Stability and Bifurcation in Viscous
Incompressible Fluids
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1 The Problem

We consider the motion of a viscous incompressible fluid in a bounded
smooth domain Q of R3. It is governed by the laws of conservation of mass,
momentum, and energy given by

V-v=0,
v+ (v-V)v=-Vp+V-S+b, (1.1)
c(Of+v-V8)=-V-q+S:D+r,

respectively (e.g., [24], [27]). Here the velocity vector field v, the pressure p,
and the absolute temperature 6 are the unknowns. The density has been
normalized to 1, and S is the viscous part of the stress tensor, b = b(z, t,0)
is the body force, ¢ = ¢(f) > 0 is the heat capacity, q is the heat flux vector,

D = D(v) = 3 [Vo + (Vo) ]

is the rate of deformation tensor, and r = r(z,t,6) is the radiant heat.
Moreover, S : D := tr(SD), where tr(-) denotes the trace.

Of course, equations (1.1) have to hold in € x (0, 00). As for bound-
ary conditions, we suppose that I := Q0 =g U1, where I'y and T'; are
disjoint and relatively open in I'. Then we impose the conditions

v =17y on FX(O;OO)J
0= HO on F(] X (0,00) ) (12)
—q'V:h OI’lFlX(O;OO)a

where vg = vo(y,t), 6o = 6o(y,t), and h = h(y,t,0) with v denoting the
outer unit normal vector field. This means that we prescribe the usual
adherence boundary condition for the velocity vector field, the temperature
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on [y, and the inward heat flux through I’y (by a possibly nonlinear function
of 6). Lastly, we specify initial conditions

v=2%), 0=6%), zeN. (1.3)

In order to obtain a meaningful problem we have to impose constitu-
tive relations for S and q. As for the stress tensor, we assume that it is
a smooth function of D and @ only, and that it is symmetric in order to
guarantee the conservation of angular momentum, that is, we assume that

S=8T=8(D,0) . (1.4)

Thus we consider so-called Stokesian fluids.

The simplest class of fluids satisfying (1.4) is the class of Newtonian
fluids for which S = 2v D for some positive constant v, the kinematic viscos-
ity. In this case the first two equations in (1.1) reduce to the Navier-Stokes
equations. In all other cases we are dealing with non-Newtonian fluids.

Of course, our system has to satisfy the principle of frame invariance.
This implies that
S=a;D+ayD?, (1.5)

where the scalar functions a; depend on the principal invariants tr(D),
|D|? := D : D, and det(D) of D and on the temperature 6 only (e.g., [24],
[27]). Since tr(D) = V - v = 0, it follows that

a; = a;(|D|*,det(D),0) , j=1,2. (1.6)
As for regularity, we assume that
aj € C*([RT xR xR, R) j=1,2,

for simplicity, where RT := [0, 00).
For the heat flux vector we impose the constitutive assumption that

it depends smoothly on D, 6, and V@ only. Then it is a consequence of the
principle of frame invariance that

¢=-QVl with Q=pfo+pD+pD?, (1.7)

where the scalar functions 8; depend on the principal invariants of D, the
temperature 6, on |V6|2, V- DV6, and V@ - D*V6 only. For simplicity,
we assume that they are independent of V8, that is, we assume that

B; = B;(|DI?,det(D), ) (1.8)
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with

B; € C*(R" x R x R",R) , j=0,1,2.

The simplest case in which assumptions (1.7) and (1.8) are satisfied
occursif 81 = B2 = 0 and By = k, where k is a positive constant. Then (1.7)
represents Fourier’s law, ¢ = —kV#6, and the third equation in (1.1) reduces
to the convective heat equation. Note, however, that it contains the ‘energy
dissipation’ term S : D that accounts for heat production due to viscous
motion. This term is omitted in almost all mathematical studies of heat
conducting viscous fluids since it is of second order in Vv. Below we shall
see that it is precisely this term which carries important information for
the asymptotic behavior of the system (1.1), (1.2).

If we consider Newtonian fluids, use Fourier’s law, and drop the term
S : D =2v|D|’, then our system (1.1), (1.2) reduces to the well-known
Boussinesq approximation for a compressible heat-conducting viscous fluid.
In this case, that has been extensively studied (e.g., [13]), it is usually
assumed, in addition, that » = 0 and h is an affine function of 6.

The initial boundary value problem (1.1)—(1.3) together with the con-
stitutive assumptions (1.4) and (1.7), (1.8) is a highly complicated nonlinear
system for the unknowns (v, p,#). Its complexity is illustrated by the fact
that it contains the Navier-Stokes equations as a very particular subsystem.
We are interested in the global strong solvability of this system. It is well-
known that — in the isothermal case where the third equation in (1.1) and
the corresponding boundary conditions are omitted — the Navier-Stokes
equations are locally uniquely strongly solvable. But it is an open question
whether these solutions exist globally, in general. On the other hand, it
is also well-known that the Navier-Stokes equations possess unique global
strong solutions for small data (b, ve,v°) (e.g., [15])-

In this paper we study the global strong solvability of the full system
(1.1)-(1.4) and (1.7), (1.8) for ‘small data’. Since we consider the non-
isothermal case, we assume that there exists a uniform temperature dis-
tribution § at which the fluid is at rest if there are no external forces and
initial disturbances. More precisely, we assume that there exist a positive
constant  and functions

(bl,Tl)GCOO(ﬁXR+,R3 xR) , h1€C°°(F1xR+,R)
such that

(b,r)(m,t,O) = (bo,’f’o)(.’lﬁ,t) + (blarl)(mae)(e - g) (19)
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for (x,t,0) € @ x R* x Rt and

for (y,t,0) € 'y x RY x Rt. The regularity properties of by, r9, and hg are
described in the next section. It should be noted that in the autonomous
case formulas (1.9) and (1.10) are consequences of the mean-value theorem.

To be definite we also require that the specific heat be smooth, that is,
c€e C™(9,(0,00)) .

All of our smoothness requirements are imposed for simplicity. It is not
difficult to infer from our proofs that they can be considerably relaxed. We
leave this point to the interested reader.

Lastly, we assume that
a1(0,0,0) >0, [(0,0,6) >0, (1.11)

but we do not put any further restriction on § or Q. For abbreviation,
we set

v:=0a:(0,0,0)/2, &:=p/0(0,0,0).
It should be noted that (1.11) is consistent with the second law of thermo-
dynamics (e.g., [22]).
2 Global Existence and Stability

For a smooth manifold X, s € R, and 1 < g < oo we denote by

W (X) = W (X,R), W(X) = W (X, )

the usual Sobolev-Slobodeckii spaces. If X = ) then we omit Q in this
notation. Similar conventions apply to other spaces of functions and distri-
butions, e.g., C* := C*(Q,R?) for p € RT, etc. We write 7; for the trace
operators on I';, 7 =0, 1. Recall that

T € L(WS, Wi H1(Ty)) (2.1)

for 1 < g < 0o and s > 1/q. We use the same symbol in the vector-valued
case. Of course, L(E, F') is the Banach space of all bounded linear operators
from the Banach space E to the Banach space F, and L(E) := L(E, E).
We also fix an extension operator

Ro € L(W;=Y1(To), W),  s>1/q,
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satisfying
T()RO =id and R()]. =1 ,

where we identify 1 with the function (whose domain may vary from occur-
rence to occurrence) which is constantly equal to 1 (cf. [1, Theorem B.3]).
We write 7 for the trace operator on I' and recall that (2.1) holds for 7 if
I'; is replaced by I" and W by W, respectively.

We put
(u,v) := / u-vdr , (w,z)s:= / w -z do (2.2)
Q r

for u,v: Q = RY and w,z : T = RY, respectively, where it will be clear
from the context which value of N has to be taken (usually N =1 or
N = 3), and where do denotes the volume measure of 9.

Throughout the remainder of this paper we fix ¢ € (3, 00) arbitrarily
and use overdots to denote time-derivatives. We also put, letting v :=17
or 7y := Ty,

{ue W, 5 yu=0}, 1/g< s < o0,
Wory = W —24+1/g<s<1/q, (2.3)
W2, —c0<s<-2+1/q,

where ¢' := ¢/(q — 1) and the dual space is taken with respect to the stan-
dard Lg-duality pairing (-, -), defined in (2.2). Of course, W in (2.3) can
be replaced by W.

Let J be a nontrivial subinterval of Rt containing 0. By a solution of
(1.1)—(1.3) on J we mean a function

(v,p,0) € C(J,W2 x W, x W)
with
(v,0 — Robo) € C*(J, Ly x W, 1)

satsifying the normalization condition

/p(-,t)d:z:zO, teJ,
Q

the first two equations in (1.1) and (1.2) in the strong sense, and the third
equation in (1.1) and (1.2) in the weak L,-sense, as well as (1.3). By ‘weak
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L,-sense’ we mean that 6 satisfies the identity

(,0+v-V0) =(V,1q) + (¥, (VL) -g+18:D+1r)
+ <T1¢a7—1(%)h>3

for y € W _ and t € J. A solution of (1.1)~(1.3) is global if J = R*.

We denote by o¢ the least eigenvalue of the Stokes eigenvalue problem

V-v=20 Q)
—vAv + Vp =ov Ak

v=20 onI.

(2.4)

sT0

It is well-known that o9 > 0. We also denote by pg the least eigenvalue of
the linear elliptic eigenvalue problem

—KAW —T1w = pw in Q,
w=20 on Iy, (2.5)
kO,w — hyw = 0 onTy,

where 71 := r1(-,0) and hy := hy(-,0).
2.1 Remark Recall that

po =min{ I(w) ; w e Wy, [ow’dz =1}, (2.6)
where

I(w) := / [k |Vwl|? —Tw?]dr — | hmnw’do .
Q I

Hence 71 <0, h; <0, and
vol(To) + [IF1lle + A1 llery) > 0

is a sufficient condition for y9 > 0, thanks to Poincaré’s inequality if T # 0
and (71, h1) = (0,0). On the other hand, if Ty = @ then it follows from
(2.6) that

I(].) ::—/F1d$—/ﬁld0'<0
Q r

guarantees that o < 0. m
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Given a Banach space E and a € (0,1), we denote by BUC*(R", E)
the Banach space of all bounded and uniformly a-Hé6lder continuous func-
tions from R* to E, endowed with the usual norm, which we denote
by ||-llc«®+,E), or even by [|-||c=, if no confusion seems possible. More-
over, we write e“t f for the function ¢ — e“!f(t).

After these preparations we can formulate the first main result of
this paper, namely the following global existence, uniqueness, and stability

result, where ¢ := ¢(6). For abbreviation we put
F:=L,x W, 2 x W, }(T'1) x W2Y4T) x W} /9(To)

and we fix p € (0,1).

2.2 Theorem  Suppose that po >0 and fix w € [0,00 A (o/€)). Then
there exist positive constants Ko and K, such that the following is true:
for each set of data

((bo, 70, ho, 00, 60), (v°,6°)) € BUC?(R*, F) x W2 x W,!
satisfying the compatibility conditions
V-v2=0, T =wvo(,0), 6°To=06(,0),
and
/Fvo(-,t)-udazo, t>0,

as well as the smallness condition

||UO||W§ +116° — §||qu + [|e“*(bo, 70, ho, V0,00 — )l cer+,r) < Ko
there exists a unique global solution (v,p,0) of (1.1)-(1.3), and

1,56 = B)O)lwzaww + 10,6 = Rofo) B s, < Kre™
fort>0.

The proof of this theorem, that extends and sharpens the main result
of [5], is postponed to Section 4.

2.3 Remarks (a) We have chosen the weak formulation (2.4) for the ‘tem-
perature equation’ in order to treat the nonlinear boundary condition in
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(1.2) with relative ease. It can be shown by means of standard arguments
that we obtain in fact smooth classical solutions, provided all data are
smooth and suitable compatibility conditions are satisfied.

(b) Consider the very special case (bo, 0, ho,v0,60) = (0,0,0,0,6).
Then problem (1.1)—(1.3) possesses a rest state, namely

(v7p70) = (07070) = z 7
thanks to (1.5), (1.7), and (1.9), (1.10). Thus Theorem 2.2 says that the
rest state Z is stable (in the specified topologies) with respect to small
perturbations of all data. In fact, the rest state Z is even exponentially
stable if the time-dependent perturbations decay exponentially in time,
provided, of course, g > 0. m

Next we consider the isothermal case. Thus we assume that

V-v=0 .
8tv+(v-V)'u=—Vp+V-S+b0} in & x (0,00) ,
vV =g on I' x (0,00) , (27)
v(-,0) =v° on ),

is decoupled from the equation for 8. As for this system, the following global
existence, uniqueness, and stability theorem is valid:

2.4 Theorem Suppose that S = S(D) is independent of 0 and fizw € [0,09).
Then there exist positive constants Ko and K; such that the following is
true: for each

((Bo, v0),v°) € BUC (R*, L, x W, /%)) x W72,
where 0 < p < 1, satisfying the compatibility conditions

V-0'=0, ¥°|T=w0(,0), /vo(-,t)-udazo, t>0,
r

as well as the smallness condition
||’UO||W3 + [le“*(bo, vo)llcr < Ko ,
there exists a unique strong solution
(v,p) € C’(RJF,WQ2 X qu) , veC' R L,,),
of (2.7). Furthermore,
lo@®)llw=z + 0@z, + lp@)lw: < Kie™*
fort > 0.
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Proof Choose I'1 := () and denote by wg the smallest eigenvalue of —A
on ) under Dirichlet boundary condition. Fix a positive constant § such
that & > €og — kwo and define 71 by r1(-,6) := —d. Using this choice in (2.5)
it follows that pg > oo¢. Hence the assertion follows from Theorem 2.2 since
(2.7) is a now subsystem of (1.1)—(1.3). m

Theorem 2.3 is an extension of the main result of [4], where the no-
slip condition v = 0 on I has been treated only. It should be observed that
Theorem 2.3 applies to general isothermal Stokesian flows (1.5), (1.6) under
the sole assumption that a;(0,0) > 0.

The general class of Stokesian fluids considered above contains the
class of fluids with nonlinear viscosity characterized by as = 0. This class,
in turn, encompasses the particularly important subclass of generalized
Newtonian fluids satisfying a; = a;(|D|?), that is, the (generalized) vis-
cosity depends on the second principal invariant of D only. These classes
seem to describe adequately the behavior of certain polymeric fluids and
low molecular weight biological liquids (such as blood, for example), and
are very popular in chemical engineering, colloidal mechanics, rheology, and
glaciology (cf. [7], [23], and, in particular, the references cited in [19]). Many
of the concrete models belong to the power class for which

a1(s) = 2v + vosTH/2 seRT, (2.8)

where vy and r are nonnegative constants. If vy > 0 and r > 2 then the
fluid is ‘shear thickening’, whereas it is ‘shear thinning’ if r < 2.

Generalized Newtonian fluids attracted already considerable mathe-
matical interest (c.f. [16], [15], [14], [8], and [18]). In all these papers rather
stringent growth, monotonicity, and coercivity assumptions for a4 (-) are
imposed. Then by means of the theory of monotone operators and Galerkin
type approximations the existence of weak solutions (in the usual Ly-case)
on any given finite interval J is shown for the isothermal problem (2.7).
Under further restrictions uniqueness results are established as well. (To
be more precise, in [18] the no-slip boundary condition is replaced by a not
very realistic space-periodic boundary condition.) The results of [18] are
partly extended in [19] to a rather restricted class of fluids with nonlinear
viscosity. The latter paper also contains considerations concerning global
exponential stability. However, since the existence of the corresponding
(weak) solution has not been proven, these considerations are formal.

All of the above works deal with the isothermal case. Aside from the
writer’s results in [5] there seems to exist only one paper, namely [20], con-
taining an existence theorem for non-Newtonian fluids in the nonisother-
mal case. In that paper the authors consider the Boussinesq approximation,
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omitting the energy dissipation term S : D, with b; a constant vector and
(bo,r) = (0,0), under space-periodic boundary conditions. Moreover, they
study generalized Newtonian fluids under the same stringent growth and
coercivity assumptions as in [18] and prove the existence of a unique weak
solution in some cases. In addition, they establish the existence of a global
attractor and give an estimate for its fractal dimension.

3 Instability and Bifurcation

In order to have an easy possibility of referring to the data we introduce
some abbreviation. Note that

W2 Yar —{UGW2 Ya(r T); ffv-vdo=0}
is a closed linear subspace of W;f_l/ 9(T), hence a Banach space. Thus

Fy:=Lyx W, & x W, (T'1) x WQQ,,_,l/q(F) x W 9(T,)

q,70

is a Banach space as well, a closed linear subspace of F.

Now we discuss the solvability of problem (1.1)—(1.3) if po < 0. The
proofs of the following theorems are also postponed to Section 4.

3.1 Theorem Suppose that po <0, fix T >0, and put J :=[0,T]. Then
there exists a positive constant K such that problem (1.1)—(1.3) possesses
for each set of data

((bo, 70, ho,vo,60),v°,6°) € CP(J,Fy) x W2 x W',
where 0 < p < 1, satisfying
[|(Bo, 70, ho, v, 80)llce s,y + [10°[lw2 + 116° = Bllwy < K
and the compatibility conditions
V-v'=0, T =wv(-,0), 6°To=06-0)
o unique solution on J.

Although T can be arbitrarily large, Theorem 3.1 is not a global exis-
tence theorem since K depends on 7" and may shrink to zero as T tends to
infinity. In particular, in contrast to Theorem 2.2 we cannot prove that the
stationary state Z is stable (in the sense of Lapunov). In fact, the contrary is
true. To be more precise, let us consider the situation where disturbances
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from the rest state occur via initial perturbations only. In other words,
consider the following autonomous special case of (1.1)—(1.3):

V-v=0
o+ (v-V)v=-Vp+V-S+b(,0)(0—0) in Qx(0,00),
c(00+v-VO) =-V-q+8S:D+r(-0)(0—0)

v=0 on I'x (0,00), (3.1)

6=120 on Iy x (0,00) ,
—q-v="nh(0)(0-0) on Iy x (0,00) ,
v(-,0) =2v°, 6(-,0)=6° on Q.

Then the rest state z of (3.1) is stable (in the sense of Lapunov) if for each
€ > 0 there exists § > 0 such that problem (3.1) possesses for each

(©°,6°) e Wy x W, with [[o°|lw2 +116° = Ollw: <6,
satisfying the compatibility conditions
V-v'=0, 2°T=0, #Tv=9,
a unique global solution (v, p,6) and
lo@®)llws + lp@®)llwz + 10 =) Dllw: <e, teR".

The rest state is unstable (in the sense of Lapunov) if it is not stable,

3.2 Theorem Suppose that g < 0. Then the rest state Z of (3.1) is unstable.

It should be noted that the stability of Z is completely determined
by the sign of the least eigenvalue pg of problem (2.5). Indeed, if po > 0
then Theorem 2.2 shows that Z is stable, in fact, even exponentially stable,
whereas it is unstable by Theorem 3.2 if py < 0.

Now we turn our consideration to a neighborhood of pg = 0 where
the stationary state Z of (3.1) looses its stability. For the sake of easy
calculations we assume that I'y = I'. We also assume, for definiteness, that

(1) = —/er(-,é) dx—/rhl(-,a) do < 0 (3.2)
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and consider the parameter-dependent problem

V-v=0
v+ v -V)v=-Vp+V-S+b(-0)(0—0) in Q x (0,00) ,
c(0f+v-VO) =—-V-q+8:D+er(-60)(0 -0 (3.3).
v=0, —q-v=chi(0)(6-0) on T x (0,00) ,
v(-,0) =2, 6(-,0)=46° on Q.

for € € R. Note that problem (3.3). possesses for £ € R the ‘line of trivial
stationary states’

Zo:={(c,2); c€R} CRx [W, x W' xW/}].

Moreover, thanks to (3.2), Remark 2.1, and Theorem 3.2, the trivial sta-
tionary state Z of (3.3)c is unstable if £ > 0.

The following theorem gives more precise information near € = 0. Be-
low we denote the intersection of (—eo,e0) x [W_, x W' x W;'] and Zo

again by Zo. We also put by := bi(-,0).

3.3 Theorem There exist a constant 9 > 0, a neighborhood W of Z in
W x W}! x W}, and a function

[ 2(2) = (0(2), p(e),0(€)) ] € C™((—z0,20), W2, x Wt x W)

satisfying z(0) = Z such that the set of stationary states of (3.3)c contained
in (—eo,20) X W consists precisely of the line of trivial stationary states Zo
and the curve

Zy:={(e,2(e)) ; —eo<e<eo} .
Moreover, Zg and Z intersect transversally in (0,Z) and the trivial sta-

tionary state Z of (3.3)c is stable for —eg < € < 0 and unstable for e > 0.

Suppose, in addition, that Pb, # 0. Then the nontrivial stationary
state z(g) of (3.3)c is stable for 0 < € < €9 and unstable for —eg < & < 0.

This theorem shows that there occurs bifurcation of stationary states
at € = 0 and that it is transcritical if Pby; # 0. Thus, if this condition is
satisfied and if we put E := qu,T x W' x W', the set of stationary states
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of (3.3)c, € € R, has in a neighborhood of ¢ = 0 the form

E
A
Z
z
Z() ZO
Z
>

where the stable stationary states lie on the heavy and the unstable ones
on the light branches of Zy and Z;.

3.4 Remarks (a) First suppose that 7 = 0 and

/ hi(-8)do > 0. (3.4)
r
Since

hi(-0)(0 —8) = hi(-,0)(8 — ) + o((6 — 6)*) ,

it follows from (3.4) that — on the average and for small deviations of §
from the rest state temperature § — the influx of heat through the bound-
ary I is positive [resp. negative] if § > @ [resp. § < 6] and € > 0. Thus small
deviations of § from 6 are expected to lead on the average to an increase
of the temperature difference 6 — 8, which affects also the second equation
in (3.3)c to produce deviations of v from 0. Hence (3.4) and € > 0 are
expected to have a destabilizing effect. On the other hand, if € < 0 then,
on the average, heat is extracted through T if § > 6, and injected if 6 < 6.
Thus it can be expected that (3.4) and e < 0 have a stabilizing effect trying
to bring small temperature deviations — and, consequently, small velocity
deviations — back to the stationary state Z. Similar heuristic arguments
apply if r; # 0 and (3.2) is satisfied. Of course, there are also the other
nonlinear terms in the differential equation, in particular the term S : D,
which has a destabilizing effect near v = 0. But Theorem 3.3 shows that
this heuristic argument is basically correct.

(b) As already observed earlier, Theorem 2.2 implies that the rest
state Z is locally (or conditionally) asymptotically stable if ug > 0. There
arises, of course, the question whether it is also globally (or unconditionally)
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stable, that is, whether problem (3.1) possesses for arbitrarily large initial
values a global solution that tends towards Z as ¢t — co. It is a consequence
of Theorem 3.3 that, in general, the trivial stationary state Z is not glob-
ally asymptotically stable. Indeed, Theorem 3.3 guarantees the existence of
nonlinearities for which the trivial steady state z is locally asymptotically
stable and such that there exists a nontrivial steady state as well. Thus
Z cannot be globally asymptotically stable in such a situation.

(c) It will be seen from the proof of Theorem 3.3 that the fact that
transcritical bifurcation occurs depends crucially on the presence of the
term S : D in the temperature equation. If this term is dropped — as in
the standard Boussinesq approximation for Newtonian fluids — the nature
of bifurcation, that is, the direction of the curve Z; of nontrivial stationary
states at (0,%) cannot be decided, in general.

As noted in (b), the fact that transcritical bifurcation occurs implies
that ‘the onset of instability’ happens ‘earlier’ (that is, in our situation
for a value ug > 0) than predicted by a linear stability analysis (where it
occurs at pg = 0). In the case of the Boussinesq approximation for Newto-
nian fluids much work has been done determining this ‘onset of instability’,
usually by establishing suitable energy estimates. In particular, there have
been derived criteria that are necessary and sufficient for the onset of in-
stability, that is, criteria guaranteeing that (in our situation) the trivial
rest state is globally asymptotically stable whenever o > 0 (cf. [13], [11],
[26], [29] and the references cited in this work). Theorem 3.3 implies that
necessary and sufficient conditions for instability cannot be expected to hold
in general for heat-conducting incompressible viscous fluids — even in the
Newtonian case — if the complete energy conservation law is taken into
consideration, that is, if the dissipation function S : D is not omitted. m

4 Proofs

We begin by introducing some notation. Let J be a nontrivial subinterval
of R containing 0. Given a Banach space E, we denote by BUC(J, E) the
Banach space of all bounded and uniformly continuous functions u : J — E,
endowed with the supremum norm ||-||e. Moreover, given « € (0,1) and
€ >0 with 2¢ € J,

« llu(s) —u@®)ll
u =  su _—
[ ]a,[E,QE] 5<ts<¥<)<125 |s — t|°‘
and
u]q = sup(1l Ae)*[u]’ , u € BUC(J,E) .
9 a,le,2¢]

eeJ
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Then BUCZ(J,E) is the Banach space of all w € BUC(J,E) satisfying
[u]a < o0 and

gl_r)r(l) e [U]Z,[s,zs] =0,

equipped with the norm

[-llog = ll-lle + [-]a -

The Banach space BUCLt®(J, E) consists of all u € BUC%(J, E) such that
Ou :=u € BUCZ(J, E), endowed with the norm

ur lullgire = [lulleg + lallog -
Lastly, given w € Rt and 8 € {a,1+ a},
e”“BUCE(J,E) := {u € BUC(J,E) ; e“'u € BUCE(J,E)} .
These are Banach spaces as well with the norms
u = Jlullma s = e ull s -
It is obvious that
BUC*(J,E) — BUCS(J,E) . (4.1)

Let (Eo, E1) be a densely injected Banach couple, that is, Ey and E;
are Banach spaces such that E; — FEy and Ej is dense in Ey. We denote by
‘H(E1, Ep) the set of all operators B € L(E, Ey) such that —B, considered
as a linear operator in Fy with domain FEj, is the infinitesimal generator
of a strongly continuous analytic semigroup on Ey. We write s(B) for the
upper spectral bound of B € H(E1, Ey), defined by

s(B) :==sup{ReX; A€ a(B)},

where ¢(B) is the spectrum of B.

We denote by L, the closure in L, of the set of all smooth solenoidal
vector fields with compact supports in €, and we put W,id = Wq2 NL,,
and W2 =W NLg,. Then P¢€ L(Ly,Ly,) is the Helmholtz pro-
jector associated with the Helmholtz-Weyl decomposition of L, (e.g., [9],
[10, Theorem III1.1.2]). By applying P to the second equation in (1.1) we
obtain the reduced system

8w+ P(v-V)v=PV-S+Pb n 0% (0,00)
c(Of+v-VO) =-V-q+8:D+r 00
V=17 on FX(0,00),

6 =6, on Ty x (0,00) , (42)
—q-v=~h on Ty x (0,00) ,

v(-,0)=2°, 6(,0)=¢° on ),
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where we are looking for solutions (v, ) satisfying v(t) € Wq2,(, for t > 0.
Having solved (4.2) we can recover the ‘pressure field’ p(t) as ususal by solv-
ing a suitable Neumann boundary value problem (c.f. [9], [10]). Hence we
can restrict our considerations to the ‘reduced problem’ (4.2) and leave the
details of the proofs of the asserted properties of p to the interested reader.

Finally, we put
Ey:=Lgo xW, &, E =W, _ ,xW/ .
Then (Ey, E1) is a densely injected Banach couple and
Ei = C'xC (4.3)

since ¢ > 3, thanks to Sobolev’s embedding theorem.

Proof of Theorem 2.2 We fix w € [0,00 A (110/¢)) and p € (0,1) and put

Ey := e_wBUCI’)’(RJF,EO)
and

E: := e “BUCS(R", E;) Ne “BUC, ™ (R", Ey) .
We also set

Fo :=e “BUC/(R",Fy), E:=F x Ey ,
and denote by F the set of all
((bo,ro,hg,vg,GO),vo,GO) ey x E;
satsifying the comaptibility conditions
0% = vo(-,0), 706° =6y(-,0) .

Note that F is a closed linear subspace of Fy x E4, hence a Banach space.

Next we introduce a new ‘variable’ u := (u1,u2) € E; by
v=uy +Rvg, 0 =us+Roby=1us +§+R0(90—§) (4.4)
and ‘parameters’

n:= (bOaTO;hOa'UO;QO _g) ; UO = (’UO - R’U(](',O),GO — Roeo(,O)) € E;
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for
& := ((bo, 70, ho,v0,00 — 0),v°,6° —9) € F .
Rewriting (4.2) in these variables we obtain a problem of the form
u=F(u,m), t>0, u(0) = u° .
Thanks to (4.3) it is an exercise to verify that F' € C*(E; x F,Eq). We put
v=n|W,, € LW}, W /1(Ty))

q,70”
and denote by
7 e LW T, W)

the dual of 7y |W,; . Then one finds that

vPA PBl

o1 F(0,0) = _
10,0 0 [kA 471+~ h1v]/C

€ L(Ey, Ey) . (4.5)

The operator —vPA is the Stokes operator. Hence
—vPA € H(W? ., Lgs)

qY’Y’a-’

thanks to results of Solonnikov [25], von Wahl [28], Giga [12], and Miyaka-
wa [21]. The negative of the operator in the right lower corner of the above
matrix belongs to H(W,., ,W,7}), as follows from the author’s results on
extrapolation (cf. [3, Theorem 8.5] and [6, Chapter V and Volume 2 (to
appear)]). Hence we infer from [6, Theorem I1.1.6.1] and the fact that the

multiplication operator Pb; belongs to L(W,}, , Lg,,) that
—01F(0,0) € H(E\, Ep) - (4.6)

Moreover, it is an easy consequence of the triangular structure of the matrix
in (4.5) that

5(01F(0,0)) = —[oo A (k0/?)] < 0. (4.7)
We put you := u(0) for u € C(R*, E;) and
®(u,&) := (Ou — F(u,n),vou —u’) , weR , &=nu’)eF,

where Ou := . Then ® € C*°(E; x F,Eq x E;) with #(0,0) = (0,0) and
61@(0,0) = (8 - 81F(0,0),70) .

Owing to (4.6) and (4.7) it follows from [6, Theorem II1.2.5.5] that 8; ®(0, 0)
is an isomorphism from E; onto Ey, x E;. Hence the implicit function the-
orem guarantees the existence of a neighborhood U x V of (0,0) in E; x F



18 Herbert Amann

and of a map ¢ € C(V,U) such that, given any £ € V, the equation
®(u, &) = 0 has a unique solution u = p(§) in U, that is, the assertions

() eUxV, dw,g=0) and (L€V, ¥(p(),5)=0)

are equivalent. Now, defining (v,8) by (4.4) with u = ¢(£), it is clear that
(v, 0) is a solution of (4.2). From this and (4.1) we easily infer the assertions
of Theorem 2.2, except for uniqueness since, by definition, our class of
solutions belongs to a space larger than E;. However, uniqueness in the
class of solutions defined in Section 2 can be obtained by adapting the
interpolation-extrapolation technique employed in [4, Section 3|, that is,
the uniqueness proof given there, to the present situation. m

Proof of Theorem 3.1 Put w := 0 and replace Rt in the preceding proof
by J. Since uo < 0, condition (4.7) is no longer satisfied. Hence we have to
replace [6, Theorem IIL.2.5.5] by [6, Theorem III.2.5.6]. With these modifi-
cations the above proof implies the assertion. m

4.1 Remarks (a) It is clear that it suffices for the validity of the above
proofs that ® € C1(E; x F,Eq x E;). This observation leads to a consider-
able relaxation of the regularity assumptions. We leave it to the reader to
find the minimal hypotheses.

(b) The fact that u = (&) is a smooth function of £ implies, of course,
that the solution (v, p,0) of (1.1)—(1.3) depends continuously on all data in
the topologies specified in Theorems 2.2 and 3.1, respectively.

(c) The above proofs show that the solution (v,p,6) of (1.1)—(1.3),
whose existence is guaranteed by Theorems 2.2 and 3.1, even satisfies

(v,p,0) € CP(J, W, x W} x W),

where J := J\{0} and J = Rt if po > 0.

(d) Since the implicit function theorem relies on the contraction map-
ping theorem, it is, in principle, possible to obtain concrete estimates for
the sizes of the neighborhoods of the stationary state Z in which the exis-
tence of a solution can be guaranteed, that is, for the constants Ky, Kj,
and K. However, as usual, these estimates are much too pessimistic to be
of practical relevance. m
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Proof of Theorem 3.2 The reduced system (4.2) belonging to (3.1) is of
the form
a=Gu), t>0, u(0)=1u", (4.8)

since n =0 in this case. Here G € C*°(E1, Ep) and G(0) = 0. Thus (4.8)
is an autonomous ordinary differential equation in the Banach space Ej
and —90G(0) € H(E1, Ey), where OG(0) is given by the operator matrix in
(4.5). Since 2 is bounded, E; is compactly embedded in Ey. This implies
that 8G(0), considered as an unbounded linear operator in Ey, has a com-
pact resolvent. Thus, since ug < 0, it follows that G (0) possesses at least
one but at most finitely many eigenvalues with positive real part. Hence the
hypotheses of [17, Theorem 9.1.3] are satisfied and the assertion follows. m

Proof of Theorem 3.3 The reduced system (4.2) belonging to (3.3). is of
the form

u=H(,u), t>0, u(0) = u® |
where H € C*°(R x E4, Ey) and H(e,0) =0 for € € R. Put
A(e) :== 0. F(e,0) € L(E1, Ey) , eeR,
and note that

vPA  Pb;

A=40=| 5 (/A

From this we infer that
ker A = Re with e := (e1,e3) € B} = qu’”, X W;II ,

where e; is the unique solution of the Stokes equation —vPAwv = Pb; and
ez = 1. Since 0 is a simple isolated eigenvalue of —A under Neumann bound-
ary conditions, it follows that 0 is a simple isolated eigenvalue of A, con-
sidered as a linear operator in Ey.

Consider the linear operator

vPA 0

4f = Pb- (k/0)A

€ L(E}E}) ,

where B! := W . X% W, and El =Ly, x (W,')'. Then interpolation-
extrapolation theory (cf. [6, Theorem V.1.5.12]) implies A* D A’, where
A’ is the dual of the unbounded linear operator A in Ey. From this we

deduce that ker A’ = ker A* = Re’, where e’ = (0, 1).
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Since

0 0

H = —
BOHO0 = e

] € L(En, Ey)

it follows that

(e 00:H0,0)e) = (170 [

Fld:c+/ﬁlda] =-I(1)/ce>0,
Q r

thanks to (3.2). Thus the transversality criterion for bifurcation from a
simple eigenvalue is satisfied. Consequently, bifurcation theory (e.g., [2,
Theorem 26.13] or [17, Theorem 9.1.10]) tells us that, in some neighborhood
(—€0,€0) x U of (0,0) in R x E, the solution set of H(e,u) = 0 consists
precisely of the line of trivial solutions I'g := (—€g,&0) % {0} and a smooth
curve I'y intersecting I transversally in (0,0).

It is not difficult to check, thanks to the simple form of e and €', that

(e, O2H(0,0)[e]?) = (2v/2) /Q ID(e1)[2 da . (4.9)
Since
Pb, = —vPAe; = —2vPV - D(e;) ,
it follows that D(e;) # 0 if Pb; # 0. Thus
(¢/,05H(0,0)[e]*) >0 if Pb #0,

which guarantees transcritical bifurcation (cf. [2, Proposition 27.5]. Al-
though that proposition has been formulated in [2] in a finite-dimensional
setting, it is easily verified that its proof carries over to the infinite-dimen-
sional situation considered here; also see [17, Section 9.1.4]).

Lastly, the asserted stability properties follow easily from standard
stability considerations in bifurcation theory (e.g., [2], [17]) and the fact
that —02H (e,u) € H(E1, Ep) for (g,u) in a sufficiently small neighborhood
of (0,0), as follows from [6, Theorem 1.1.3.1]. m

5 Final Remarks

It seems worthwhile to add some comments on the scope of the methods
used in this paper. As mentioned earlier, we have made some simplifying
assumptions in order to facilitate the calculations.
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First we have studied the motion of the fluid in the neighborhood of
the rest state (0,0, ) where 8 is a constant temperature distribution. How-
ever, the proofs of Theorems 2.2, 2.4, and 3.1 remain valid (with obvious
modifications) if it is only assumed that

N ) 2 1 1
¢:=(v,p,0) e W, , x W x W,

is a stationary state of (1.1)—(1.3) (satisfying the appropriate compatibility
conditions, of course) such that

01F(0,0) € H(E, Eo) ,

where 0, F(0,0) is induced in the obvious way by the linearization of the
reduced problem (4.2) at {. Of course, then the stability of the rest state ¢
is governed by the spectrum of & F'(0,0).

Second, in order to prove the bifurcation result we have considered
the parametrized problem (3.3).. As discussed in Remark 3.4(a) the pa-
rameter £ measures the strength of the heat production in © and on T,
respectively. Of course, other parameters can be used as well. In general,
however, it will be difficult to verify the transversality condition or to get
information on the direction, hence the stability, of the bifurcating branch
of nontrivial steady states.

Lastly, it should be observed that for the standard Boussinesq ap-
proximation for Newtonian (or non-Newtonian) fluids, in which the term
S : D is omitted, the left-hand side of (4.9) as well as all higher deriva-
tives of H(0,0) vanish. Hence, as already pointed out in Remark 3.49c¢),
we cannot obtain any information on the direction or the stability of the
bifurcating curve in this case.
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