Motives of rigid varieties and the motivic nearby functor

Joseph Ayoub

Venice, 22 june 2006

Constructing the category of motives of rigid varieties

Let k be a complete field for a non-archimedean norm $|.|:k\to\mathbb{R}_+$. Denote RigVar/k the category of rigid varieties over k and RigSm/k its sub-category of smooth varieties. One can construct out of RigSm/k a triangulated category $\mathbf{RigDM}_{\mathrm{eff}}(k)$ of rigid motives in the same way as Voevodsky constructed the category $\mathbf{DM}_{\mathrm{eff}}(k)$:

Step 1: Define an additive category $\mathbf{RigCor}(k)$ with the same objects as RigSm/k and morphisms RigCor(X,Y) the free abelian group on closed and irreducible sub-varieties $Z \subset X \times Y$ which are finite and surjective over a connected component of X. The composition of finite correspondences is given as usual using the Serre's multiplicity formula.

Step 2: Denote RigPST(k) the category of contravariant additive functors:

$$\mathbf{RigCor}(k) \to \mathcal{A}b$$

Object of this category are called pre-sheaves with transfers. We have a Yoneda embedding:

$$RigCor(k) \subset RigPST(k)$$

We denote $\mathbb{Z}_{tr}(X)$ the pre-sheaf with transfers represented by X.

Definition: A morphism of k-affinoids $U \to X$ is called a weak Nisnevich cover if it is étale and every closed point $x \in X$ admits a lifting to U. The map $U \to X$ is called a Nisnevich cover if it is universally a weak Nisnevich cover. Here universally stands for the change of the base field along extensions of complete normed fields $k \subset K$. The Nisnevich topology on RigSm/k is the topology generated by the usual topology and the Nisnevich covers.

Example: Let \mathcal{X}/k^o be a finite type adic formal scheme and let $U \to \mathcal{X}_s$ be an (algebraic) Nisnevich cover. The étale morphism $U \to \mathcal{X}_s$ extends uniquely to an étale morphism of formal schemes $\mathcal{U} \to \mathcal{X}$. Further more the Raynaud generic fiber $\mathcal{U}_\eta \to \mathcal{X}_\eta$ is a (rigid) Nisnevich cover. Moreover every Nisnevich cover can be refined in a one coming in this way.

Step 4: Consider the sub-category:

$$RigShTr(k) \subset RigPST(k)$$

of pre-sheaves with transfers which are also Nisnevich sheaves on RigSm/k. This is an abelian category of Grothendieck. Indeed, one can show (following the proof of Voevodsky in the algebraic context) that the Nisnevich sheaf associated to a pre-sheaf with transfers has a canonical action by correspondences.

Remark that $\mathbb{Z}_{tr}(X)$ is a Nisnevich sheaf with transfers.

Definition: Define

$$\mathbf{RigDM}_{\mathsf{eff}}(k) \subset D(\mathbf{RigShTr}(k))$$

to be the triangulated sub-category whose objects are complexes of sheaves with transfers K_{\bullet} such that for any smooth X one has:

hom $(\mathbb{Z}_{tr}(X), K_{\bullet}[n]) = \text{hom}(\mathbb{Z}_{tr}(\mathbb{B}^1 \times X), K_{\bullet}[n])$ Where \mathbb{B}^1 is the Tate ball $\text{Spm}(k\{t\})$. Such complexes are called \mathbb{B}^1 -local.

As in the algebraic context one has:

Lemma: The obvious inclusion has a left adjoint $Loc_{\mathbb{B}^1}: D(\mathbf{RigShTr}(k)) \to \mathbf{RigDM}_{eff}(k)$. The motive $\mathsf{M}_{rig}(X)$ of X is by definition the complex $\mathsf{Loc}_{\mathbb{B}}(\mathbb{Z}_{tr}(X))$. Moreover, the category $\mathbf{RigDM}_{eff}(k)$ is compactly generated by the $\mathsf{M}_{rig}(X)$ for X smooth affinoids.

A map f of complexes in $D(\mathbf{RigShTr}(k))$ is called a \mathbb{B}^1 -weak equivalence if $\mathsf{Loc}_{\mathbb{B}^1}(f)$ is an isomorphism. One has:

$$\operatorname{RigDM}_{\operatorname{eff}}(k) \simeq D(\operatorname{RigShTr}(k))[(\mathbb{B}^1 - w.e.)^{-1}]$$

Remark: The rigid motive of the analytification of the pointed affine line $(\mathbb{A}^1,0)$ is zero as one can write $\mathbb{A}^1 = \cup_{r>0} \mathbb{B}^1(0,r)$. It follows that the morphism of site $an: RigSm/k \to Sm/k$ induces a functor

 $\mathrm{Rig}^* = \mathrm{Loc}_{\mathbb{B}^1} \circ an^* : \mathrm{DM}_{\mathrm{eff}}(k) \to \mathrm{Rig}\mathrm{DM}_{\mathrm{eff}}(k)$ One can think about Rig^* as a realization functor.

Example: The rigid motives of the following varieties:

$$\mathbb{G}_m, \ \mathbb{B}^1 - 0, \ \partial \mathbb{B}^1, \ C(a) = \text{Spm}(\frac{k\{t_1, t_2\}}{t_1 \cdot t_2 - a})$$

with 0 < |a| < 1 are canonically isomorphic. This follows from the computation of the motive of \mathbb{P}^1 in different ways applying Mayer-Vietoris to one of the covers:

- \bullet $\mathbb{P}^1 = \mathbb{A}^1 \cup \mathbb{A}^1$ and $\mathbb{A}^1 \cap \mathbb{A}^1 = \mathbb{G}_m$,
- $\mathbb{P}^1 = \mathbb{A}^1 \cup \mathbb{B}^1$ and $\mathbb{A}^1 \cap \mathbb{B}^1 = \mathbb{B}^1 0$,
- $\mathbb{P}^1 = \mathbb{B}^1 \cup \mathbb{B}^1$ with different radius so that $\mathbb{B}^1 \cup \mathbb{B}^1 = \partial \mathbb{B}^1$ or C(a).

<u>First main result:</u> The generation theorem

From now on, we work (for simplicity) with rational coefficients.

<u>Definition:</u> An affinoid X has $good\ reduction$ if it is the Raynaud generic fiber of an adic smooth formal scheme over k^o . It has $potentially\ good\ reduction$ if $X\otimes_k k'$ has good reduction for some finite extension $k\subset k'$.

Theorem A: The triangulated category with arbitrary sums $\mathbf{RigDM}(k)$ is compactly generated by $\mathsf{M}_{\mathsf{rig}}(X)$ for X affinoid varieties with potentially good reduction.

We have seen that $\mathsf{M}_{\mathsf{rig}}(\mathsf{Spm}(\frac{k\{t_0,t_1\}}{t_0.t_1-a}))$ is isomorphic to $\mathsf{M}_{\mathsf{rig}}(\mathsf{Spm}(\frac{k\{t_0,t_1\}}{t_0.t_1-1}))$. This a confirmation of the above theorem. More generally we have:

lemma: The rigid motive of the affinoid:

$$S_n = \operatorname{Spm}(\frac{k\{t_0, \dots, t_n\}}{t_0 \dots t_n - a})$$

with 0 < |a| < 1 is isomorphic to the rigid motive of $\partial \mathbb{B}^1 \times \cdots \times \partial \mathbb{B}^1$ that is to the motive of

$$\operatorname{\mathsf{Spm}}(\frac{k\{t_0,\ldots,t_n\}}{t_0\ldots t_n-1})$$

For simplicity we assume that k is of equicharacteristic zero. Let $\mathbf{RigDM}_{pgr}(k)$ be the triangulated sub-category of $\mathbf{RigDM}_{eff}(k)$ generated by the motives of k-affinoids with potentially good reduction. We need to show that $\mathbf{M}_{rig}(X) \in \mathbf{RigDM}_{pgr}(k)$ for any smooth affinoid X.

By the semi-stable reduction theorem, we may assume that X has a model $\mathcal X$ which is smooth over:

$$S_n = \operatorname{Spf}(\frac{k^o[[t_0, \dots, t_n]]}{t_0 \dots t_n - a})$$

with 0 < |a| < 1.

We argue by induction on n. Let $o \in \mathcal{S}_n$ be the intersection of all branches. We may assume that the fiber \mathcal{X}_o is non-empty.

We may further assume that \mathcal{X}_o admits a Nisnevich neighborhood:

$$\mathcal{X}_O \to \mathcal{V} \to \mathcal{X}$$

which is also a Nisnevich neighborhood of \mathcal{X}_o in $\mathcal{U} \times_{k^o} \mathcal{S}_n$:

$$\mathcal{X}_o \to \mathcal{V} \to \mathcal{U} \times_{k^o} \mathcal{S}_n$$

with \mathcal{U} a smooth adic formal scheme with special fiber \mathcal{X}_o .

It follows by Nisnevich excision that:

$$\mathbb{Z}_{tr}\left[\frac{\mathcal{X}_{\eta}}{(\mathcal{X}-\mathcal{X}_{0})_{\eta}}\right] \simeq \mathbb{Z}_{tr}\left[\frac{\mathcal{V}_{\eta}}{(\mathcal{V}-\mathcal{X}_{0})_{\eta}}\right]$$

$$\simeq \mathbb{Z}_{tr} \left[rac{\mathcal{U}_{\eta} imes (\mathcal{S}_n)_{\eta}}{\mathcal{U}_{\eta} imes (\mathcal{S}_n - o)_{\eta}}
ight]$$

as Nisnevich sheaves.

By induction the motives $M_{\text{rig}}((\mathcal{X}-\mathcal{X}_0)_{\eta})$ and $M_{\text{rig}}((\mathcal{S}_n-o)_{\eta})$ are in

$$\operatorname{RigDM}_{pgr}(k)$$

It suffices to show that

$$\mathsf{M}_{\mathsf{rig}}((\mathcal{S}_n)_{\eta}) \in \mathbf{RigDM}_{pgr}(k)$$

(Note that the category $\mathbf{RigDM}_{pgr}(k)$ is stable by tensor product). But we saw that the rigid motive of $S_n = (S_n)_{\eta}$ is isomorphic to:

$$\operatorname{\mathsf{Spm}}(\frac{k\{t_0,\ldots,t_n\}}{t_0\ldots t_n-1})$$

which is clearly an affinoid with good reduction.

Theorem **A** is proved.

Second main result:

An equivalence of categories

In the equi-characteristic zero situation, it is possible to prove a much more precise result than theorem **A**. To state it we introduce some notations. Let $\tilde{k} = k^o/k^\vee$ be the residue field of k. We assume |.| to be discrete and fix $\pi \in k^o$ a uniformizer so that $k = \tilde{k}((\pi))$.

<u>Definition:</u> Let $qcDM_{eff}((\mathbb{G}_m)_{\tilde{k}})$ be the triangulated sub-category of $DM_{eff}((\mathbb{G}_m)_{\tilde{k}})$ having all sums and generated by $M(X_{c,n})$ with $X_{c,n}$ the $(\mathbb{G}_m)_{\tilde{k}}$ -scheme:

$$X \times_{\tilde{k}} (\mathbb{G}_m)_{\tilde{k}} \to (\mathbb{G}_m)_{\tilde{k}} \xrightarrow{(.)^n} (\mathbb{G}_m)_{\tilde{k}}$$

where X are smooth \tilde{k} -schemes.

Theorem B: The composition:

$$qc\mathbf{DM}_{\mathsf{eff}}((\mathbb{G}_m)_{\widetilde{k}}) \overset{\pi^*}{\to} \mathbf{DM}_{\mathsf{eff}}(k) \to \mathbf{Rig}\mathbf{DM}_{\mathsf{eff}}(k)$$
 is an equivalence of categories.

We will apply the following lemma:

Lemma: Let $F: \mathcal{T}_1 \to \mathcal{T}_2$ be a triangulated functor between two compactly generated triangulated categories. We suppose that:

- F commutes with sums,
- There exists a set of compact generators $G_1 \subset T_1$ such that $F(G_1)$ is a set of compact generators of T_2 ,
- For every $A, B \in \underline{G_1}$ and $p \in \mathbb{Z}$ we have an isomorphism:

$$hom(A, B[p]) \simeq hom(F(A), F(B)[p])$$

Then F is an equivalence of categories.

We take \underline{G}_1 to be the class of $M(X_{c,n})$ with X smooth over \tilde{k} . One can prove:

Lemma: Denote $X_{c,n}^{an}$ the rigid variety which is the generic fiber of the completion along the special fiber of:

$$X \times_{\tilde{k}} k^o[\pi^{1/n}]$$

Then $\operatorname{Rig}^*\pi^*\mathsf{M}(X_{c,n})\simeq \mathsf{M}_{\mathsf{rig}}(X_{c,n}^{an}).$

It follows that $\operatorname{Rig}^*\pi^*\underline{G}_1$ is a set of generators of $\operatorname{RigDM}_{\operatorname{eff}}(k)$. Indeed, by theorem **A** $\operatorname{RigDM}_{\operatorname{eff}}(k)$ is generated by motives of affinoid having potentially good reduction. Such affinoids become isomorphic to a $X_{c,1}^{an}$ after finite extension of the base field.

We still need to check the equalities of Homs. We easily reduce to the case n=1. We show more generally:

Lemma: Let M be a motive in $\mathbf{DM}_{\mathsf{eff}}(\tilde{k})$ and denote M_k the pull-back of M along $\tilde{k} \subset k$. We have:

$$\begin{aligned} & \operatorname{hom}_{\mathbf{RigDM}_{\mathsf{eff}}(k)}(\mathsf{M}_{\mathsf{rig}}(X_c^{an}), \mathsf{Rig}^*(M_k)) \\ & = \operatorname{hom}_{\mathbf{DM}_{\mathsf{eff}}(\tilde{k})}(\mathsf{M}(X \times \mathbb{G}_m), M) \end{aligned}$$

Idea of the proof: Let $an^*M_k=M_k^{an}$ be the analytification of the complex of Nisnevich sheaves with transfers M_k . We construct a complex of sheaves with transfers $\Phi(M)$ on RigSm/k together with a map $M_k^{an} \to \Phi(M)$ in the following way.

Consider the diagram of \tilde{k} -schemes:

$$\mathcal{D}: \mathsf{Affinoid}/k o \mathit{Sch}/ ilde{k}$$

with Affinoid/k the category of k-affinoids and $\mathcal{D}(Spm(A)) = Spec(A^o)$. One has the following diagram:

$$\mathcal{D}_{\eta} \xrightarrow{j} \mathcal{D} \xleftarrow{i} \mathcal{D}_{s}$$

in the category of diagrams of \tilde{k} -schemes.

One can extend the construction of $\mathrm{DM}_{\mathrm{eff}}(-)$ and its stable version $\mathrm{DM}(-)$ from schemes to diagram of schemes in the obvious manner. In particular, we can consider the functors:

$$\mathbf{DM}(\mathcal{D}_{\eta}) \stackrel{j_*}{\longrightarrow} \mathbf{DM}(\mathcal{D}) \stackrel{i^*}{\longrightarrow} \mathbf{DM}(\mathcal{D}_s)$$

Define $\phi(M) = i^* j_*(M_{|\mathcal{D}_{\eta}})$; this a \mathbb{G}_m -spectrum of pre-sheaves on the category Sm/\mathcal{D}_s . Finally define:

$$\Phi(M)(\operatorname{Spm}(A)) = \operatorname{R}\Gamma(\operatorname{Spec}(\tilde{A}), \phi(M))$$

One easily checks that as a complex of presheaves, $\Phi(M)$ is quasi-isomorphic to a complex of Nisnevich sheaves with transfers. Moreover we have:

Sub-Lemma 1: $\Phi(M)$ is \mathbb{B}^1 -local.

Indeed, let X = Spm(A) be a smooth affinoid. We have by construction that

$$\mathsf{H}^*_{\mathsf{Nis}}(X, \Phi(M)) = \underset{\mathcal{X}_{\eta}=X}{\mathsf{Colim}} \; \mathsf{H}^*_{\mathsf{Nis}}(\mathcal{X}_s, i^*j_*(M_{|A}))$$

Now, for the stable $\mathbf{DM}(-)$ we have the base change theorem for projective morphisms. This implies that:

 $\mathsf{H}^*_{\mathsf{Nis}}(\mathcal{X}_s, i^*j_*(M_{|A})) = \mathsf{H}^*_{\mathsf{Nis}}(\mathsf{Spec}(\tilde{A}), i^*j_*(M_{|A}))$ So that the colimit stabilize in:

$$\mathsf{H}^*_{\mathsf{Nis}}(X,\Phi(M)) = \mathsf{H}^*_{\mathsf{Nis}}(\mathsf{Spec}(\tilde{A}), i^*j_*(M_{|A}))$$

This immediately implies that $\Phi(M)$ is \mathbb{B}^1 -local as $i^*j_*(M_{|A})$ is \mathbb{A}^1 -local.

Sub-Lemma 2: The morphism $M_k^{an} \to \Phi(M)$ is a \mathbb{B}^1 -weak equivalence. This identifies $\mathsf{Loc}_{\mathbb{R}^1}(M_k^{an})$ with $\Phi(M)$.

This will implies theorem **B** as we have for an affinoid with good reduction X = Spm(A) that $\Phi(M)(X) = \text{hom}(\text{Spec}(\tilde{A}) \times \mathbb{G}_m, M)$.

Note that we have a factorization:

$$M_k^{an} \to C_*^{\mathbb{B}} M_k^{an} \to \Phi(M)$$

Where $C_*^{\mathbb{B}}$ is the rigid analogue of the Suslin-Voevodsky complex i.e. $C_n^{\mathbb{B}}(-) = \underline{Hom}(\Delta_{rig}^n, -)$ where Δ_{rig}^n is the rigid simplex:

$$Spm(\frac{k\{t_0,\ldots,t_n\}}{t_0+\cdots+t_n=1})$$

By a direct computation, one can prove that for $X = \operatorname{Spm}(A)$ an affinoid with good reduction $C_*^{\mathbb{B}}(M_k^{an})(X) \simeq C_*^{\mathbb{A}}(M)(\tilde{X} \times \mathbb{G}_m)$. This computation was already known to Marc Levine (in *Motivic Tubular Neighborhood*). The idea is to use the retraction $\operatorname{Spec}(A) \to \operatorname{Spec}(\tilde{A})$ to get some explicit homotopy equivalence of complexes.

Now the sub-lemma follows easily from the following proposition:

Proposition: Let F be a pre-sheaf with transfers on RigSm/k such that F(X) = 0 whenever X is a smooth affinoid with potentially good reduction. Then F_{Nis} is \mathbb{B}^1 -weakly equivalent to zero.

Denote S_n the affinoid $\mathrm{Spm}(\frac{k\{t_0,...,t_n\}}{t_0...t_n-a})$ with 0 < |a| < 1. One reduces formally to the case F the quotient of $\mathbb{Z}_{tr}(S_n)$ by all the sections with value in potentially good reduction affinoids. By induction me may further assume that F is the quotient of $\mathbb{Z}_{tr}(S_n)$ by all the sections with value in affinoids having potentially semi-stable reduction with < n branches.

One then construct a section of F_{Nis} with value in $S_n \times \mathbb{B}^1$ by gluing along the standard cover:

$$S_{n+1} \coprod_{S_n \times \partial \mathbb{B}^1} (S_n \times \mathbb{B}^1)$$

some well chosen section in $F(S_{n+1})$ with the zero section. This gives a homotopy $F \times \mathbb{B}^1 \to F_{\text{Nis}}$ between the identity and the zero morphism.

Application to the motivic nearby functor

The computation of the \mathbb{B}^1 -localization we made in the proof of theorem **B** extends to non-necessarily "constant" motives. In fact, for every $M \in \mathbf{DM}_{\mathrm{eff}}(k)$ the complex $\mathrm{Rig}^*(M)$ is quasi-isomorphic to $\Phi(M)$ which is given by:

$$\Phi(M)(\operatorname{Spm}(A)) = \operatorname{R}\Gamma(\operatorname{Spec}(\tilde{A}, i^*j_*(M_{\mathcal{D}_{\eta}}))$$

We deduce from this the following theorem:

Theorem C: The functor:

$$i^*j_*: \mathrm{DM}(k) \to \mathrm{DM}(\tilde{k})$$

is canonically isomorphic to the composition:

$$\mathbf{DM}(k) \stackrel{\mathsf{Rig}^*}{\longrightarrow} \mathbf{Rig} \mathbf{DM}(k) \simeq qc \mathbf{DM}((\mathbb{G}_m)_{\tilde{k}}) \stackrel{q_*}{\longrightarrow} \mathbf{DM}(\tilde{k})$$

Note that theorem \mathbf{C} concerns the stable motives (i.e. the Tate motive is inverted). This is because we had to use i^*j_* between the stable categories so that we can apply the base change theorem for projective morphisms. We conjecture that theorem \mathbf{C} is true for the "effective" i^*j_* but we couldn't find a proof.

It is natural to make the following definition:

<u>Definition:</u> The effective nearby cycles functor Ψ_{eff} is the composition:

$$\mathbf{DM}_{\mathsf{eff}}(k) \xrightarrow{Rig^*} \mathbf{RigDM}_{\mathsf{eff}}(k)$$

$$\uparrow \sim$$

$$qc\mathbf{DM}_{\mathsf{eff}}((\mathbb{G}_m)_{\tilde{k}}) \xrightarrow{1^*} \mathbf{DM}_{\mathsf{eff}}(\tilde{k})$$

In our PhD thesis we defined in a different way a motivic nearby cycles functor $\Psi: \mathbf{DM}(k) \to \mathbf{DM}(\tilde{k})$. It is not difficult to show that the two definitions agree.

The following properties are obvious on the definition of Ψ_{eff} :

Property 1: Ψ_{eff} takes compact motives to compact motives.

Property 2: Ψ_{eff} is a monoidal functor.

Some open questions

Problem 1: Is it possible to formulate and prove an analogue of theorem \mathbf{B} when \tilde{k} is of positive characteristic? Can this be used to extend the definition of the motivic nearby functors for the non equi-characteristic zero case?

Problem 2: Over \mathbb{C} , one has the Betti realization functor:

$$\mathsf{Betti}^* : \mathbf{DM}_{\mathsf{eff}}(\mathbb{C}) \to D(\mathbb{Z}-\mathsf{mod})$$

Classical Hodge theory give a factorization:

$$\mathbf{DM}_{\mathsf{eff}}(\mathbb{C}) {\longrightarrow} D(\mathsf{MHS}) {\longrightarrow} D(\mathbb{Z}-\mathsf{mod})$$

Given $M \in \mathbf{DM}_{\mathsf{eff}}(k)$ is it possible to define a "motivic Hodge structure" on $\mathsf{Rig}^*(M)$ so that one get a factorization:

$$\mathrm{DM}_{\mathsf{eff}}(k) o ext{???} o \mathrm{RigDM}_{\mathsf{eff}}(k)$$