n-Motivic Sheaves JOSEPH AYOUB

This talk is based on our joint paper [1] with L. Barbieri-Viale. We fix a ground field k which we assume, for simplicity, to be of characteristic zero. Also for simplicity, we will work with rational coefficients. In the sequel, *motivic sheaf* is a shorthand for homotopy invariant sheaf with transfers [3], i.e., a motivic sheaf \mathcal{F} is an additive contravariant functor from the category of smooth correspondences $\mathbf{Cor}(k)$ (see [3, Def. 1.5]) to the category of Q-vector spaces such that:

(a) for every smooth k-scheme $X, \mathcal{F}(X) \to \mathcal{F}(\mathbb{A}^1_X)$ is invertible.

(b) the restriction of \mathcal{F} to the category Sm/k of smooth k-schemes is a Nisnevich (or equivalently, an étale) sheaf with transfers.

If \mathcal{F} satisfy (b) but not necessarily (a), we call it a sheaf with transfers. The category of sheaves with transfers will be denoted by Str(k). We denote $\mathbf{HI}(k)$ its full subcategory of motivic sheaves. The obvious inclusion admits a left adjoint $h_0 : Str(k) \to \mathbf{HI}(k)$. It follows from [3, Th. 22.3] that h_0 is the given by the Nisnevich sheaf of the associated homotopy invariant presheaf with transfers. In particular, $\mathbf{HI}(k)$ is an abelian category and the inclusion $\mathbf{HI}(k) \hookrightarrow Str(k)$ is exact. In fact, there is a natural *t*-structure on Voevodsky's category $\mathbf{DM}_{\text{eff}}(k)$ whose heart is canonically equivalent to $\mathbf{HI}(k)$. This gives a hint why motivic sheaves are important objects to study. Important examples include the following.

Example 1: Let X be a smooth k-scheme. We denote by $\widetilde{\operatorname{CH}}^p(X)$ the sheaf associated to the presheaf $U \rightsquigarrow \operatorname{CH}^p(U \times_k X)$. This is a motivic sheaf.

We recall the notion of an *n*-motivic sheaf from [1]. Fix an integer $n \in \mathbb{N}$ and let $\mathbf{Cor}(k_{\leq n}) \subset \mathbf{Cor}(k)$ be the full subcategory whose objects are the smooth *k*schemes of dimension less than *n*. Let $Str(k_{\leq n})$ be the category of contravariant functors from $\mathbf{Cor}(k_{\leq n})$ to the category of \mathbb{Q} -vector spaces. There is an obvious restriction functor $\sigma_{n*} : Str(k) \to Str(k_{\leq n})$ which has a left adjoint σ_n^* .

Definition 2: An object $\mathcal{F} \in \mathbf{HI}(k)$ is an n-motivic sheaf if the obvious morphism

$$h_0 \sigma_n^* \sigma_{n*} \mathcal{F} \to \mathcal{F}$$

is invertible. We denote by $\operatorname{HI}_{\leq n}(k) \subset \operatorname{HI}(k)$ the full subcategory of n-motivic sheaves.

It is formal to prove that $\mathbf{HI}_{\leq n}(k)$ is an abelian category. Given a morphism of *n*-motivic sheaves $a : \mathcal{F} \to \mathcal{G}$, coker(a) is again an *n*-motivic sheaf and gives the cokernel of a in $\mathbf{HI}_{\leq n}(k)$. In other words, the inclusion $\mathbf{HI}_{\leq n}(k) \hookrightarrow \mathbf{HI}(k)$ is right exact. Unfortunately, it is an open problem whether or not this inclusion is left exact. In other words, we don't know that ker(a) is *n*-motivic, and the kernel of a in $\mathbf{HI}(k)$ is a priori given by $h_0 \sigma_n^* \sigma_{n*} ker(a)$. In fact, we conjecture much more than the left exactness of the inclusion $\mathbf{HI}_{\leq n}(k) \hookrightarrow \mathbf{HI}(k)$, namely:

Conjecture 3: There is a functor $(-)^{\leq n}$: $\mathbf{HI}(k) \to \mathbf{HI}_{\leq n}(k)$ which is a left adjoint to the obvious inclusion.

Unfortunately, the previous conjecture seems out of reach for $n \ge 2$. When n = 0 or n = 1, the situation is much easier and the functors $(-)^{\le n}$ exist and are denoted respectively by π_0 and Alb. One can even write formulas:

$$\pi_0(\mathcal{F}) = \operatornamewithlimits{colim}_{X \to \mathcal{F}} \mathbb{Q}_{tr}(\pi_0(X)) \quad \text{and} \quad \operatorname{Alb}(\mathcal{F}) = \operatornamewithlimits{colim}_{X \to \mathcal{F}} \operatorname{Alb}(X)$$

where $\pi_0(X)$ is the étale k-scheme of connected components of X and Alb(X) is the Albanese scheme of X considered as a sheaf with transfers.

Example 4: Assume that k is algebraically closed and let X be a smooth k-scheme. Then one can prove that $\pi_0(\widetilde{\operatorname{CH}}^p(X))$ is the constant sheaf with value $\operatorname{NS}^p(X)$, the Neron-Severi group of codimension p-cycles up to algebraic equivalence.

We also address a (hopefully easy) conjecture.

Conjecture 5: Let X be a complex algebraic variety. Then $Alb(\widetilde{CH}^{p}(X))(\mathbb{C})$ is canonically isomorphic to target of Walter's morphic Abel-Jacoby map (see [2]).

In fact, π_0 and Alb are defined on the hole category Str(k) by the same formulas. An important issue is that these functors can be left derived, yielding two functors

 $L\pi_0 : \mathbf{D}(Str(k)) \to \mathbf{D}(\mathbf{HI}_{\leq 0}(k)) \text{ and } LAlb : \mathbf{D}(Str(k)) \to \mathbf{D}(\mathbf{HI}_{\leq 1}(k)).$

Moreover, these two functors pass to the \mathbb{A}^1 -localization yielding two functors

 $L\pi_0 : \mathbf{DM}_{eff}(k) \to \mathbf{D}(\mathbf{HI}_{\leq 0}(k)) \text{ and } LAlb : \mathbf{DM}_{eff}(k) \to \mathbf{D}(\mathbf{HI}_{\leq 1}(k))$

which are left adjoint to the obvious inclusions.

We now give two applications. The first one gives an extension of the classical Neron-Severi groups to a bigraded cohomology theory.

Definition 6: Let X be a smooth k-scheme. We set

$$NS^{p}(X,q) = L_{q}\pi_{0}(\underline{Hom}(X,\mathbb{Q}(p)[2p]))(k).$$

Then, $NS^{p}(X, 0)$ is the classical Neron-Severi group $NS^{p}(X)$ and we have a canonical morphism from Bloch's higher Chow groups:

$$\operatorname{CH}^p(X,q) \to \operatorname{NS}^p(X,q)$$

Except for q = 0, we do not expect this map to be surjective in general.

As a second application, we propose a definition of 2-motives.

Definition 7: A 2-motive is an object $M \in \mathbf{DM}_{\text{eff}}(k)$ satisfying the following properties.

- (a) $h_i(M) = 0$ for $i \notin \{0, -1, -2\}$.
- (b) $h_0(M)$ is a 0-motivic sheaf.
- (c) $h_{-1}(M)$ is a 1-motivic sheaf.
- (d) $h_{-2}(M)$ is a 1-connected 2-motivic sheaf.
- (e) M[+1] doesn't contains a non-zero direct summand which is a 0-motivic sheaf.

References

- [1] J. Ayoub and L. Barbieri-Viale, 1-Motivic sheaves and the Albanese functor, Journal of Pure and Applied Algebra **213** (2009), 809–839.
- [2] M. Walker, The morphic Abel-Jacobi map, Preprint.
 [3] C. Mazza, V. Voevodsky and C. Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs, Volume 2.