The motivic Thom spectrum $M\mathbb{G}\ell$ and the algebraic cobordism $\Omega^*(-)$ Ayoub Joseph

This is a report on a "work in progress" of F. Morel and M. J. Hopkins. Their work is a step toward the identification of the motivically defined theory $M\mathbb{G}\ell^{2*,*}(-)$ with the geometrically defined one $\Omega^*(-)$. Namely, they prove:

Theorem 1. For any smooth k-variety X the natural graded homomorphism $M\mathbb{G}\ell^{2*,*}(X) \longmapsto \Omega^*(X)$ is surjective.

The plan of the lecture was:

- (1) Some basic properties of $M\mathbb{G}\ell$.
- (2) The computation of $M\mathbb{G}\ell^{2*,*}(k)$.
- (3) Proof of the main theorem.

From now one, the base field k is fixed and all our varieties will be k-varieties. For simplicity we shall assume k to be of characteristic zero.

1. Some basic properties of $M\mathbb{G}\ell$

In this first part, we transpose from the topological to the motivic context some classical properties of the Thom spectrum. We denote by $T = \mathbb{A}^1/\mathbb{G}m$ one of the motivic spheres. When speaking about spectra, we shall always mean T-spectra. The \mathbb{A}^1 -homotopy category of spectra is a triangulated category denoted by $\mathbf{SH}(k)$ (cf. Morel [1]).

Let us recall that as in algebraic topology, the motivic Thom spectrum is defined by the collection: $(\mathbb{S}^0, Th(\gamma_1), \dots, Th(\gamma_n), \dots)$ together with the usual assembly maps. Here γ_n is the tautological vector bundle on the infinite Grassmanian of n-planes. For a smooth variety X, we put $M\mathbb{G}\ell^{p,q}(X) = [X_+, M\mathbb{G}\ell \wedge T^q[p-2q]]$.

Lemma 2. $MG\ell$ is an oriented ring spectrum.

The proof is exactly the same as the classical one. It is based on the identification of $Th(\gamma_1)$ with the pointed space $(\mathbb{P}^{\infty}, *)$.

As a consequence, we can define for a line bundle \mathcal{L} on X a first Chern class $c_1(\mathcal{L}) \in M\mathbb{G}\ell^{2,1}(X)$ by the composition: $X \stackrel{[\mathcal{L}]}{\longmapsto} \mathbb{P}^{\infty} \longmapsto M\mathbb{G}\ell \wedge T$. Using this, one obtain a projective bundle formula by the usual method, and then the other Chern classes for vector bundles. This can be used to define the Thom classes:

Definition-Construction 3. Let V/X be a vector bundle of rank r. The Thom class t(V) of V lives in $M\mathbb{G}\ell^{2r,r}(Th(V))$. It is defined in the following manner: Recall that one model of Th(V) is $\mathbb{P}(V+1)/\mathbb{P}(V)$. Thus one have a long exact sequence (which breaks into short ones):

$$\begin{split} M\mathbb{G}\ell^{*,*}(Th(\mathcal{V})) & \longrightarrow M\mathbb{G}\ell^{*,*}(\mathbb{P}(\mathcal{V}+1)) & \longrightarrow M\mathbb{G}\ell^{*,*}(\mathbb{P}(\mathcal{V})) \\ & \qquad \qquad \qquad \parallel \\ & \qquad \qquad \qquad \parallel \\ & \qquad \qquad M\mathbb{G}\ell^{*,*}(k)[1,u,\ldots,u^r] & \qquad M\mathbb{G}\ell^{*,*}(k)[1,u,\ldots,u^{r-1}] \end{split}$$

We then define $t(\mathcal{V})$ to be the element of the middle group equal to $u^r - c_1.u^{r-1} + \cdots + (-1)^r c_r$ where c_i are such that the image of $t(\mathcal{V})$ became zero in the last

group. The exactness of the sequence give us a unique antecedent of $t(\mathcal{V})$ in the first group. This is the Thom class.

A consequence of this construction is:

lemma 4. $MG\ell$ is the universal oriented ring spectrum.

Indeed let E be such a spectrum. The construction above still make sens for E. In particular if we take the Thom classes of γ_n we get maps: $Th(\gamma_n) \longmapsto E \wedge T^n$ yielding the unique map of spectra $M\mathbb{G}\ell \longmapsto E$. Later on, we shall apply this to $E = H\mathbb{Z}$, the motivic cohomology spectrum, to get the morphism: $M\mathbb{G}\ell \longmapsto H\mathbb{Z}$.

The next step of our study is the Thom isomorphism. Let \mathcal{V}/X be a vector bundle of rank r. Define (as in topology) the reduced diagonal: $Th(\mathcal{V}) \longmapsto Th(\mathcal{V}) \land X_+$ using the pull-back square:

$$\begin{array}{ccc}
V \longrightarrow V \times 0 \\
\downarrow & & \downarrow \\
X \stackrel{\Delta}{\longrightarrow} X \times X
\end{array}$$

Theorem-Definition 5. For any oriented ring spectrum E, the following composition:

$$E \wedge Th(\mathcal{V}) \longrightarrow E \wedge Th(\mathcal{V}) \wedge X_{+} \longrightarrow E \wedge E \wedge T^{r} \wedge X_{+} \longrightarrow E \wedge T^{r} \wedge X_{+}$$

is an isomorphism. It is called the Thom isomorphism.

Roughly speaking, the above result says that an oriented ring spectrum does not make the difference between the Thom space of a non trivial vector bundle and the Thom space of a trivial one with the same rank. A consequence of that is a natural isomorphism: $E^{*,*}(Th(\mathcal{V})) = E^{*-2r,*-r}(X)$.

We end this section by constructing transfers map for $M\mathbb{G}\ell^{2*,*}(-)$. It is sufficient to consider the case of a closed immersion and the projection of a projective space over X. The second case follow easily from the projective bundle formula. For a closed immersion we need to use the Thom isomorphism. Indeed, let $i:Y\subset X$ be a closed immersion. We denote by ν_i , ν_X and ν_Y the normal bundles of i,X and Y. Note that ν_X and ν_Y are not vector bundles in the usual sens but only virtual one (that is of negative rank). As in topology, we can form the composition in $\mathbf{SH}(k)$: $Th(\nu_X) \longrightarrow Th(i^*\nu_X \oplus \nu_i) = Th(\nu_Y)$ When applying $E^{*,*}$ we get a map in the opposite direction: $E^{*,*}(Th(\nu_Y)) \longmapsto E^{*,*}(Th(\nu_X))$. Now using the Thom isomorphism, we have the identifications

$$E^{*,*}Th(\nu_Y) \simeq E^{*+2d_Y,*+d_Y}(Y)$$
 and $E^{*,*}Th(\nu_X) \simeq E^{*+2d_X,*+d_X}(X)$

Where d_X and d_Y are the dimension of X and Y. Then denoting $c = d_X - d_Y$ the codimension of Y in X, we obtain the wanted transfer map: $E^{*,*}(Y) \longmapsto E^{*+2c,*+c}(X)$. As a consequence, $E^{2*,*}(-)$ is an oriented Borel-Moore cohomology theory. In particular using the universality of $\Omega^*(-)$ we get the natural homomorphism in theorem 1.

2. The computation of $M\mathbb{G}\ell^{2*,*}(k)$

The main step of the proof of theorem 1 is the following proposition:

Proposition 6. The canonical homomorphism given by the formal group law: $\mathbb{L}_* \longmapsto M \mathbb{G} \ell^{-2*,-*}(k)$ is an isomorphism.

The injectivity of the above homomorphism is easy: one use for example a complex realization. There is also a purely algebraic proof based on a Quillen trick... The main difficulty is to show the surjectivity. For this one need a difficult lemma:

Lemma 7. The canonical morphism of spectra: $M\mathbb{G}\ell \longmapsto H\mathbb{Z}$ induce an isomorphism¹:

$$M\mathbb{G}\ell/(x_1,\ldots,x_n,\ldots) \stackrel{\sim}{\longrightarrow} H\mathbb{Z}$$

Where x_i are generator of the Lazard ring.

Assuming lemma 7, the proof of proposition 6 goes by induction on *. The point is that for N>0, one have $[T^N,H\mathbb{Z}]=0$ by Voevodsky cancellation theorem. Using a stability argument, the lemma 7 implies that $[T^N,M\mathbb{G}\ell/(x_1,\ldots,x_N)]=0$. Then if we apply $[T^N,-]$ to the distinguished triangle:

$$M\mathbb{G}\ell/(x_1,\ldots,x_{N-1})\wedge T^N \xrightarrow{x_N} M\mathbb{G}\ell/(x_1,\ldots,x_{N-1}) \to M\mathbb{G}\ell/(x_1,\ldots,x_N) \to$$
 we get a surjection: $x_N: \mathbb{Z} \longmapsto M\mathbb{G}\ell^{-2N,-N}/(x_1,\ldots,x_{N-1})(k)$. Using the induction hypothesis, one deduce that: $\mathbb{L}_N \longmapsto M\mathbb{G}\ell^{-2N,-N}(k)$ is indeed a surjection.

3. Proof of the main theorem

A consequence of proposition 6 is that $M\mathbb{G}\ell^{2*,*}(-)$ is generically constant. Moreover, we have a weak form of the localization property, namely: given a smooth pair $(Y \subset X)$ with Y of codimension c, one have an exact sequence:

$$M\mathbb{G}\ell^{2*-2c,*-c}(Y) \longrightarrow M\mathbb{G}\ell^{2*,*}(X) \longrightarrow M\mathbb{G}\ell^{2*,*}(X-Y)$$

These properties suffices to derive a generalized degree formula (see [2], [3]) for $M\mathbb{G}\ell^{2*,*}(-)$. In particular, this implies that $M\mathbb{G}\ell^{2*,*}(X)$ is generated as a $M\mathbb{G}\ell^{-2*,-*}(k) = \mathbb{L}_*$ -module by cobordism cycles: $[Z \longmapsto X]$ with Z a desingularization of a closed subset of X. This clearly implies Theorem 1.

REFERENCES

- F. Morel, An introduction to A¹-homotopy theory, ICTP Trieste July 2002. http://www.ictp.trieste.it/~pub_off/lectures/vol15.html
- [2] M. Levine et F. Morel, Cobordisme algébrique I, Note aux C.R. Acad. Sci. Paris, 332 Série I, p. 723-728, 2001.
- [3] M. Levine and F. Morel, Algebraic Cobordism I. revised version. http://www.math.neu.edu/~levine/publ/Publ.html
- [4] M. Levine, Algebraic Cobordism II. http://www.math.neu.edu/~levine/publ/Publ.html

¹The quotient ring spectrum $M\mathbb{G}\ell/(x_1,\ldots,x_n,\ldots)$ is not so easy to construct. Some serious technical difficulties arise if one try to do this naively. One way to overcome these difficulties is to work in a category of $M\mathbb{G}\ell$ -modules.