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This is a report on a ”work in progress” of F. Morel and M. J. Hopkins.
Their work is a step toward the identification of the motivically defined theory
MG`2∗,∗(−) with the geometrically defined one Ω∗(−). Namely, they prove:

Theorem 1. For any smooth k-variety X the natural graded homomorphism
MG`2∗,∗(X) 7−→ Ω∗(X) is surjective.

The plan of the lecture was:
(1) Some basic properties of MG`.
(2) The computation of MG`2∗,∗(k).
(3) Proof of the main theorem.

From now one, the base field k is fixed and all our varieties will be k-varieties.
For simplicity we shall assume k to be of characteristic zero.

1. Some basic properties of MG`

In this first part, we transpose from the topological to the motivic context some
classical properties of the Thom spectrum. We denote by T = A1/Gm one of the
motivic spheres. When speaking about spectra, we shall always mean T -spectra.
The A1-homotopy category of spectra is a triangulated category denoted by SH(k)
(cf. Morel [1]).

Let us recall that as in algebraic topology, the motivic Thom spectrum is defined
by the collection: (S0, Th(γ1), . . . , Th(γn), . . . ) together with the usual assembly
maps. Here γn is the tautological vector bundle on the infinite Grassmanian of
n-planes. For a smooth variety X, we put MG`p,q(X) = [X+,MG` ∧ T q[p− 2q]].

Lemma 2. MG` is an oriented ring spectrum.
The proof is exactly the same as the classical one. It is based on the identifica-

tion of Th(γ1) with the pointed space (P∞, ∗).
As a consequence, we can define for a line bundle L on X a first Chern class

c1(L) ∈ MG`2,1(X) by the composition: X
[L]7−→ P∞ 7−→ MG` ∧ T . Using this,

one obtain a projective bundle formula by the usual method, and then the other
Chern classes for vector bundles. This can be used to define the Thom classes:

Definition-Construction 3. Let V/X be a vector bundle of rank r. The Thom
class t(V) of V lives in MG`2r,r(Th(V)). It is defined in the following manner:
Recall that one model of Th(V) is P(V + 1)/P(V). Thus one have a long exact
sequence (which breaks into short ones):

MG`∗,∗(Th(V)) // MG`∗,∗(P(V + 1)) // MG`∗,∗(P(V))

MG`∗,∗(k)[1, u, . . . , ur] MG`∗,∗(k)[1, u, . . . , ur−1]

We then define t(V) to be the element of the middle group equal to ur − c1.ur−1 +
· · · + (−1)rcr where ci are such that the image of t(V) became zero in the last
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group. The exactness of the sequence give us a unique antecedent of t(V) in the
first group. This is the Thom class.

A consequence of this construction is:
lemma 4. MG` is the universal oriented ring spectrum.
Indeed let E be such a spectrum. The construction above still make sens for E.

In particular if we take the Thom classes of γn we get maps: Th(γn) 7−→ E ∧ Tn

yielding the unique map of spectra MG` 7−→ E. Later on, we shall apply this to
E = HZ, the motivic cohomology spectrum, to get the morphism: MG` 7−→ HZ.

The next step of our study is the Thom isomorphism. Let V/X be a vector
bundle of rank r. Define (as in topology) the reduced diagonal: Th(V) 7−→ Th(V)∧
X+ using the pull-back square:

V //

��

V × 0

��
X

∆ // X ×X

Theorem-Definition 5. For any oriented ring spectrum E, the following
composition:

E ∧ Th(V) // E ∧ Th(V) ∧X+
// E ∧ E ∧ T r ∧X+

// E ∧ T r ∧X+

is an isomorphism. It is called the Thom isomorphism.
Roughly speaking, the above result says that an oriented ring spectrum does

not make the difference between the Thom space of a non trivial vector bundle
and the Thom space of a trivial one with the same rank. A consequence of that is
a natural isomorphism: E∗,∗(Th(V)) = E∗−2r,∗−r(X).

We end this section by constructing transfers map for MG`2∗,∗(−). It is suf-
ficient to consider the case of a closed immersion and the projection of a pro-
jective space over X. The second case follow easily from the projective bundle
formula. For a closed immersion we need to use the Thom isomorphism. Indeed,
let i : Y ⊂ X be a closed immersion. We denote by νi, νX and νY the normal bun-
dles of i, X and Y . Note that νX and νY are not vector bundles in the usual sens
but only virtual one (that is of negative rank). As in topology, we can form the
composition in SH(k): Th(νX) // Th(i∗νX ⊕ νi) Th(νY ) When apply-
ing E∗,∗ we get a map in the opposite direction: E∗,∗(Th(νY )) 7−→ E∗,∗(Th(νX)).
Now using the Thom isomorphism, we have the identifications

E∗,∗Th(νY ) ' E∗+2dY ,∗+dY (Y ) and E∗,∗Th(νX) ' E∗+2dX ,∗+dX (X)

Where dX and dY are the dimension of X and Y . Then denoting c = dX − dY

the codimension of Y in X, we obtain the wanted transfer map: E∗,∗(Y ) 7−→
E∗+2c,∗+c(X). As a consequence, E2∗,∗(−) is an oriented Borel-Moore cohomol-
ogy theory. In particular using the universality of Ω∗(−) we get the natural ho-
momorphism in theorem 1.
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2. the computation of MG`2∗,∗(k)

The main step of the proof of theorem 1 is the following proposition:
Proposition 6. The canonical homomorphism given by the formal group law:

L∗ 7−→MG`−2∗,−∗(k) is an isomorphism.
The injectivity of the above homomorphism is easy: one use for example a

complex realization. There is also a purely algebraic proof based on a Quillen
trick... The main difficulty is to show the surjectivity. For this one need a difficult
lemma:

Lemma 7. The canonical morphism of spectra: MG` 7−→ HZ induce an
isomorphism1:

MG`/(x1, . . . , xn, . . . )
∼ // HZ

Where xi are generator of the Lazard ring.
Assuming lemma 7, the proof of proposition 6 goes by induction on ∗. The point

is that for N > 0, one have [TN , HZ] = 0 by Voevodsky cancellation theorem.
Using a stability argument, the lemma 7 implies that [TN ,MG`/(x1, . . . , xN )] = 0.
Then if we apply [TN ,−] to the distinguished triangle:

MG`/(x1, . . . , xN−1) ∧ TN xN−→MG`/(x1, . . . , xN−1)→MG`/(x1, . . . , xN )→
we get a surjection: xN : Z 7−→MG`−2N,−N/(x1, . . . , xN−1)(k). Using the induc-
tion hypothesis, one deduce that: LN 7−→MG`−2N,−N (k) is indeed a surjection.

3. Proof of the main theorem

A consequence of proposition 6 is that MG`2∗,∗(−) is generically constant.
Moreover, we have a weak form of the localization property, namely: given a
smooth pair (Y ⊂ X) with Y of codimension c, one have an exact sequence:

MG`2∗−2c,∗−c(Y ) // MG`2∗,∗(X) // MG`2∗,∗(X − Y )

These properties suffices to derive a generalized degree formula (see [2], [3])
for MG`2∗,∗(−). In particular, this implies that MG`2∗,∗(X) is generated as a
MG`−2∗,−∗(k) = L∗-module by cobordism cycles: [Z 7−→ X] with Z a desingular-
ization of a closed subset of X. This clearly implies Theorem 1.
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1The quotient ring spectrum MG`/(x1, . . . , xn, . . . ) is not so easy to construct. Some serious

technical difficulties arise if one try to do this naively. One way to overcome these difficulties is
to work in a category of MG`-modules.
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