow of the form (C′−,C+) → (C−,C+), for a sequence of
strata C′− � C− � C+ in X, to a Cartesian edge. It follows from [GHN17, Theorem 4.5] that the
Cartesian fibration freely generated by P′X, with marked edges given by (C′−,C+) → (C−,C+) as
above, is given by the obvious functor P′′X → P′X introduced in Notation 3.21. Recall that P′′X is
the sub-poset of (PX,�)× (PX,�)× (PX,�) whose elements are the triples (C−,C0,C+) of strata in
X such that C− � C0 � C+. Thus, we have an equivalence of∞-categories

←−
σH(X) ' Funcart

P′X

P′′X ,←∫
P′X

HΨ

 . (4.38)

We may informally describe the image of an object M ∈ Hict-tm(X) in the codomain of the equiva-
lence in (4.38) as follows: it is the morphism of Cartesian fibrations sending a triple (C−,C0,C+)
to the object ‹ΨC0,C+

(M|C0)|N◦C− (C+). (Here and below, we write ‹ΨC0,C+
, instead of ‹ΨC+

, to denote

the specialisation functor from Hitame(C0) to Hitame(N◦C0
(C+)) associated to the stratum C+ ⊂ C0.)

The aforementioned morphism sends an arrow (C−,C′0,C+) → (C−,C0,C+), with C′0 � C0, to the
morphism induced by ‹ΨC′0,C+

(M|C′0)|N◦C0
(C+) →

‹ΨC0,C+
(M|C0).

Passing to the dual coCartesian fibrations, we may write the codomain of the equivalence in (4.38)
as an ∞-category of morphisms of coCartesian fibrations over P

′op
X . We then repeat the above

argument reversely using the free coCartesian fibration generated by P′X, with marked edges of the
form (C−,C′+)→ (C−,C+). This gives an equivalence of CAlg(PrL)-valued presheaves

←−
σ ⊗H

∼
−→
−→
σ ⊗H, (4.39)
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where
−→
σH is the PrL-valued presheaf given, for X ∈ Reg-Σ/S , by the full sub-∞-category

−→
σH(X) ⊂ Sect

∫
P
′op
X

HΨ

/
P
′op
X

 (4.40)

spanned by those sections sending an arrow of the form (C−,C′+) → (C−,C+), for a sequence of
strata C− � C+ � C′+ in X, to a coCartesian edge. Composing the equivalences in (4.36) and (4.39),
we obtain an equivalence of CAlg(PrL)-valued presheaves on Reg-Σ/S :

H⊗ict-tm
∼
−→
−→
σ ⊗H. (4.41)

Thus, we have proven the following “coCartesian” version of Corollary 3.119.

Corollary 4.20 (Exit-path Theorem). Denote by p : Reg-Σdm/S → Reg-Σ/S the functor forgetting
the demarcation. Then, there is a fully faithful functor

θ′′ :
∫

(Reg-Σ/S )op
H⊗ict-tm → p∗

(∫
(Reg-Σdm/S )op

HΨ,⊗

)
(4.42)

whose essential image consists of those pairs (X, s), with X a regularly stratified S -scheme and

s : P′op
X →

∫
P
′op
X

HΨ

a section taking the edges (C−,C′+)→ (C−,C+), with C− � C+ � C′+, to coCartesian edges.

Construction 4.21. We continue denoting by p : Reg-Σdm/S → Reg-Σ/S the forgetful functor.
For (X,C−,C+) a demarcated regularly stratified S -scheme, we denote by QX,C−,C+

⊂ P′X the sub-
poset whose elements are the pairs (C′−,C

′
+) such that C′− � C− � C+ � C′+. Clearly, the assignment

(X,C−,C+) 7→ QX,C−,C+
defined a sub-functor Q of P′ ◦ p. Consider the coCartesian fibrations

q :
∫

Reg-Σdm/S
Q → Reg-Σdm/S and p′ :

∫
Reg-Σdm/S

P′ ◦ p→ Reg-Σdm/S .

We have an obvious functor

p∗p∗

(∫
(Reg-Σdm/S )op

HΨ,⊗

)
' p′∗

∫(∫
Reg-Σdm/S P′◦p

)op H
Ψ,⊗

→ q∗

∫(∫
Reg-Σdm/S Q

)op H
Ψ,⊗

 .
By straightening and restricting to

−→
σ, we obtain a morphism of CAlg(PrL)-valued presheaves

−→
σ ⊗ ◦ p→ ‹σ⊗ (4.43)

where ‹σ is the PrL-valued presheaf given, for (X,C−,C+) ∈ Reg-Σdm/S , by the full sub-∞-category‹σ(X,C−,C+) ⊂ Sect

∫
Q

op
X,C− ,C+

HΨ

/
Q

op
X,C−,C+

 (4.44)

spanned by those sections sending an arrow (C′−,C
′′
+ ) → (C′−,C

′
+), with C′− � C− � C+ � C′+ �

C′′+ , to a coCartesian edge. The category QX,C−,C+
admits a reflexive subcategory RX,C−,C+

whose
elements are the pairs (C′−,C+). It follows that we have an equivalence of∞-categories‹σ(X,C−,C+) ' Sect

∫
R

op
X,C− ,C+

HΨ

/
R

op
X,C−,C+

 . (4.45)
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Using the equivalence in (4.41), we obtain a morphism of CAlg(PrL)-valued presheaves

ϕ′∗ : H⊗ict-tm ◦ p→ ‹σ⊗H. (4.46)

Informally and modulo the equivalence in (4.45), for a demarcated regularly stratified S -scheme
(X,C−,C+) the functor ϕ′∗X,C−,C+

takes an object M ∈ Hict-tm(X) to the section

sM : Rop
X,C−,C+

→

∫
R

op
X,C− ,C+

HΨ

given by sM(C′−,C+) = ‹ΨC′−,C+
(M|C′−). In particular, letting XC− be the smallest constructible open

neighbourhood of C− in X, we see that ϕ′∗X,C−,C+
takes an object supported in X r XC− to 0. Said

differently, ϕ′∗X,C−,C+
factors through the localisation functor Hict-tm(X) → Hict-tm(XC−) yielding a

functor ϕ∗X,C−,C+
. These functors assemble into a morphism of CAlg(PrL)-valued presheaves. More

precisely, let g : Reg-Σdm/S → Reg-Σ/S be the functor given by g(X,C−,C+) = XC− . Then the
morphism in (4.46) factors through a morphism of CAlg(PrL)-valued presheaves

ϕ∗ : H⊗ict-tm ◦ g→ ‹σ⊗H. (4.47)

The functors ϕ∗X,C−,C+
admit right adjoints ϕX,C−,C+, ∗. By a standard argument, see for example

[AGV20, §3.4], we obtain a section

P
H = ϕ∗1 : (Reg-Σdm/S )op →

∫
(Reg-Σdm/S )op

CAlg(Hict-tm) ◦ g, (4.48)

sending (X,C−,C+) ∈ Reg-Σdm/S to the commutative algebraPH
X,C−,C+

= ϕX,C−,C+, ∗1 in Hict-tm(XC−)
⊗.

The reminder of this subsection is devoted to studying these algebras. We may think of PH
X,C−,C+

as
an algebra of functions on the exit-path space from C− to C+.

To study the commutative algebrasPH
X,C−,C+

introduced in Construction 4.21, we need some facts
concerning the functors ϕ∗X,C−,C+

and their right adjoints.

Lemma 4.22. Let u : Y ↪→ X be a locally closed immersion of regularly stratified S -schemes,
such that the stratification of Y is induced from the stratification of X. Let C′− � C− � C+ be strata
contained in Y. Consider the commutative square of∞-categories

Hict-tm(XC−)
u′∗

//

ϕ∗X,C− ,C+
��

Hict-tm(YC′−)
ϕ∗

Y,C′− ,C+
��‹σH(X,C−,C+)

u∗σ
// ‹σH(Y,C′−,C+)

(4.49)

where u′ : YC′− → XC− is the morphism induced by u.

(i) If u is an open immersion, the square in (4.49) is left adjointable.
(ii) The square in (4.49) is right adjointable.

Proof. Once we understand the left and right adjoints of the functor u∗σ, the result follows by direct
inspection. We split the proof in two parts.
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Part 1. Here we prove (i). The left adjoint uσ! to u∗σ is given by a relative left Kan extension along
the inclusion RY,C′−,C+

= RX,C′−,C+
⊂ RX,C−,C+

. Thus, for a section

t : (RX,C′−,C+
)op →

∫
(RX,C′− ,C+

)op
HΨ,

the section uσ! (t) is given informally by

uσ! (t)(C′′− ,C+) =

 t(C′′− ,C+) if C′′− � C′−,

0 else.

Said differently, uσ! (t) coincides with t on RX,C′−,C+
and is zero on its complement. Similarly, given

M ∈ Hict-tm(YC′−), the section ϕ∗X,C−,C+
(u′!M) coincides with ϕ∗Y,C′−,C+

(M) on RX,C′−,C+
and is zero on

its complement. This finishes the proof of (i).

Part 2. Here we prove (ii). The right adjoint uσ∗ of u∗σ is given by a relative right Kan extension
along the inclusion RY,C′−,C+

⊂ RX,C−,C+
. Thus, for a section

t : (RY,C′−,C+
)op →

∫
(RX,C′− ,C+

)op
HΨ,

the section uσ∗ (t) is given at (C′′− ,C+) ∈ RX,C−,C+
by

uσ∗ (t)(C′′− ,C+) = lim
E⊂Y, E�C′−, E�C′′−

(pE,C′′− )∗t(E,C+)

where pE,C′′− : N◦
E
(C+) → N◦

C
′′

−

(C+) is the obvious morphism. Thus, for M ∈ Hict-tm(YC′−), we need
to show that the obvious map‹ΨC′′− ,C+

((u∗M)|C′′− )→ lim
E⊂Y, E�C′−, E�C′′−

(pE,C′′− )∗‹ΨE,C+
(M|E)

is an equivalence. Using the natural equivalences ‹ΨC′′− ,C+
◦χE,C′′− ' (pE,C′′− )∗ ◦‹ΨE,C+

, we are reduced
to showing that the obvious map

(u∗M)|C′′− → lim
E⊂Y, E�C′−, E�C′′−

χE,C′′− (M|E)

is an equivalence, which is clear. �

Corollary 4.23. Let (X,C−,C+) be a demarcated regularly stratified S -scheme and C′− � C− a
stratum of X. Then, we have an equivalence of commutative algebras

u′∗PH
X,C−,C+

' PH
X,C′−,C+

. (4.50)

Proof. Indeed, by Lemma 4.22(i) and adjunction, we have a natural equivalence

u′∗ ◦ ϕX,C−,C+, ∗ ' ϕX,C′−,C+, ∗ ◦ u∗σ.

The result follows by applying this to the unit object of ‹σH(X,C−,C+). �

Lemma 4.24. Let u : Y ↪→ X be a closed immersion of regularly stratified S -schemes, such that
the stratification of Y is induced from the stratification of X. Let C− � C+ be strata contained in Y.
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The commutative square of∞-categories

Hict-tm(YC−)
u′∗

//

ϕ∗Y,C− ,C+
��

Hict-tm(XC−)

ϕ∗X,C− ,C+
��‹σH(Y,C−,C+)

uσ∗
// ‹σH(X,C−,C+),

(4.51)

provided by Lemma 4.22(ii), is right adjointable.

Proof. For a section

s : (RY,C−,C+
)op →

∫
(RY,C− ,C+ )op

HΨ,

the section uσ∗ (s) is given by

uσ∗ (s)(C′−,C+) =

 s(C′−,C+) if C− � C′−,

0 else.

Said differently, uσ∗ (s) coincides with t on RY,C−,C+
and is zero on its complement. It follows that,

for a section

t : (RX,C−,C+
)op →

∫
(RX,C− ,C+ )op

HΨ,

we have a cofiber sequence

colim
D∈PXrY

( jD)σ! ( jD)∗σ(t)→ t → uσ∗ u∗σ(t),

where jD : (X,D,C+) → (X,C−,C+) is the morphism given by the identity of X. It follows by
adjuction that there is a fiber sequence

uσ∗ u!
σ(t)→ t → lim

D∈PXrY
( jD)σ∗ ( jD)∗σ(t).

Hence, by applying u∗σ, we obtain the fiber sequence

u!
σ(t)→ u∗σ(t)→ lim

D∈PXrY
u∗σ(t)( jD)σ∗ ( jD)∗σ(t).

Similarly, writing jD : XD → XC− for the obvious inclusions, we have a fiber sequence

u′!(M)→ u′∗(M)→ lim
D∈PXrY

u′∗( jD)∗( jD)∗(M)

for every M ∈ Hict-tm(XC−). The result now follows from Lemma 4.22(ii). �

In order to state the key property of the algebras PH
X,C−,C+

, we introduce the following notation.

Notation 4.25. Let X be a regularly stratified S -scheme and C ⊂ X a stratum. Recall that we have
a symmetric monoidal functor ‹ΨC : H⊗itame(X

◦)→ H⊗itame(N
◦
X(C)). We will denote by

tHC : H⊗itame(N
◦
X(C))→ H⊗itame(X

◦) (4.52)

the right adjoint to ‹ΨC, which is a right-lax monidal functor. Similarly, if (X,C−,C+) is a demar-
cated regularly stratified S -scheme, we denote by tHC−,C+

the right adjoint to ‹ΨC−,C+
.
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Theorem 4.26. Let (X,C−,C+) be a demarcated regularly stratified S -scheme. For every stratum
C′− � C−, there is a natural equivalence

ι!C′−P
H
X,C−,C+

' (tHC′−,C+
1) ⊗ ι!C′−1. (4.53)

(As usual, we denote by ιC′− : C′− ↪→ X the obvious inclusion.)

Proof. Using Corollary 4.23, we may replace (X,C−,C+) with (X,C′−,C+) and assume that C′− =

C−. Said differently, it is enough to show that there is a natural equivalence

ι!C−P
H
X,C−,C+

' (tHC−,C+
1) ⊗ i!

C−1. (4.54)

Let Y be the closure of C− in X and u : Y ↪→ X its inclusion. Combining Lemmas 4.22(ii) and
4.24, we obtain natural equivalences

u′! ◦ ϕX,C−,C+, ∗ ◦ ϕ
∗
X,C−,C+

' ϕY,C−,C+, ∗ ◦ u!
σ ◦ ϕ

∗
X,C−,C+

' ϕY,C−,C+, ∗ ◦ ϕ
∗
Y,C−,C+

◦ u′!.

Applying this to the unit object, we get an equivalence

u′!PH
X,C−,C+

' PH
Y,C−,C+

⊗ u′!1.

It remains to see that PH
Y,C+,C−

is equivalent to tHC−,C+
1. This follows immediately from the fact C−

is the open stratum of Y . Indeed, this implies that RY,C−,C+
= {(C−,C+)} is a singelton so that the

functor ϕ∗Y,C−,C+
can be identified with ‹ΨC−,C+

. �

Definition 4.27. Given a presentable symmetric monoidal∞-category C⊗, we denote by Cliss ⊂ C

the full sub-∞-category generated under colimits by the dualizable objects. This is a coreflexive
sub-∞-category; the associated coreflexion functor will be denoted by (−)liss and will be called the
lissification functor. This is clearly a right-lax monoidal functor.

Lemma 4.28. Assume that the unit object of C⊗ is compact. Let A ∈ CAlg(C) be a commutative
algebra and let A liss be its lissification. Then the base change functor

ModAliss(Cliss)→ ModA(C)

is fully faithful with essential image the sub-∞-category of ModA(C) generated under colimits by
the A-modules freely generated on dualizable objects of C.

Proof. By standard arguments, we reduce to showing that the map

MapC(M,A liss ⊗ N)→ MapC(M,A ⊗ N)

is an equivalence for all dualizable M,N ∈ C. Replacing M with M ⊗ N∨, we may assume that N
is the unit object of C. The result is then clear. �

Notation 4.29. Let (X,C−,C+) be a demarcated regularly stratified S -scheme. We denote by

HP(X,C−,C+) ⊂ Hict-tm(XC−;PX,C−,C+
) (4.55)

the full sub-∞-category generated under colimits by the PX,C−,C+
-modules freely generated on

dualizable objets of Hict-tm(XC−). By Lemma 4.28, writing PH, liss
X,C−,C+

and Hliss
ict-tm(XC−) instead of

(PH
X,C−,C+

)liss and Hict-tm(XC−)
liss, we have an equivalence of∞-categories

HP(X,C−,C+) ' Mod
P

H, itame
X,C− ,C+

(Hliss
ict-tm(XC−)). (4.56)
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Construction 4.30. Arguing as in [AGV20, §3.4], we obtain a morphism of CAlg(PrL)-valued
presheaves on Reg-Σdm/S :

ϕ̃∗ : ModPH(Hict-tm ◦ g)⊗ → ‹σ⊗H. (4.57)
For a demarcated regularly stratified S -scheme (X,C−,C+), the functor ϕ̃∗X,C−,C+

takes a PH
X,C−,C+

-
module M to the section s̃M given by

s̃M(C′−,C+) = ‹ΨC′−,C+
(M|C′−) ⊗Ψ̃C′− ,C+

(PX,C− ,C+ |C′−
) 1.

On the other hand, we have a morphism of CAlg(PrL)-valued presheaves on Reg-Σdm/S :‹σ⊗H → HΨ,⊗ (4.58)

constructed as follows. For (X,C−,C+) as above, let R′X,C−,C+
be the subposet of QX,C−,C+

whose
elements are the pairs (C−,C′+) with C′+ � C+. There is a morphism of of CAlg(PrL)-valued
presheaves on Reg-Σdm/S sending (X,C−,C+) to the restriction functor

Sect

∫
Q

op
X,C− ,C+

HΨ

/
Q

op
X,C−,C+

→ Sect

∫
R
′op
X,C− ,C+

HΨ

/
R
′op
X,C−,C+

 .
The restriction of this functor to ‹σ(X,C−,C+) lands in the full sub-∞-category spanned by coCarte-
sian sections, which is equivalent to HΨ(X,C−,C+). This gives rise to the morphism in (4.58). This
said, we may compose with the morphism in (4.57) to get the morphism:

ModPH(Hict-tm ◦ g)⊗ → HΨ,⊗, (4.59)

which for (X,C−,C+) as above, sends a PH
X,C−,C+

-module M to ‹ΨC−,C+
(M|C−)⊗Ψ̃C− ,C+ (PX,C− ,C+ |C− ) 1. We

will be mainly interested in the morphism of CAlg(PrL)-valued presheaves on Reg-Σdm/S :

φ : HP,⊗ → HΨ,⊗ (4.60)

obtained by restricting the morphism in (4.59) to the sub-∞-categories introduced in Notation 4.55.
We will see below that φ is very close to being an equivalence.

Theorem 4.31. Let (X,C−,C+) be a demarcated regularly stratified S -scheme. The functor

φX,C−,C+
: HP(X,C−,C+)→ HΨ(X,C−,C+) (4.61)

is fully faithful. It is an equivalence if the inclusion C+ ↪→ X admits a retraction.

Proof. We need to show that, for M,N ∈ Hict-tm(XC−) dualizable, the map

Map(M,PX,C−,C+
⊗ N)→ Map(‹ΨC−,C+

(M|C−), ‹ΨC−,C+
(N|C−)) (4.62)

is an equivalence. Since N is dualizable, we may replace M with M ⊗ N∨ and assume that N = 1.
Therefore, using adjunction, we are reduced to showing that

Map(ϕ∗X,C−,C+
(M), 1)→ Map(‹ΨC−,C+

(M|C−), 1) (4.63)

is an equivalence. Denote by

t : (RX,C−,C+
)op →

∫
(RX,C− ,C+ )op

HΨ

the section ϕ∗X,C−,C+
(M). Since M is dualizable, we see that for every strata C′′− � C′− � C−, the

obvious morphism ‹ΨC′−,C+
(M|C′−)|N◦C′′− (C+) →

‹ΨC′′− ,C+
(M|C′′− )
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is an equivalence. Thus, t is a coCartesian section. Since the same is true for the unit section, we
deduce that the first mapping space in (4.63) is computed in the sub-∞-category of

Sect

∫
R

op
X,C− ,C+

HΨ

/
R

op
X,C−,C+


spanned by the coCartesian sections. Since RX,C−,C+

admits a final object (C−,C+), the aforemen-
tioned sub-∞-category is equivalent to HΨ(X,C−,C+). This finishes the proof. �

Remark 4.32. The condition that C+ ↪→ X admits a retraction is satisfied locally for the Nisnevich
topology when S is the spectrum of a field. Thus, in this case, we see that the morphism in (4.61)
induces an equivalence after sheafification for the Nisnevich topology.

For later use, we explicitly state Theorem 4.31 in the special case of the Voevodsky pullback
formalism Shgeo.

Corollary 4.33. Consider the section

(PShgeo)liss : (Sm-Σdm/k)op →

∫
(Sm-Σdm/k)op

CAlg(L̂Sgeo ◦ g).

We have a morphism of CAlg(PrL)-valued presheaves on Sm-Σdm/k:

φ : Mod(PShgeo )liss(L̂Sgeo ◦ g)⊗ → L̂SΨ,⊗
geo

which is given by fully faithful functors and which becomes an equivalence after Nisnevich sheafi-
fication.

We end this subsection with a comparison result concerning the commutative algebras PH
X,C−,C+

for the two Voevodsky pullback formalisms MSh and Shgeo. This comparison result is a key
ingredient in the proof of our second main theorem, i.e., Theorem 4.37.

Theorem 4.34. The Betti realisation B∗ : MSh→ Shgeo induces a morphism

B∗PMSh → P
Shgeo (4.64)

between sections of the coCartesian fibration∫
(Reg-Σdm/S )op

CAlg(Shgeo, ict) ◦ g→ (Reg-Σdm/S )op.

Moreover, the morphism in (4.64) induces equivalences on the cdh stalks in the following sense.
Let V be the spectrum of a finite rank valuation ring over OS , and let ξ−, ξ+ ∈ V be two points
of V, considered as strata, and such that ξ− � ξ+. The triple (V, ξ−, ξ+) can be considered in an
essentially unique way as a pro-object in Reg-Σdm/S . This said, the morphism

B∗Vξ−1
(PMSh

V,ξ−,ξ+
)→ P

Shgeo

V,ξ−,ξ+
, (4.65)

induced by the morphism in (4.64), is an equivalence.

Proof. The construction of the morphism in (4.64) is easy and left to the reader. We only discuss
the second part of the statement. For a point ξ′− � ξ− in V , Theorem 4.26 and passage to the limit
yield equivalences

ι!ξ′− B∗PMSh
V,ξ−,ξ+

' B∗ ι!ξ′− P
MSh
V,ξ−,ξ+

' B∗ tMSh
ξ′−,ξ+

1 ⊗ ι!ξ′−1

and ι!ξ′−P
Shgeo

V,ξ−,ξ+
' t

Shgeo

ξ′−,ξ+
1 ⊗ ι!ξ′−1.
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Thus, we are left to show that we have an equivalence B∗tMSh
ξ′−,ξ+

1 ' tShgeo

ξ′−,ξ+
1. For that, we may

assume that ξ− = ξ′− is the generic point of V , which we shall denote by η. We may also assume
that ξ+ is the closed point of V , which we shall denote by σ. Remark that we have equivalences of
∞-categories

MShict-tm(η/V) 'MSh(η) and MShict-tm(N◦V(σ)) 'MSh(N◦V(σ))qun/σ,

and similarly for Shgeo. Therefore, to conclude, it is enough to show that the commutative square

MSh(η)
Ψ̃σ
//

B∗

��

MSh(N◦V(σ))qun/σ

B∗

��

Shgeo(η)
Ψ̃σ
// Shgeo(N◦V(σ))qun/σ

(4.66)

is right adjointable. Using Theorem 1.93, this square can be identified with

MSh(η)
Ψ̃σ

//

B⊗−

��

MSh(N◦V(σ))qun/σ

B⊗−

��

MSh(η;B)
Ψ̃σ
// MSh(N◦V(σ);B)qun/σ.

(4.67)

The functor ‹Ψσ on MSh(η) is symmetric monoidal and takes the commutative algebra B|η to the
commutative algebra B|N◦V (σ). It follows that the right adjoint of the bottom horizontal functor
takes a B|N◦V (σ)-module M to tMSh

σ (M) considered as a B|η-module by restriction along B|η →

tMSh
σ (B|N◦V (σ)). This said, the right adjointability of the square in (4.67) would follow if we can

show that the obvious morphism

A ⊗ tMSh
σ (B)→ tMSh

σ (‹Ψσ(A) ⊗ B)

is an equivalence for A = B|η. In fact, this is true for any A ∈ MSh(η). To prove it, we reduce to
the case where A is dualizable, and use [Ayo14b, Lemme 2.8]. �

Corollary 4.35. Consider the sections

(B∗PMSh)liss, (PShgeo)liss : (Sm-Σdm/k)op →

∫
(Sm-Σdm/k)op

CAlg(L̂Sgeo ◦ g)

and the morphism
(B∗PMSh)liss → (PShgeo)liss (4.68)

obtained by lissification from the morphism in (4.64). The induced morphism of CAlg(PrL
ω)-valued

presheaves on Sm-Σdm/k:

Mod(B∗PMSh)liss(L̂Sgeo ◦ g)⊗ → Mod(PShgeo )liss(L̂Sgeo ◦ g)⊗ (4.69)

becomes an equivalence after cdh-sheafification. (Here, sheafification is computed in CAlg(PrL
ω).)

Proof. Using [AGV20, Propositions 2.8.1 & 2.8.2], it is enough to show that the morphism in
(4.69) induces equivalences on cdh stalks. Equivalently, we need to show that the morphism of
sections in (4.68) induces equivalences on cdh stalks. This follows immediately from Theorem
4.34 since lissification commutes with colimits. �
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4.4. The second main theorem.
The goal of this subsection is to prove our second main theorem which is Theorem 4.37 below.

We start by introducing the spectral S-prestack Auteq(LS⊗geo).

Definition 4.36. Let k be a field and σ : k ↪→ C a complex embedding. We define the spectral
group S-prestack Auteq(LS⊗geo) as in Definition 2.9. Namely, we apply Construction 1.51 to

• the functor C : (SpAFFnc)op → CAT∞ sending Spec(Λ) to the∞-category

Psh(Sm/k; CAlg(PrL)Mod⊗
Λ
/)

of CAlg(PrL)Mod⊗
Λ
/-valued presheaves on Sm/k, and

• the natural transformation pt→ C sending Spec(Λ) to the functor

L̂Sgeo(−; Λ)⊗ : (Sm/k)op → CAlg(PrL)Mod⊗
Λ
/.

If we want to stress that Auteq(LS⊗geo) depends on σ, we will write Auteq(LS⊗σ-geo).

Theorem 4.37 (Main theorem for local systems). Let k be a field and σ : k ↪→ C a complex
embedding. There is an equivalence of spectral group S-prestacks

Gmot(k, σ)
∼
−→ Auteq(LS⊗σ-geo). (4.70)

In particular, the right hand side is a spectral affine group scheme.

Remark 4.38. The sought-after equivalence in (4.70) is given by the composition of

Gmot(k, σ)
∼
−→ Auteq(Sh⊗geo)→ Auteq(LS⊗geo) (4.71)

where the second map exists by the following principle: an autoequivalence of Sh⊗geo(−; Λ) pre-
serves dualizable objects and thus restricts to the full sub-functor L̂S⊗geo(−; Λ) spanned by the ind-
dualizable objects. In fact, the sought-after equivalence in (4.70) is also the composition of

Gmot(k, σ)
∼
−→ Auteq(LSΨ,⊗

geo )→ Auteq(LS⊗geo). (4.72)

(See Theorem 4.10.) The proof of Theorem 4.37 can be divided into two independent parts.
• The first part consists in showing that the composition of (4.71) admits a retraction.
• The second part consists in showing that the obvious morphism

Auteq(LSΨ,⊗
geo )→ Auteq(LS⊗geo) (4.73)

admits a section.
The first part is relatively easy, and is the subject of Lemma 4.39 below.

Lemma 4.39. The natural morphism of spectral group S-prestacks Gmot(k, σ) → Auteq(LS⊗geo)
admits a retraction.

Proof. We will show that Auteq(LS⊗geo) acts on the Betti spectrum B (see Notation 1.57), in a
way extending the natural action of Gmot(k, σ) (see Corollary 1.64). We split the proof in two
parts. In the first part, we recall a few facts on the Betti spectrum. In the second part, we give the
actual proof. For simplicity, we only treat the case of S-points; the case of Λ-points, for a general
Λ ∈ CAlg(Sp≥0), is only notationally more complicated.
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Part 1. We denote by ΓB the CAlg(Sp)-valued presheaf on Sm/k sending a smooth k-variety X to
Γ(Xan;S), i.e., the cohomology of Xan with coefficients in the sphere spectrum. Note that we may
define ΓB as Ω∞T (B), where Ω∞T is the motivic infinite loop space functor. Conversely, B can be
obtained form ΓB as follows. The presheaf ΓB defines a symmetric monoidal functor

ΓB : (Sm/k)× → (Spop)⊗

which, by [Rob15, Corollary 2.39], extends uniquely to a colimit-preserving symmetric monoidal
functor

MSh(k)⊗ → (Pro(Sp)op)⊗.

Composing with the righ-lax monoidal functor lim : Pro(Sp)⊗ → Sp⊗, we obtain a limit-preserving
righ-lax symmetric monoidal functor

ΓB : (MSh(k)op)⊗ → Sp⊗.

By [Lur09a, Proposition 5.5.2.2], ΓB is representable by a commutative algebra which is precisely
B. This shows that we have an equivalence of spectral group S-prestacks Auteq(ΓB) ' Auteq(B).
In particular, we see that Gmot(k, σ) is also equivalent to Auteq(ΓB).

Part 2. The CAlg(Sp)-valued presheaf ΓB on Sm/k can be obtained from the CAlg(PrL)-valued
presheaf L̂Sgeo as follows. Consider the morphism of coCartesian fibrations

(Sm/k)op × Sp⊗
ς∗

//

&&

∫
(Sm/k)op

L̂S⊗geo

xx

(Sm/k)op

given, over X ∈ Sm/k, by the functor ς∗X : Sp⊗ → L̂Sgeo(X)⊗ taking a spectrum to the associated
constant sheaf on Xan. By [Lur17, Proposition 7.3.2.6], the functor ς∗ admits a relative right adjoint
ς∗. Applying the latter on the unit section, we get a CAlg(Sp)-valued presheaf on Sm/k, which is
precisely ΓB. This gives a map of group objects in S:

Auteq(L̂S⊗geo)→ Auteq(ΓB).

Clearly, the above construction can be done with Sh⊗geo instead of L̂S⊗geo. Thus, we have a commu-
tative diagram of group objects

Auteq(B)
(1)
//

&&

Auteq(Sh⊗geo)
(2)

''��

Auteq(L̂S⊗geo) // Auteq(ΓB),

and it is easy to see that the composition of the maps (1) and (2) is the equivalence described in the
first part. This finishes the proof of the lemma. �

Thus, to prove Theorem 4.37, it remains to show that the map in (4.73) admits a section. We
need to provide a recipe for extending autoequivalences of L̂S⊗geo to autoequivalences of L̂SΨ,⊗

geo . To
do so, we need the following constructions and the accompanying Proposition 4.43.
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Construction 4.40. Let C be an∞-category and M⊗ a CAlg(CAT∞)-valued presheaf on C. Given
a morphism f : Y → X in C, we denote by f ∗ : M(X)⊗ →M(Y)⊗ the induced functor. We assume
that the M(X)⊗’s are closed, for all X ∈ C. We want to construct a commutative triangle∫

Cop
(Mop ×M)⊗

Hom
//

%%

∫
Cop

M⊗

||

Cop

(4.74)

whose fiber at X ∈ Cop is given by the internal Hom bifunctor of M(X)⊗. We argue as follows. The
tensor product bifunctor can be considered as a morphism of CAlg(CAT∞)-valued presheaves

µ : (M ×M)⊗ →M⊗.

Applying the endofunctor P of CAlg(CAT∞) we deduce a commutative square of morphisms of
CAlg(CAT∞)-valued presheaves

(M ×M)⊗
µ

//

y
��

M⊗

y

��

P(M ×M)⊗
µ∗
// P(M)⊗.

By [Lur09a, Proposition 7.3.2.6], we have a relative right adjoint functor∫
Cop

P(M)⊗
µ∗

//

$$

∫
Cop

P(M ×M)⊗

xx

Cop.

(4.75)

The natural equivalence of CAlg(PrL)-valued presheaves P(M×M)⊗ ' Fun(Mop,P(M))⊗ induces
an equivalence in CAlg(CAT∞/Cop):∫

Cop
P(M ×M)⊗ ' FunCop

(∫
Cop

Mop,

∫
Cop

P(M)
)⊗
.

By adjunction, the functor µ∗ in (4.75) induces a commutative triangle∫
Cop

(Mop ×P(M))⊗ //

&&

∫
Cop

P(M)⊗

zz

Cop.

(4.76)

Since the M(X)⊗’s are closed, the restriction of the above functor to
∫
Cop M

op ×M factors through∫
Cop M yielding the triangle in (4.74).

Construction 4.41. For X ∈ Sm/k, recall that there is an equivalence of∞-categories

DX : MShnis(X)op
ω

∼
−→MShnis(X)ω
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given by DX(−) = Hom(−, 1). Using Construction 4.40, we see that DX underlies a right-lax
monoidal functor which is moreover the fiber of X of a relative functor∫

(Sm/k)op
MShop,⊗

nis, ω
D

//

q′ &&

∫
(Sm/k)op

MSh⊗nis, ω

q
xx

(Sm/k)op

(4.77)

We stress that q′ is classified by the functor

MShop,⊗
nis, ω : (Sm/k)op → CAlg(CAT∞)

sending a morphism f : Y → X to the functor

f ∗ : (MShnis, ω(X))op,⊗ → (MShnis, ω(Y))op,⊗

deduced from the usual inverse image functor by applying the involution (−)op of CAlg(CAT∞).
In particular, even when forgetting the monoidal structures, D is not a morphism of coCartesian
fibrations and thus not an equivalence although the DX’s are. By indization, we deduce from (4.77)
the following commutative triangle of∞-categories:∫

(Sm/k)op
Pro(MShnis, ω)op,⊗ D

//

q′ ((

∫
(Sm/k)op

MSh⊗nis

q
xx

(Sm/k)op

(4.78)

where the slanted arrows are coCartesian fibrations.

Remark 4.42. We give here another construction of the functor D in (4.78) which is more conve-
nient for the proof of Proposition 4.43 below. This construction is based on the following observa-
tion : for a smooth morphism f : Y → X, the functor DX sends the motive M(Y) to f∗1. Since it is
a bit long, we split this construction in three steps.

Step 1. As in the proof of Proposition 2.2, we consider the ordinary category D whose objects are
pairs (〈n〉, ( fi : Yi → Xi)1≤i≤n), where n ≥ 0 is an integer and the fi’s are smooth morphisms between
smooth k-varieties. (In the proof of Proposition 2.2 we allowed smooth morphisms between more
general S -schemes, but otherwise the description given there applies.) We have obvious functors

s : D→ (Sm/k)op,q and D→ (Sm/k)op,q

sending the object (〈n〉, ( fi : Yi → Xi)1≤i≤n) to (〈n〉, (Yi)1≤i≤n) and (〈n〉, (Xi)1≤i≤n) respectively. We
also have a natural transformation φ : t → s given at the previously considered object by id〈n〉
and the fi’s. Next, we consider the coCartesian fibration p : Ξ⊗ → (Sm/S )op,q whose fiber at
(〈n〉, (Xi)1≤i≤n) is the Cartesian product of the ∞-categories MShnis(Xi)’s. (See [DG20, Corollary
A.12 & Remark A.13].) Pulling back along s and t, we obtain a commutative triangle

Ξ⊗t
φ∗

//

pt
  

Ξ⊗s

ps
~~

D,
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where ps and pt are coCartesian fibrations, and φ∗ preserves coCartesian edges. Informally, over
the previously considered object (〈n〉, ( fi : Yi → Xi)1≤i≤n), φ∗ is given by the Cartesian product of
the inverse image functors f ∗i : MShnis(Xi) → MShnis(Yi) and thus admits a right adjoint given by
the product of the functors fi, ∗. By [Lur17, Proposition 7.3.2.6], the functor φ∗ admits a relative
right adjoint φ∗. Writing 1 for the coCartesian section of ps given by the monoidal units, we obtain
a section φ∗1 : D→ Ξ⊗t of pt. Equivalently, we have constructed a commutative triangle

D h
//

t
$$

Ξ⊗

p
yy

(Sm/k)op,q.

Taking the base change by the diagonal functor d : Fin∗ × (Sm/k)op → (Sch/S )op,q, we obtain a
commutative triangle∫

(Sm/k)op
(Sm/(−))op,q γ

//

''

∫
(Sm/k)op

MSh⊗nis

xx

(Sm/k)op.

(4.79)

The fiber of γ at X ∈ Sm/k is the right-lax monoidal functor γX : (Sm/X)op,q → MShnis(X)⊗,
sending a smooth morphism f : Y → X to f∗1.

Step 2. The functor γ in (4.79) does not preserve coCartesian edges. However, we may use γ to
construct a morphism of coCartesian fibrations as follows. For X ∈ Sm/k, we set

Φ(X) = Sect
(∫

((Sm/k)/X)op
MSh⊗nis

/ (
(Sm/k)/X

)op
)
. (4.80)

We can turn the assignment X 7→ Φ(X) into a CAlg(PrL)-valued presheaf Φ⊗ using, for example,
Corollary 3.115. There is symmetric monoidal fully faithful embedding δX : MShnis(X)⊗ ↪→ Φ(X)⊗

whose essential image is spanned by the coCartesian sections. This functor admits a right adjoint
εX given by evaluation on X. It is easy to see that the δX’s assemble into a morphism of CAlg(PrL)-
valued presheaves δ : MSh⊗nis → Φ⊗. Using [Lur17, Proposition 7.3.2.6], we have a relative right
adjoint functor ∫

(Sm/k)op
Φ⊗

ε
//

%%

∫
(Sm/k)op

MSh⊗nis

xx

(Sm/k)op.

(4.81)

Moreover, for X ∈ Sm/k, γ gives rise to a functor

γ̃X : (Sm/X)op → Φ(X)

such that, for Y ∈ Sm/X, γ̃X(Y) is the section given by γ̃X(Y)(X′) = γX′(Y ×X X′). This functor is
right-lax monoidal and defines a morphism of SMCAT∞-valued presheaves

γ̃ : (Sm/(−))op,q → Φ⊗. (4.82)

One gets back γ by compositing γ̃ with ε.
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Step 3. (Here, we implicitly think of monoidal structures as Cartesian fibrations over Fin∗ so that
we can speak of left-lax monoidal functors.) Although the functors γ̃X : (Sm/X)× → Φ(X)op,⊗

are only left-lax monoidal, they are strictly compatible with the module structure over (Sm/k)×.
Moreover, γ̃X takes a Nisnevich square to a Cartesian square and the projections A1

Y → Y to
equivalences. Using left Kan extension and the aforementioned properties, γ̃ induces a morphism
of PrL-valued presheaves

γ̃′ : PA1, nis(Sm/(−))× → Pro(Φ)op,⊗.

The morphism γ̃′ is naturally a morphism of modules over PA1, nis(Sm/k)op,q which acts on the
codomain via the composite functor

PA1, nis(Sm/k)× →MShnis(k)⊗
D
−→ Pro(MShnis, ω(k))op,⊗.

In particular, the morphism γ̃′ gives rise to a morphism of PrL-valued presheaves:

γ̃′′ : MShnis(−)⊗ → Pro(Φ)op,⊗.

It is easy to see that the γ̃′′X , for X ∈ Sm/k, takes compact motivic sheaves to essentially constant
pro-objects in Φ(X). Thus, passing to compact objects, applying the involution (−)op and then
indization, we obtain a morphism of SMCAT∞-valued presheaves on Sm/k:

γ̃′′′ : Pro(MShnis, ω(−))⊗ → Φ⊗.

Passing to the associated coCartesian fibrations and compositing with the functor ε in (4.81), yields
the sought-after commutative triangle in (4.79).

Proposition 4.43. Consider the sequence of functors over (Sm/k)op:∫
(Sm/k)op

Pro(MShω)op,⊗ D
−→

∫
(Sm/k)op

MSh⊗
B∗
−−→

∫
(Sm/k)op

Sh⊗geo
(−)liss

−−−−→

∫
(Sm/k)op

L̂S⊗geo (4.83)

where D is the functor obtained in Construction 4.41. Then, the composite functor

β :
∫

(Sm/k)op
Pro(MShω)op,⊗ →

∫
(Sm/k)op

L̂S⊗geo (4.84)

admits an action of the spectral group S-stack Auteq(LS⊗geo), which is trivial on the domain and
which extends the tautological action on the codomain.

Proof. We will give a direct construction of the functor β which makes it clear that it admits the
required action of Auteq(LS⊗geo). This construction is totally parallel to the one described in Remark
4.42; therefore, it will be also clear that the constructed β is equivalent to the composition of the
horizontal arrows in (4.83).

Step 1. We use the notations introduced in the first step of the construction given in Remark 4.42.
Consider the coCartesian fibration p : Ξ′⊗ → (Sm/S )op,q whose fiber at (〈n〉, (Xi)1≤i≤n) is the Carte-
sian product of the∞-categories L̂Sgeo(Xi)’s. Pulling back along s and t, we obtain a commutative
triangle

Ξ′⊗t
φ∗

//

pt
  

Ξ′⊗s

ps
~~

D,
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where ps and pt are coCartesian fibrations, and φ∗ preserves coCartesian edges. Informally, over
the previously considered object (〈n〉, ( fi : Yi → Xi)1≤i≤n), φ∗ is given by the Cartesian product of
the inverse image functors f ∗i : L̂Sgeo(Xi)→ L̂Sgeo(Yi) and thus admits a right adjoint given by the
product of the functors ( fi, ∗(−))liss. By [Lur17, Proposition 7.3.2.6], the functor φ∗ admits a relative
right adjoint φ∗. Writing 1 for the coCartesian section of ps given by the monoidal units, we obtain
a section φ∗1 : D→ Ξ′⊗t of pt. Equivalently, we have constructed a commutative triangle

D h
//

t
%%

Ξ′⊗

p
yy

(Sch/S )op,q.

Taking the base change by the diagonal functor d : Fin∗ × (Sm/k)op → (Sch/S )op,q, we obtain a
commutative triangle∫

(Sm/k)op
(Sm/(−))op,q γ

//

''

∫
(Sm/k)op

L̂S⊗geo

xx

(Sm/k)op.

(4.85)

The fiber of γ at X ∈ Sm/k is the right-lax monoidal functor γX : (Sm/X)op,q → L̂S⊗geo(X), sending
a smooth morphism f : Y → X to ( f an

∗ 1)liss. It is clear that Auteq(LS⊗geo) acts on γ, and this action
is trivial on the domain and extends the tautological action on the codomain. It is also clear that the
functor γ in (4.85) can be obtained from the one in (4.79) by composing with the last two functors
in (4.83).

Step 2. The functor γ in (4.85) does not preserve coCartesian edges. However, we may use γ to
construct a morphism of coCartesian fibrations as follows. For X ∈ Sm/k, we set

Φ′(X) = Sect
(∫

((Sm/k)/X)op
L̂S⊗geo

/ (
(Sm/k)/X

)op
)
. (4.86)

As in the second step of the construction described in Remark 4.42, we have a relative right adjoint∫
(Sm/k)op

Φ′⊗
ε

//

%%

∫
(Sm/k)op

L̂S⊗geo

xx

(Sm/k)op

(4.87)

and a morphism of SMCAT∞-valued presheaves

γ̃ : (Sm/(−))op,q → Φ′⊗. (4.88)

One gets back γ by compositing γ̃ with ε. Also, we note that Auteq(LS⊗geo) acts on γ̃, and this
action is trivial on the domain and extends the tautological action on the codomain. Moreover, we
have a right-lax monoidal functor Φ⊗ → Φ′⊗ given by (−)liss ◦ B∗ relating the diagram in (4.87)
with the one in (4.81) and the morphism in (4.88) with the one in (4.82).
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Step 3. As in the third step of the construction described in Remark 4.42, we may use the morphism
γ̃ in (4.88) to produce a morphism of SMCAT∞-valued presheaves

γ̃′ : PA1, nis(Sm/(−))op,q → Pro(Φ′)⊗.

The morphism γ̃′ is naturally a morphism of modules over PA1, nis(Sm/k)op,q which acts on the
codomain via the composition of

PA1, nis(Sm/k)op,q →MShnis(k)op,⊗ → Pro(Spop)⊗.

In particular, the morphism γ̃′ gives rise to a morphism SMCAT∞-valued presheaves:

γ̃′′ : MShnis(−)op,⊗ → Pro(Φ′)⊗.

Passing to compact objects, applying the involution (−)op and then indization, we obtain a mor-
phism of SMCAT∞-valued presheaves on Sm/k:

γ̃′′′ : Pro(MShnis, ω(−))⊗ → Φ′⊗.

Passing to the associated coCartesian fibrations and compositing with the functor ε in (4.87), yields
a commutative triangle∫

(Sm/k)op
Pro(MShnis, ω)op,⊗ β

//

q′ ((

∫
(Sm/k)op

L̂S⊗geo

xx

(Sm/k)op

(4.89)

Clearly, Auteq(LS⊗geo) acts on β as required, and can be recovered from the functor D in (4.78) by
composition with the last two functors in (4.83). �

Next, we need a nontrivial property of the algebrasPMSh
X,C−,C+

introduced and studied in Subsection
4.3; see Construction 4.21. Roughly speaking, we need to lift the section PMSh along the functor
D of Construction 4.41. For simplicity, we write P instead of PMSh.

Proposition 4.44. There is a section

Q : (Sm-Σdm/k)op →

∫
(Sm-Σdm/k)op

CAlg(Pro(MShnis, ω)op) ◦ g (4.90)

and an equivalence D(Q) ' P.

Proof. To simplify notations, we set H = MShnis. We denote by K⊗ : (Sm/k)op → CAlg(PrL) the
functor given by

K⊗(X) = Pro(MShnis(X)ω)op,⊗.

For X ∈ Sm-Σ/k, we define a full sub-∞-category K⊗

ict-tm(X) ⊂ K⊗(X) by

Kict-tm(X) = Pro(MShnis, ct-tm(X))op,⊗.

This defines a sub-functor K⊗

ict-tm ⊂ K⊗|Sm-Σ/k. Since duality preserves constructible tame motivic
sheaves, we deduce that the functor

D :
∫

(Sm/k)op
K⊗ →

∫
(Sm/k)op

H⊗
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induces a functor

D :
∫

(Sm-Σ/k)op
K⊗

ict-tm →

∫
(Sm-Σ/k)op

H⊗ict-tm.

We claim that there is a commutative square∫
(Sm-Σdm/k)op

K⊗

ict-tm ◦ g
ϕ∗
//

D
��

∫
(Sm-Σdm/k)op

‹σ⊗
K

D
��∫

(Sm-Σdm/k)op
H⊗ict-tm ◦ g

ϕ∗
//

∫
(Sm-Σdm/k)op

‹σ⊗H
(4.91)

which is moreover right adjointable. Obviously, this is enough to conclude.
To construct the square in (4.91), we argue as in Construction 4.41. For (X,C−,C+) ∈ Sm-Σdm/k,

let ‹σH, ω(X,C−,C+) be the full sub-∞-category of ‹σH(X,C−,C+) spanned by those sections tak-
ing values in dualizable motivic sheaves (instead of ind-dualizable ones). The functors ϕ∗X,C−,C+

:
Hct-tm(XC−) → ‹σH, ω(X,C−,C+) induce a natural transformation H⊗ct-tm →

‹σ⊗
H, ω

which we may
consider as a CAlg(CAT∞)-valued presheaf on ∆1 ×Sm-Σdm/k. We apply Construction 4.40 to this
presheaf, and then take indization. In particular, we have‹σ⊗

K
= Pro(‹σH, ω)op,⊗.

The right vertical arrow of the square in (4.91) is induced, over (X,C−,C+), by the functor

DX = Hom(−, 1) : (‹σH, ω)op → ‹σH, ω

which can be shown to be an equivalence. In fact, for a fixed (X,C−,C+), we have a commutative
square

Kict-tm(XC−)
ϕ∗X,C− ,C+

//

D
��

‹σK(X,C−,C+)

D
��

Hict-tm(XC−)
ϕ∗X,C− ,C+

// ‹σH(X,C−,C+)

where the vertical functors are equivalences. This shows the right adjointability of the big square
in (4.91) and finishes the proof. �

We now have all the ingredients to finish the proof of Theorem 4.37.

Proof of Theorem 4.37. Recall that it remains to construct a section of the morphism in (4.73).
Combining Propositions 4.43 and 4.44, we deduce that the section (B∗P)liss is naturally fixed by
the action of Auteq(LS⊗geo), i.e., factors into a section

P
′ : (Sm-Σdm/k)op →

∫
(Sm-Σdm/k)op

CAlg(L̂S⊗geo)Auteq(LS⊗geo) ◦ g.

This shows that there is an action of Auteq(LS⊗geo) on the functor

L̂Sgeo(g(−);P′)⊗ : (Sm-Σdm/k)op → CAlg(PrL)
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extending the action on L̂S⊗geo. (Indeed, note that the latter is equivalent to the restriction of the
former along the functor sending a connected smooth k-variety X to the triple (X, X, X).) By Corol-
laries 4.33 and 4.35, the cdh-sheafification of the CAlg(PrL

ω)-valued presheaf ModP′(L̂Sgeo ◦ g)⊗ is
equivalent to L̂SΨ,⊗

geo . This shows that Auteq(LS⊗geo) acts also on L̂SΨ,⊗
geo , and that this action extends

to tautological one as needed. �

We end this section with a complement concerning the classical motivic Galois group.

Notation 4.45. We denote by Smart/k ⊂ Sm/k the full subcategory consisting of those k-varieties
whose base change to an algebraic closure of k is a disjoint union of Artin neighbourhoods (see
Definition 1.78).

Definition 4.46. Let k be a field and σ : k ↪→ C a complex embedding. We define the (noncom-
mutative) Picard Z-prestack Auteq(LS♥,⊗geo ) to be the presheaf of Picard groupoids on AFF sending
Spec(Λ), with Λ an ordinary commutative ring, to the Picard groupoid of autoequivalences of the
functor LSgeo(−; Λ)♥,⊗ from (Smart/k)op to the 2-category of ordinary Λ-linear symmetric monoidal
categories. If we want to stress that this depends on the complex embedding σ, we will write
Auteq(LS♥,⊗σ-geo) instead.

Corollary 4.47. Let k be a field and σ : k ↪→ C a complex embedding. There is an equivalence of
classical Picard Z-prestacks

Gcl
mot(k, σ)

∼
−→ Auteq(LS♥,⊗σ-geo).

In particular, the right hand side is an affine group scheme.

Proof. We deduce this from Theorem 4.37 as we deduced Corollary 2.13 from Theorem 2.10;
instead of using Nori’s theorem (i.e., Theorem 1.107) we use Beı̆linson’s theorem (i.e., Theorem
1.80). Indeed, note that in Theorem 4.37, one may replace the Zariski hypersheaf L̂S⊗geo by its
restriction to Smart/k since every smooth k-variety admits a hypercover by objects in Smart/k. �

By base change to positive characteristic rings, one obtains the following particular case of
Corollary 4.47.

Corollary 4.48. Let k be a field of charactersitic zero, k/k an algebraic closure of k and Λ a
torsion connected ring. Consider the functor E(−; Λ) : (Smart/k)op → CATord sending a k-variety
X in Smart/k to the ordinary category of étale locally constant sheaves on X ⊗k k with coefficients
in Λ. Then, there is an equivalence of Picard groupoids

G(k/k) ' AuteqPsh(Smart/k;CAlg(CATord))(E(−; Λ)⊗).

In particular, the right hand side is discrete.
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