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Abstract
In this paper well-known maximum principles are extended to second order cooperative
linear elliptic systems with cooperative boundary conditions in strong, weak, and very
weak settings. In addition, interrelations between maximum principles and principal eigen-
values are studied in detail, as well as continuity properties of principal eigenvalues under
domain perturbations.
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1. Introduction

It is the main purpose of this paper to study maximum principles for linear second order
cooperative elliptic systems under general linear first order cooperative boundary condi-
tions. We are particularly interested in weak settings, in view of applications to nonlinear
systems in situations where higher regularity either cannot be expected or does not consti-
tute a convenient frame to deal with such problems.

Maximum principles for cooperative systems have already been discussed by several
authors under various assumptions (cf. [20], [22], [32], [36], [43], [56], [60], [63], [71],
[77]). However, in all these references, with the exception of [63], the case of Dirichlet
boundary conditions is studied only. Furthermore, in almost all cases maximum principles
in the strong sense are considered, that is, for ��� functions, or, at least, for ���� functions
where � is sufficiently large.

It is well-known that maximum principles are of great importance for the study of ex-
istence and qualitative properties of nonlinear equations. For example, one of the most
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useful techniques in the theory of second order scalar elliptic (and parabolic) boundary
value problems, the method of sub- and supersolutions, is based on maximum principles
(cf. [1], [62], [64], [67]). This is true for systems as well, as has already been observed
in [1, Sections 5 and 10] and has since been worked out by several authors under various
hypotheses (cf. [59], [62], [66], and the references therein). However, in all those papers
either Dirichlet conditions are considered only or, if Neumann boundary conditions are
studied at all, it is assumed that either the boundary conditions decouple, a rather partic-
ular situation (e.g., [40], [41]), or that very strong regularity conditions are satisfied (e.g.,
[62]). It is one of the advantages of our work that our maximum principles allow, among
other things, comparison theorems for semilinear problems with nonlinear boundary con-
ditions, the latter depending on all components of the unknown vector function, in a weak
setting.

The validity of maximum principles is closely related to the existence of a principal
eigenvalue, that is, of a least real eigenvalue determining the position of the smallest closed
right half plane containing the spectrum. This eigenvalue plays a predominant rôle in the
qualitative study of nonlinear boundary value problems via bifurcation theory and in the
method of sub- and supersolutions (cf. [37], [51], [53], [54], [57], [58], and the references
therein). Consequently, we investigate in some detail questions of existence and continuous
dependence on the data of the principal eigenvalue.

It should be noted that our results on maximum principles in weak settings are new, even
in the scalar case. The same is true for our continuity results for the principal eigenvalue,
since we allow perturbations of the Robin boundary as well.

To give a flavor of the content of this paper we describe now some of our results in
a simple setting. Here we restrict ourselves to a

�����
system with the diagonal Laplace

operator as principal part. The general case is studied in the main body of this work.

Throughout this paper � is a � � domain in ��� , where �
	�� , with a nonempty compact
boundary 
 . We denote by ��� ����������������������� the outer unit normal on 
 .

However, to illustrate some of the main results by means of prototypical examples, we
assume throughout the rest of this introduction that � is bounded.

Let � be a superharmonic distribution in � , which means

�! �"$#����%��� &('*)$+,�-�/.,	10 for all +2 �"����%� with +3	104� (1)

Then it is known that � is a regular distribution, in other words: �3 65 ��7 8 9;: ���%� . If, more-
over, for some point-wise defined representative <� of � ,

= > ?@> A�B
CEDGFCIHKJ <���ML/�,	@0 for all N� O
P� (2)

then �3	Q0 , that is, ���ML/�R	Q0 for a.a. L6 3� (e.g., [30, Propositions II.4.20 and II.4.21]).
It is clear that from (1) alone nothing can be said about the boundary behavior of �S 
5 ��7 8 9;: ���%� since every test function +T U"����%� vanishes near 
 . Thus (1), without the
additional information of (2), does not imply that �!	10 .
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The situation is different if we require the validity of the inequalities in (1) for a larger
class of test functions and a little more regularity for � . For this, given �  ��(�G� � � , we put

� ���� 7 � ���R� �P� � � � �! � ���� ���R� �P��������� 0
	 �
where �

��� �
� # �Q�

and � is the trace operator. We also denote by &�
 ��
 . the usual 5 � duality pairing. Then it
is a consequence of our much more general results that the following very weak maximum
principle (rather: minimum principle) is valid:

�  O5 � ���R� �P� for some �  ��(�G� � ���
&('*)����-�/.,	10 for all �� � ���� 7 � ���R� �P� with ��	@0

� �
� imply � 	@04� (3)

Very weak maximum principles are of importance in nonlinear problems involving low
regularity data, for example (e.g., [12]). The maximum principles studied below are valid
for cooperative systems also. To illustrate this we consider the model system ��� ���%� on �
defined as follows: we put ��� � �M� �I�-� �I� and assume that there are two decompositions
of 
 :


 � 
 ���� 
 �� � 
 ���� 
 � � 
 ���� 
 �� � 
 ���� 
 � � ��� �
such that 
��� and 
 �� are open, hence closed, submanifolds of 
 . Then we define�K�O����� � � ��� � � �
by � � �!� ��'*) � � �! � � � � �! � � � � �� � �!� ��'*) � � �! �;� � � �! � � � � �
and �,��� �"� � � ��� � � �
by

� � � � �$#% & � � on 
 �� �')( � � �+* � � � � �+* � � � � on 
 ��
and � � � � � #% & � � on 
 �� �')( � � �+* �;� � � �+* � � � � on 
 � � �
where we assume that

 -,/.  !5�0O���R� �P��� *1,/.  � �/2 � 
P� � ��� 3��/4K 65 �G� �-7 �
with the hypothesis of ‘cooperativity’:

 � �98 04�  �;�:8 04� * � �98 04� * �;�:8 04�
As usual, � �/2 means ‘Lipschitz continuous’.
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Denoting by � , the characteristic function of 
 , � and introducing matrix notation,

� � � �� � � 0
0 � �

��
�  � �

��  � �  � � �;�  � �
��
� * � �

�� * � � * � �* �;� * � �
��
�

we can rewrite this system in the concise from�K�O��'*) � �! � ��,��� � � ')( � �+* � � � �(� ' � � � � (4)

Of course, the boundary operator is to be understood in the sense of traces.

We also define the formally adjoint problem �����;�����(� by� � � � ��'*)�� �! 	� ���� � � � � � � ')( � �+* � �4� � �(� ' � � ���
where  � is the transposed of  , etc.

We endow all spaces of functions with their natural point- and component-wise defined
order.

First we consider the eigenvalue problem�K�O��
4� in �R� �,��� 0 on 
P� (5)

It will be shown that every eigenfunction of ��� ���%� , that is, of (5), associated with any
eigenvalue 
 is regular in the sense that it belongs to

� �0 2 ���R�
� � � � � �
��� � � 0 � �� ���R�
� � ���

Furthermore, our results guarantee that ��� ���%� , that is, problem (5), possesses a least real
eigenvalue, the principal eigenvalue, 
 � ��� ���%� , of ��� ���%� , and it is associated with a posi-
tive eigenfunction.

Although there may exist other real eigenvalues of ��� ���%� possessing positive eigen-
functions, the principal eigenvalue characterizes the validity of the maximum principle
for ��� ���%� . More precisely, for ��� ��� � we put

� �� � 7 ��� ���R� � � �,� � � �  � �� � ���R� � � � ��� � � � 0
	 �
We say that ��� ���%� satisfies the very weak maximum principle if

�  O5 � ���R� � � � for some �  ��(�G� � ���
&�� � ���-�/.,	10 for all �� � ���� 7 � � ���R� � � � with � 	10

� �
� imply �!	104� (6)

Theorem 1. ��� ���%� satisfies the very weak maximum principle iff 
 � ��� ���%���@0 .
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Since the principal eigenvalue of the Dirichlet Laplacean is positive, Theorem 1 is an
extension of (3) to system (4).

As already mentioned, this theorem is new, even in the well-studied scalar case (where
obvious analogues of the theorems of this introduction are valid). Indeed, to the best of our
knowledge the very weak maximum principle has not been observed so far. Also note that
there is no restriction on � , besides � � ��� � .

In order to guarantee that the principle eigenvalue is the only one with a positive eigen-
function we have to impose an additional condition. For this, the pair �  � * � , more precisely:
�  � � * � � , is said to be irreducible if

* � � � 
 �� � 
 � � � 0 implies  � ���� 0
and * �;� � 
 �� � 
 � � � 0 implies  �;���� 04�
putting * � � � ��� � * �;� � ��� � 04�
Note that these conditions can be rewritten as

 � ���� 0 if � � * � � � � � 04� �;���� 0 if � � * �;� � � � 04�
For example, the pair �  � * � with

 �
��  � � 0 �;�  � �

��
� * �

�� * � � * � �
0 * � �

��

is irreducible if  �;� ���0 and * � � � 
��� � 
 � � ���0 . Then the following improvement over the
mere existence of a principal eigenvalue with a positive eigenfunction is valid.

Theorem 2. Let �  � * � be irreducible. Then 
 � ��� ���%� is a simple eigenvalue of ��� ���%� and
the only one with a positive eigenfunction.

We refer to the main body of this paper for a precise definition of the simplicity of
an eigenvalue of ��� ���%� and for further properties of 
 � ��� ���%� and the associated eigen-
function.

If �  � * � is irreducible then we obtain another useful characterization of the positivity
of the principal eigenvalue. For this we say that � is a very weak strict supersolution for
��� ���%� , provided

�  O5 � ���R� � � � for some �$ ��(�G� � � and

&�� � ���-�/.,	10 for all �  � ���� 7 � � with ��	@04�
with a strict inequality sign for at least one ���
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It follows from Green’s formula that � is a very weak strict supersolution for ��� ���%� if
�  � �� ���R� � ��� for some �  ��(�G� � � and ���K� �����4� �10 , meaning, of course, that �K� 	10
in � , �,�!	@0 on 
 , and ���K� ���,� � �� � 04� 0 � .
Theorem 3. Let �  � * � be irreducible. Then ��� ���%� satisfies the very weak maximum prin-
ciple iff there exists a positive very weak strict supersolution for ��� ���%� .

Theorems 2 and 3 (and their more general versions presented in Sections 6 and 7) gen-
eralize considerably the results of [56] and [71]. Indeed, besides of the fact that those
authors consider only Dirichlet boundary conditions, our regularity hypotheses are sub-
stantially weaker than theirs. In particular, in Theorem 3 we are dealing with very weak
supersolutions only.

In the following section we formulate the hypotheses used throughout most of this paper
and give a precise formulation of the differential operators under consideration. In Sec-
tion 3 we fix some general notations and describe the boundary spaces for our systems.

Our main results — very weak, weak, and strong maximum principles and their inter-
relations as well as monotonicity and continuity properties of the principal eigenvalue —
are contained in Sections 4–11, where only the more elementary proofs are given. The
somewhat deeper statements as well as additional results are proved in Sections 15–18.

In Section 12 we collect some functional analytical tools, and in Section 13 we recall the
version of the maximum principle for scalar equations from which we derive our results
for systems. Section 14 contains the fundamental solvability results for nonhomogeneous
problems in the strong, weak, and very weak setting.

For all these results we impose enough regularity on the coefficients of the differential
operators to guarantee that the assertions are independent of �$ 6�(�G� � � . In Section 19 we
present weak maximum principles in � �� , assuming minimal � -dependent regularity only.
They lead to comparison theorems for semilinear elliptic boundary value problems which
are of importance in the study of such problems in situations where strong solutions do not
exist.

We also show that the various realizations of cooperative elliptic systems generate posi-
tive analytic semigroups. These results have important implications for parabolic problems.
Since this paper is already rather long we refrain from giving details.

2. Elliptic boundary value problems

In this section we give precise formulations of the elliptic problems under consideration
and state the hypotheses used throughout the following, unless explicitly stated otherwise.

We assume that �  ����@� ������5I0 7 �
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The space of real
� � �

matrices,  � �  ,/. � , is denoted by ��� � � , and � � � ���� �	� is the
linear subspace of all diagonal matrices,

 ��
 >
��� �  � ���������  � � �
We always use the summation convention with respect to � and � belonging to 5 �G�������;�-� 7 .

We also assume that�  ���� �  ����  ���� � � ���R� � � � ���� �	� � , � 8 �G��� 8 � ;��� , �ML/�,� ���  ,��� �ML/�! K O� � � � is positive definite for � 8 3 8 � ,

uniformly with respect to L  !� ;�  ��  � �0 ���R� � � � ���� �	� � , � 8 � 8 � ;�   O5�0O���R� � � � � � , *  � �/2 � 
P� � � � � � ;� '  and ' * are cooperative, that is,  ,/. 8 0 and * ,/. 8 0 for 3 ���4 .

� """""""""""�
"""""""""""�

(7)

Observe that there are no sign restrictions for the diagonal entries, neither for  nor for * .
We consider the elliptic differential operator � acting on � � -valued distributions

� � ���M� � ���������-� � �
on � , defined by �K� � ��' ' � �  ���� ' � � � �! �� ' � � �! � � (8)

Thus �K�O� ��� � � ������� ��� � � ���
where � , �O�Q' ' � �  ,��� ' � � , � �! ,� ' � � , � �#

.%$ �  ,/. � . �Note that � has diagonal principal and first order parts, but is coupled in its lowest or-
der terms.

We fix �  � � 
P� � � � ���� �	� � with � , �MN��  5I04��� 7 for N� O
 and � 8 3 8 � �
a boundary identification map for � . Hence


 ,& � � � � , � 2 � �('-���)'P 5I04��� 7 �
are open in 
 and disjoint with union 
 for � 8 3 8 � . Then we define a boundary
operator � by �,�!� � � � '+* � �+* � � � �(� ' � � � � (9)

where '+* � ��
 >
��� � ' *-, ������� � ' *�. �
with / , � � � , � being the outer conormal with respect to � , . Of course, � is to be under-
stood in the sense of traces. It follows that�,��� �"� � � ������� ��� � � ���
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where � , �O� #% & � , on 
 ,� �'+* � � , � � �.%$ � * ,/. � . on 
 , � �
Thus � , � is the Dirichlet boundary operator on 
 ,� for the 3 -th component � , of � , and a
Neumann or Robin boundary operator for � , on 
 , � . Note, however, that these boundary
operators are coupled in their lowest order terms unless


 �� � 
�
�
 � 
 �� � 
P�
that is, unless �@� � , the Dirichlet boundary operator. We express these facts by saying that
��� ���%� is a (weakly coupled second order) cooperative elliptic boundary value problem
(on � ).

If � � � then either 
 � 5 L � 7 or 
 � 5 L � �-L � 7 with L &  Q� . Thus every space of
� � valued functions on 
 is naturally isomorphic to either � � or � � � � � , and all
considerations of this paper apply with the obvious interpretations.

We put � � � � ��' ' � �  ���� ' � � �! �� �4� �! 	� �
and � � � � � � � '+* � � ��� �  �� �+* � � �- � �(� ' � � ���
Then �����������(� is the elliptic boundary value problem formally adjoint to ��� ���%� . We also
put

&M� ����.,� � �
F � 
 ���GL � �M� ���4�  O5 ��� ���R� � � � � 5 � ���R� � � ��� (10)

Similarly, &�
 ��
 .�� is the 5 � � 
�� duality pairing, obtained by replacing � and �GL in (10) by

 and ��� , respectively, ��� being the volume measure of 
 . Then the Dirichlet form 	
of ��� ���%� is defined by

	��"���-� � � � & ' � ���  ���� ' � �/. � &"���  �� ' � � �! �/. � &"� ��� � * ���/.��
for �"���-� �  � ���� ���R� � � � � � �� ���R� � � � .
3. Notations and conventions

Henceforth, as long as � is kept fixed, we use the following simplified notation: if
 ���R� � � � is a vector subspace of

5 ��7 8 9;: � � 5 ��7 8 9;: ���R� � � �
then we denote it simply by



. For example,

� �� � � � �� ���R� � � � for �� �,�
Similarly, we simply write


 � 
�� for

 � 
P� � � � if the latter is a vector subspace of

5 � � 
�� � � 5 � � 
P� � � ���
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We endow 5 ��7 8 9;: ���R� �P� with its natural ‘point-wise’ order induced by the positive cone

5 � ��7 8 9;: ���R� �P� � �
� �! !5 ��7 8 9;: ���R� �P��� ���ML/�,	@0 a.a. L! � 	�� (11)

Similarly, 5 � � 
P� �P� is ordered by 5 � � � 
P� �P� , the latter being defined in analogy to (11), but
with respect to the volume measure ��� of 
 .

If



is an ordered vector space then we write

 �

for its positive (proper) cone and � �10
means � 	10 but � �� 0 , of course. If

�
is a linear subspace of



then

�
is given the induced

order whose positive cone is
� � � � 
 � � � . Furthermore, if



� ���������


��
are ordered

vector spaces then


�
� 
�
�
 � 
��

is given the product order, that is, ��� � ������� ��� � �,	 0 iff� & 	�0 for � 8 ' 8�� . Consequently, every vector subspace



of 5 ��7 8 9;: , or of 5 � � 
�� , is
an ordered vector space with respect to the naturally induced ‘point-wise’ product order.
If



and

�
are ordered vector spaces then a linear map 	 from



into

�
is said to be

positive, we write 	S	�0 , if 	 � 
 � ��
 � � . Note, for example, that, consequently,  	Q0for   O5�0O���R� � � � � � means that  ,/. �ML/�,	10 for � 8 3��/4 8 � and a.a. L! � .

As a rule, in this paper all vector spaces are over the reals. However, if there occur, ex-
plicitly or implicitly, complex numbers in a given formula then it is always understood that
the corresponding statement refers to the complexified version of that formula. For exam-
ple, if � is a linear operator in a (real) Banach space then � ��� � , ��
���� � , and � ��� � denote the
spectrum, the point spectrum, and the resolvent set, respectively, of the complexification
of � . For 
O ��
���� � we denote by

��� � 
 � the algebraic eigenspace,

��� � 
 �,� � 0�
� $ �

����� � � 
 '�� � �  �
of 
 . Recall that 
 > ?�� ��� � 
 ��� is the (algebraic) multiplicity of � , and 
 is a simple eigen-
value if its multiplicity equals � .

Let



and
�

be Banach spaces. Then �R� 
 � � � is the Banach space of all bounded
linear maps from



into

�
, and �R� 
 �R� ���R� 
 � 
 � . Moreover, � >! � 
 � � � is the set of all

isomorphisms in �R� 
 � � � . If 
#"$ % � �
that is,



is continuously and densely embedded in

�
, then & � 
 � � � is the subset of all�� '�R� 
 � � � such that '�� , considered as a linear operator in

�
with domain



, generates

a strongly continuous analytic semigroup, denoted by()� � � � � � ��*-� �+* 	@0 	 �
on
�

, that is, in �R� � � . Given �T ,& � 
 � � � , there exists -  �� such that
� . �0/ ��- �

belongs to � �('�� � , and the infimum of all such - is the spectral bound, 4 �('�� � , of � (e.g.,
[8, Section I.1.2]). We also set
 � ��� �,� ��':4 �('�� � � > A�B � . � 
 � 
! � ��� � 	��
where

> A�B � �K�$� � � . If



is an ordered Banach space ( 1 �32 ) then the semigroup
(4�

is
said to be positive if � � ��*-� 	10 for * 	@0 .
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We always assume that
��� � � � �

For
� 4 � 8 � we put

� .� � 
 � � � � ��
,	$ � � .� � 
 ,� ��� �$� 04���G�

with the understanding that � .� � �K��� � 5I0 7 . Then � .� � 
 � � is an ordered Banach space
with its point-wise order if 4 	Q0 . If 4 ��0 then we endow � .� � 
 � � with the natural dual
order whose positive cone is the dual (that is, polar) of � 2 .��� � 
 � � � . Then the injection maps

� .� � 
 � � "$ % ���� � 
 � ��� ' � 8 *�� 4 8 � � �$� 04���G�
are well-defined and positive. Finally, we put' � .� � � � . 2 ��� �� � 
 � ��� � . 2 �/2 ��� �� � 
 � ��� 0 8 4 8 � �
This means that we consider � . 2 �� � 
 � � and � . 2 �/2 ��� �� � 
 � � as linear subspaces of

� . 2 �/2 ��� �� � 
�� , by extending the corresponding elements by zero over 
 , and endow their
algebraic direct sum �

� � � . 2 ��� �� � 
 � � � � . 2 �/2 ��� �� � 
 � �
with the unique topology for which

� . 2 ��� �� � 
 � � � � . 2 �/2 ��� �� � 
 � �
% �

� �	� � �
� � ���% � � � � � (12)

is a topological isomorphism. Then
' � .� is an ordered Banach space with the unique order

for which (12) and its inverse are positive.

4. Weak maximum principles

Using Sobolev embeddings, the trace theorem, and Hölder’s inequality, it follows that

��� ���%�  '�R� � �� � 5 � � ' � �� ��� (13)

Thus
� �� 7 � � � 5 �! � �� � �,��� 0 7

is a closed linear subspace of ���� , hence a Banach space with

� �� 7 � "$ % 5 � � (14)

We denote by ��� � ��
 ��� the 5 � realization of ��� ���%� , defined by �Q� � � � ���� 7 � . Similarly,
� � is the 5 � � realization of ��� � ��� � � .
Theorem 4. �  & � � �� 7 � � 5 � � and � �  & � � �� � 7 ��� � 5 � � � for � � � � � . Moreover,

� � � � # .
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Proof. The first assertion is well-known (cf. [7, Theorem 4.1] and the references therein;
also see [34]). Since �  -�  � � � 
P� � � � � � for every �  6� 04����� , it follows from the preced-
ing references that � �  & � � �� � 7 ��� � 5 � � ���
The last assertion is a consequence of Green’s formula and the fact that � and � � have a
common point in their resolvent sets (even a half-plane, of course).

Remarks 5.

(a) The assumption that  -�  � �0 ���R� � � � � � guarantees that the assertions about � �
are valid. If we are only interested in

�� & � � �� 7 � � 5 � � (15)

and not in the explicit representation of � # then it suffices to suppose that

 ��  O5�0O���R� � � � ���� �	� ��� � 8 � 8 � � (16)

It should be observed that, in either case, Theorem 4 and (15) hold for every �6 
�(�G� � � , although ��
 ��� depends on � , of course.

(b) It follows from (15) that 
 � ��� � is well-defined.

We also set

� �� 7 � � � � �� 7 
 �/2 � � � � � � �! � �� �,�(�%' � � ����� 0
	 �
Note that

� ���� 7 � � � � �� � 7 
 �/2 � � � �
In the following, ��� ���%� is said to satisfy the very weak maximum principle (in 5 � ) if,
given any � such that

�  O5 � � &�� � ���-�/.,	@0 for all �  �� � ���� 7 � � � � � (17)

it follows that �1	 0 . It satisfies the weak maximum principle (in �S�� ) if it is a conse-
quence of

�! � �� � 	��"���-� � 	@0 for all �  �� � ���� 7 
 �/2 � � � � � � �(� ' � � ���!	10 (18)

that �!	10 . Lastly, ��� ���%� satisfies the maximum principle or is inverse positive (on � �� )
if

�  � �� � �K� 	10 in �R�$�,�!	@0 on 

imply �!	10 .

Theorem 6.

(1) Consider the following assertions:

(i) ��� ���%� satisfies the very weak maximum principle in 5 � .
(ii) ��� ���%� satisfies the weak maximum principle in � �� .

(iii) ��� ���%� is inverse positive on ���� .
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Then (i) implies (ii), and (ii) implies (iii). If, in addition, � is surjective then all
these assertions are equivalent.

(2) If 
 � � � 
 � ��� ��� 0 then ��� ���%� is inverse positive. Conversely, if ��� ���%� is inverse
positive and � is surjective then 
 � �@0 .

(3) The semigroup
( �

is positive.

(4) If � ��� � �� � then 
 �  � ��� � .
The proof of this theorem is given in Section 16.

Remarks 7.

(a) Although our regularity assumptions guarantee that (15) holds for every �  ��(�G� � � ,
we do not know whether 
 � is independent of � . This would follow from the spectral
invariance of elliptic operators. However, the known results (see [13], [31], [45],
[50], [70]) do not seem to apply to the present situation. It is also not known whether
� ��� � ���� , in general.

(b) Suppose that only the weaker assumption (16) is satisfied. Then Theorem 6 remains
valid, provided we omit assertion (i) in (1).

We emphasize the fact that the results of this section are true under the mere assumption
that � has a compact boundary. We are not aware of any related theorem valid for the case
of exterior domains.

5. Nonhomogeneous problems

Of course, the validity of a maximum principle has implications on the solvability of
nonhomogeneous elliptic boundary value problems. This is made precise in the present
section.

We put
� 2 �� 7 � � � � � ���� 7 � � � # � � 2 �� 7 � � � � 2 �� 7 
 �/2 � � � � � � � ���� 7 
 �/2 � � � � #

with respect to the duality pairings &�
 ��
 . naturally induced by (10). It follows that

� �� 7 � "$ % � �� 7 � "$ % 5 � "$ % � 2 �� 7 � "$ % � 2 �� 7 � � (19)

We endow � 2 �� 7 � for �� 65 �G� �-7 with the natural dual order whose positive cone is the dual

of the cone � � �� � 7 ��� � � . Then � 2 �� 7 � and � 2 �� 7 � are 1 �32 4 and each one of the injection maps
in (19) is positive.

Next we consider the nonhomogeneous boundary value problem�K�O� �
in �R�$�,��� � on 
P� (20)

A (strong) � �� solution is a �  � �� with

���K� ���,� ��� � � �
��� in 5 � � ' � � � �
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By a (weak) � �� solution we mean a �  � �� satisfying

	��"���-� �K��&"��� � . for �  � �� � 7 
 �/2 � � � �
�(� ' � � ���1���(�%' � � � on 
P�

� �
� (21)

Lastly, � is said to be a (very weak) 5 � solution of (20) if �! !5 � and

&�� � ���-�/.P� &"��� � . � � '+* ��� � � '@��� ��� � � &"� ��� � �4.�� (22)

for �  � �� � 7 ��� .
The following theorem gives a further characterization of the positivity of 
 � .

Theorem 8. The following are equivalent:

(i) 
 � �10 .
(ii) Problem (20) has for each � � �
���  �� 5 � � ' � �� � � a unique nonnegative ���� solution.

(iii) Problem (20) has for each � � �
���  � � 2 �� 7 � � ' � �� � � a unique nonnegative � ��
solution.

(iv) Problem (20) has for each � � �
���  �� � 2 �� 7 � � ' � �� � � a unique nonnegative 5 � solu-
tion.

The proof of this theorem is also given in Section 16.

Remark 9. If we presuppose only the weaker hypothesis (16) then Theorem 8 remains
valid if assertion (iv) is omitted.

6. The principal eigenvalue

Throughout this section we suppose that � is bounded. Then we can considerably im-
prove on the results of the preceding section. For this we put

� �0 2 � � �
��� � � 0 � �� �

We also assume that only the weaker hypothesis (16) is satisfied.

Theorem 10. Suppose that � is bounded. Then � has a compact resolvent. Hence � ��� � is
discrete and each 
! � ��� � is an eigenvalue of finite multiplicity. Moreover,

��� � 
 � 
 � �0 2
for 
O � ��� � .
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This theorem, whose proof is found in Section 17, shows, in particular, that the spectrum,
the eigenspaces, and the generalized eigenspaces are independent of �  3�(�G� � � . Thus we
say that 
 is an eigenvalue of ��� ���%� iff there exists �  � �0 2 ��5I0 7 satisfying�K�O��
4� in �R�$�,��� 0 on 
P� (23)

The multiplicity of 
 is, by definition, the multiplicity of 
 as an eigenvalue of the 5 � re-
alization of ��� ���%� for some �  6�(�G� � � . Thanks to Theorem 10 this definition is inde-
pendent of � . Thus it makes sense to say that � ��� � is the spectrum of ��� ���%� , that is,
� ��� ���%� � � � ��� � . If � ��� ���%� �� � then it follows from Theorem 6 that 
 � is the smallest
eigenvalue of ��� ���%� , the principal eigenvalue, also denoted by 
 � ��� ���%� , or, more pre-
cisely, by 
 � ��� ���R���%� . The following theorem, whose proof is also given in Section 17,
guarantees its existence.

Theorem 11. If � is bounded then � ��� ���%� ���� , and the principal eigenvalue has a
positive eigenfunction. Furthermore, 
 � �10 iff ��� ���%� is inverse positive.

In general, 
 � is not the only eigenvalue with a positive eigenfunction. This follows im-
mediately by considering diagonal (that is, uncoupled) systems. Thus, in order to guarantee
that 
 � is the only eigenvalue with a positive eigenfunction we have to ascertain that the
coupling is sufficiently strong. For this we need some preparation.

Let
�

be a ring with unit. Then �� � � � � is a permutation matrix iff it contains exactly
one unit in every row and every column, and zeros elsewhere. The matrix �� � � � � is
reducible iff there exist �  65 �G������� � � '@� 7 and a permutation matrix � such that

����� � �
��
� � � � � �
0 � � �

��
(24)

with � � �  
��� � � , and � is irreducible otherwise. It is well-known and not difficult to

see that � is irreducible iff, given 3��/4K 5 �G�������;� � 7 , there exist indices 4 �  5 �G�������;� � 7 ,
0 8 � 8 � , with 4 � � 4 and 4 � � 3 such that �	��
 �� 0 for �
������� belonging to� � 4 � �/4 � ��� � 4 � �/4 � ����������� � 4 � �/4 � 2 � ��	 .

Let
�
� and

�
� be rings with unit � � and � � , respectively. Then

�
�
� �
� is a ring,

the product ring, with multiplication being defined component-wise. It has a unit, namely
�(� � ��� � � . Suppose that � &  � � � �& for ' �Q�G� � . Then we denote by

� ��� � ��� � �!  �� � � � �
� � � � �

the matrix whose entry at position �"3��/4�� equals ��� ,/.� ��� ,/.� �  �
�
� �
� .

Note that 5�0O���R� �P� and � �/2 � 
P� �P� are rings with unit � F and ��� , respectively, where,
given any nonempty set � , we denote by ��� the constant map L �% � . We also set

 � � � 
 >
��� �  � � ���������  � � � � * � � ��
 >
��� � * � � ������� � * � � � (25)

and  � � �  � '  � * � � � * � ' * � (26)
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Observe that  � and * � are nonnegative and have zeros in the diagonals.

Suppose that
� 	 � . Then the pair �  � * � , more precisely: �  � � * � � , is said to be irre-

ducible iff � �  � � � * � � �   � 5�0O���R� �P� � � �/2 � 
P� �P� � � � �
is irreducible. Thus �  � * � is irreducible iff, given any 3��/4  5 �G������� � � 7 , there exist 4 �  5 �G������� � � 7 , 0 8 � 8 � , with 4 � ��4 and 4 � � 3 such that

either � � * ��
 � 
 �10 or  ��
 �10
for

�
�������, � � 4 � �/4 � ��� � 4 � �/4 � ��������� � � 4 � �/4 � 2 � ��	4�
If this is the case, we also say that ��� ���%� is irreducible.

A function �  5 ��7 8 9;: is strongly positive if �  � �E� �%� and satisfies for each 31 5 �G������� � � 7 the inequalities � , �ML/� � 0 for L  
� � 
 , � and
'+* � � , �MN�� � 0 for N� !
 ,� with

� , �MN�� � 0 .
The next theorem is the basis for a detailed study of the principal eigenvalue. Its proof

is found in Section 17.

Theorem 12. Let � be bounded and suppose that either
� � � or �  � * � is irreducible.

Then the principal eigenvalue is simple and has a strongly positive eigenfunction. It is the
only eigenvalue with a positive eigenfunction, and every other eigenvalue satisfies. � 
 � 
 � �

In the scalar case this theorem is well-known and has first been proved, in the case of
general boundary conditions and without a positivity restriction for * , in [3]. That proof
contained a gap since it had not been asserted that the spectrum is nonempty. Motivated
by this, de Pagter [33] derived a general theorem on irreducible compact positive operators
on Banach lattices implying that such an operator has a strictly positive spectral radius.
That theorem can be used to fill the gap (cf. the proof of [11, Theorem 2.2]). It has also
been employed in papers by Sweers and coauthors (cf. [20], [71]) in the case of irreducible
cooperative elliptic systems with Dirichlet boundary conditions to prove essentially The-
orem 12 (under more restrictive regularity hypotheses). The proof given in Section 17 is
much more elementary. It is solely based on the classical Krein-Rutman theorem and does
not invoke the rather deep de Pagter result. The case of Dirichlet boundary conditions has
also been considered in [56], but under the much stronger assumption that  ,/. �ML/��� 0 for3 ���4 and all L! � , where  is supposed to be continuous.

7. The strong maximum principle

The boundary value problem ��� ���%� is said to satisfy the strong maximum principle if

���@� � �! � �� ��5I0 7 �$�K� 	@0 in �R�$�,�!	@0 on 
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imply that � is strongly positive.

We say that � is a strict ���� supersolution for ��� ���%� if � belongs to ���� and

���K� ���,� � �104�
It is a strict � �� supersolution for ��� ���%� if it satisfies (18) with a strict inequality sign
either in the first place for at least one � or in the second place. Finally, � is a strict
5 � supersolution for ��� ���%� if it satisfies (17) with a strict inequality sign for at least one � .
It follows that each ���� supersolution is a � �� supersolution, and each � �� supersolution
is an 5 � supersolution.

Using these concepts the following characterizations of the maximum principles are
valid.

Theorem 13. Let � be bounded and suppose that either
� � � or �  � * � is irreducible.

Then the following are equivalent:

(i) 
 � �10 .
(ii) ��� ���%� satisfies the very weak maximum principle.

(iii) ��� ���%� satisfies the weak maximum principle.

(iv) ��� ���%� satisfies the strong maximum principle.

(v) ��� ���%� possesses a positive strict 5 � supersolution.

Remark 14. Assume that only condition (16) is satisfied. Then Theorem 13 remains valid,
provided the following modifications are implemented: assertion (ii) is omitted and ‘ 5 � su-
persolution’ in (v) is replaced by ‘ � �� supersolution’.

Given the assumptions of the previous theorem, we can also improve on the solvability
statements of Theorem 8. For this, �6 5 � is said to be strictly positive if � , �ML/� ��0 for
a.a. L  !� and each 3$ 5 �G�������;� � 7 .
Theorem 15. Suppose that � is bounded and that either

� ��� or �  � * � is irreducible. If
 � �10 then, given any � � �
���, 6� 5 � � ' � �� � � ��5I0 7 , the unique positive solution of (20)
is strictly positive. If ���@� then it is strongly positive.

The important new ingredient distinguishing Theorem 13 from Theorem 6 is the char-
acterization of the validity of the maximum principle through the existence of a positive
strict supersolution. In the scalar case

� �S� and in the framework of classical solutions,
Protter and Weinberger seem to be the first to observe that the existence of a strict classical
supersolution

�  � � ���%� � � � ��� � 
 � � � � � �*�
satisfying

� �ML/� �@0 for all L! �
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implies the existence of the maximum principle for ��� ���%� (cf. [63, Section II.5]). In the
usual weak

�� � setting and with weak regularity assumptions it has also been shown in [23]
that the existence of a positive

� � supersolution characterizes the weak maximum prin-
ciple for the Dirichlet problem. The fact that (i) and (iv) of Theorem 13 as well as the
existence of a positive strict classical supersolution � , such that � , �ML/� ��0 for all L6 �
and � 8 3 8 � , are equivalent has first been observed in [56] in the case of Dirichlet
problems for cooperative elliptic systems satisfying the strong irreducibility condition ex-
plained in the preceding section. In the scalar case, López-Gómez [52] could then relax
the hypotheses on a classical strict supersolution � by requiring � �MN��!	 0 for N in 
 ,
keeping the assumption � �ML/� � 0 for L  � . This result has been extended to the case of
a general boundary operator in [11, Theorem 2.4], where positive strict � �� supersolutions
with � � � are being considered. The proof in [11] relies on [3, Theorem 6.1] which,
in turn, is a consequence of the Protter-Weinberger result cited above and a construction
of a strict � �� supersolution � for � � � satisfying � �ML/� � 0 for all L  � (see [3,
Lemma 5.1]), The latter construction is somewhat involved and complicated (but see Re-
mark 36(a)). This prompted López-Gómez [55] to give a simpler proof of Theorem 2.4
in [11] in the framework of � �

���
solutions by extending a version of the maximum princi-

ple due to Walter [76]. It should be remarked that in none of those results ��� ���%� is required
to possess divergence form.

The fact that a strict positive supersolution in the class � �� ���R� � � � � � � �K� � � � implies
the maximum principle and the existence of a unique positive eigenfunction is the main
theorem in [71] for the Dirichlet problem of irreducible cooperative systems (also see [20]).

Our Theorem 13 is much more general since it applies to systems with general cou-
pled boundary conditions and replaces � �� supersolutions for � 	 � by the much weaker
concept of 5 � supersolutions.

The importance of the results of this section is seen from the theorems in Sections 8–11.
Furthermore, it should be noted that the results of Theorems 13 and 15 suffice to apply the
abstract techniques of [1] to irreducible cooperative elliptic systems. By this way one ob-
tains extensions of the existence, multiplicity, and bifurcation results contained in [1]. For
example, one can extend the three solutions theorem [1, Theorem 14.2] to such systems,
etc. We leave the details to interested readers.

It should also be remarked that, thanks to Theorems 12 and 15 (and their proofs), it is not
difficult to extend the anti-maximum principle of Clément and Peletier [26] (also see [72])
to cooperative irreducible systems of the form ��� ���%� . Details are also left to the readers.

8. Monotonicity of the principal eigenvalue

Throughout this section � is again bounded and only the weaker hypothesis (16) is
imposed.

We discuss monotonicity properties of the principal eigenvalue with respect to variations
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of  , * , � , and the boundary conditions.

First we suppose that <   Q5 0O���R� � � � � � and < *  � �/2,� 
P� � � � � � are cooperative.
Then we define

� <� � <�'� by replacing  and * in (8) and (9) by <  and < * , respectively.

Theorem 16. Suppose that either
� ��� or �  � * � and

� <  � < * � are irreducible. If

�  � � * � ��� � <  � � < * � � (27)

then 
 � ��� ���%��� 
 � � <� � <� � �
Proof. Let � � be a positive eigenfunction of ��� ���%� to the eigenvalue
 � � ��
 � ��� ���%���
Then � <��' 
 � � � � ������' 
 � � � � � � <  '  � � � � � <  '  � � � in �
and <� � � � �,� � � � � < * ' * � � ��� � � � � < * ' * � � ��� � on 
P�
Hence it follows from (27) and the strong positivity of � � , guaranteed by Theorem 12, that
� � is a positive strict ���� supersolution for

� <�Q' 
 � ����� . Thus

0�� 
 � � <�Q' 
 � � <� �R� 
 � � <� � <�'� ' 
 �
by Theorem 13 and Remark 14.

The next theorem shows, in particular, that the principle eigenvalue decreases strictly if
a Dirichlet boundary condition is replaced for at least one component of � by a Neumann
boundary condition on at least one component of 
 . To make this precise we suppose that

��  � � 
P� � � � ���� �	� � is a boundary identification map. Then we put
�� � � � �� � '+* � �+* � � � �(�%' �� � � �

Note that � � �� means that 
 ,� �
�


 ,� for � 8 3 8 � where at least one of the inclusions
is proper.

Theorem 17. Suppose that either
� ��� or �  � � * � � is irreducible. Also suppose that� � �� and � �� ' � � * � 8 04� (28)

Then 
 � ��� ���%��� 
 � � � � ��'�E�
Proof. First observe that the irreducibility of �  � � * � � and � � �� imply the one of
�  � �� * �� � . Thus, by Theorem 12, there exists a strongly positive eigenfunction

�� � of
� � � ��'�

to the eigenvalue � 
 � � ��
 � � � � ��'�E�
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Thus, given �  �� � �� � 7 
 �/2 � � �4� � ,

	��"��� �� � � ' � 
 � &"��� �� � .P� � 	 �"��� �� � � ' � 
 � &"��� �� � . � � � ��� � � * ' �� * � � �� � � �
where

� 	 is the Dirichlet form of
� � � ��'� . Since � ���� 7 
 �/2 � � � 
 � ���� 7 
 �/2 �

� � � , thanks to � � �� ,

it follows that
� 	 �"��� �� � � ' � 
 � &"��� �� � .P� 04� �  �� � ���� 7 
 �/2 � � � � � �

Also observe that � � ��� � � ' �� � * � �� � � � 	�' � � ��� � �� ' � � * � ��� � � �
since ' * ,/. 	10 for 3 ���4 . Hence we deduce from (28) that

	��"��� �� � � ' � 
 � &"��� �� � .,	104� �  �� � �� � 7 
 �/2 � � � � � �
From � � �� and the strong positivity of

�� � we also infer that

�(�%' � � � �� � �10 on 
P�
Thus

�� � is a strict � �� supersolution for
� �Q' � 
 � ����� . Hence

0 � 
 � � �Q' � 
 � �����%��
 � ��� ���%� ' � 
 �
by Theorem 13 and Remark 14.

Note that (28) implies that * ,�, 8 0 on each component of 
 on which a Dirichlet bound-
ary condition is replaced by a Robin one.

For example, it follows from Theorem 17 that, given that  is irreducible if
� � � ,

the principal eigenvalues for the pure Neumann , the general Robin, and the pure Dirichlet
condition satisfy 
 � ��� � '+* � � 
 � ��� ���%��� 
 � ��� ��� ���
provided * ,�, 8 0 for � 8 3 8 � with at least one strict inequality sign. Also note that,
thanks to the cooperativity assumption, the second inequality in this chain is consistent
with Theorem 16.

Our next theorem shows that the principle eigenvalue increases if the domain shrinks
and if on each boundary component being moved inside the original boundary condition is
replaced by a Dirichlet one.

Theorem 18. Let � �
be a proper � � subdomain of � with boundary 
 �

. Denote by
�

the
union of all components of 
 �

having a nonempty intersection with � , and put�
# � � 
 � �

�
�

Define a boundary identification map � �  � � 
 � � � � � ���� �	� � for � �
by� � � � � � 04� � � � � #/� � � � � #

and put � �  �

���  �� �  �

� ���������  �

� ���  � � � � � �  ����  �� �  � ������� �  � ���  � �
� � �
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and � � �!� � �K� �$� � � � � � � � '+* � � �+* � � � �(� ' � � � �
for �  � �� ��� � � � � � . Then 
 � ��� ���R���%��� 
 � ��� � ��� � ��� � �
provided �  � � � � * � � � is irreducible if

� � � .
Proof. Observe that the irreducibility of �  � � � � * � � � implies the one of �  � � * � � . Also
note that the strong positivity of a positive eigenfunction � of ��� ���%� to the eigenvalue
 � � � 
 � ��� ���R���%� implies that � �

� �T0 . Hence � is a positive strict ���� supersolu-
tion for ��� � ' 
 � ��� � ��� � � . Now the assertion follows once more from Theorem 13 and
Remark 14.

The theorems of this section, as well as their proofs, are more or less straightforward
extensions and sharpenings of corresponding results established in the scalar case (i.e.,� ��� ) by López-Gómez [52] for Dirichlet and by Cano-Casanova and López-Gómez [21]
for general boundary conditions (also see [37] and, for the Dirichlet problem in a weak
setting, [24]). In the particular case of Theorem 16 where � � 0 and <� � 0 , that is, for
Dirichlet problems, the monotonicity of 
 � as a function of  has also been shown in [56],
given the much more restrictive assumption that  � <   � � �R� � � � � � and satisfy <  	  and <  ,/. �ML � ���  ,/. �ML � � for some L �  � and all 3��/4K 65 �G������� � � 7 .

The weak Dirichlet problem in � �� 7 � for scalar equations has attracted a lot of interest. In
this case general perturbation theorems are due to Arendt and coauthors [14], [17], Stoll-
mann [69] and, in particular, Daners [28], [29], who has perhaps the most general results.
For the weak Robin boundary value problem in the scalar case we refer to [27].

9. Continuity of the principal eigenvalue

We suppose again that � is bounded and put
� � ���%� � � � � � �R� � � � ���� �	� � � � � � 5�0O���R� � � � ���� �	� � � � 5�0O���R� � � � � �� � �/2 � 
P� � � � � � � � � 
P� � � � ���� �	� ���

Given
�3� � � �  ���� � � �  � ���������  � ���  � * � � �  � � ���%���

we define
� � ��� ����� ��� � � on � by (8) and (9). Then we denote by � ���%� the set of all

�Q � � ���%� such that � is a boundary characterization map for � and
� � ��� ����� ��� � � is a

cooperative elliptic boundary value problem on � such that �  � * � is irreducible if
� ��� .

Let � � be a bounded � � domain in ��� and let +2� � % � � be a � � diffeomorphism. Then

+�� � � + � 
 is a � � diffeomorphism from 
 onto
' � � . Given

� �
� � � �  � ��� � � �  � � ������� �  � � ���  � � *� � � � �  � � ��� � ���
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we put
+ � � � � � � � + �  � ��� � � � + �  � � ��������� + �  � � ��� + �  � � + �

� *� � + �

� � � �K � � ���%���
where, for a function

�
� on � � , the pull back of

�
� by + is defined by

+ � �
� � � �

� � +,�
Note that + � � �
 � ���%� if � �
 � ��� �P� .

Let ��� & � be a sequence of bounded � � domains in ��� . Then it is said to be � � converg-
ing towards � if there exist orientation preserving ��� diffeomorphisms + & � � % � & such
that + & % > 
 F in � ��� �R� � � � . Such a sequence � + & � is said to be a representation sequence
for ��� & � .

Sequences of bounded � � domains being � � convergent towards � are often obtained
by deformations of � be means of sequences of transformation groups for � . This is true,
in particular, if the transformation group is generated by a ��� vector field.

Example 19. Suppose that � is bounded and
�  ���G� �R� ��� � . For each L
 � let + ���4�-L/�

be the solution at time � of the initial value problem
�
� � � �
� ��� �4� 0 � �1L � (29)

Then there exist � 2 �@0����
�

such that

+2 � � � ��� 2 ��� � � � �R� � � �E� (30)

and + � � �Q+ ���4��
 � is for each �
 @��� 2,��� � � an orientation preserving � � diffeomorphism
from � onto � � � � + � � �%� . Thus � � � � + � ���%� is a � � domain in ��� and, given any
sequence ��� � � in ��� 2,��� � � with � � % 0 , the sequence ��� ��� � is � � converging (in fact:
� � converging) towards � , and � + ��� � is a representation sequence for ��� ��� � .

Proof. The theory of ordinary differential equations (e.g., [6, Section 10]) implies these
assertions.

Now we fix 3��/4G��*  � �G� � � satisfying

�"3��/4G��*-�P� #"""% """& �M� �-�
	 � �-��'@��� if � 	�
4�

 �� � � � � � �(�G� � � � �(�G� � � if � � � �
�(�G���G����� if � ���G�

(31)

and put
� , 7 . 7 � ���%� � � � � �R� � � � ���� �	� � � � � � 5 , ���R� � � � ���� �	� � � � 5 . ���R� � � � � �� 5 � � 
P� � � � � � � � � 
P� � � � ���� �	� ���

Note that
� �4���%� and

� , 7 . 7 � ���%� are Banach spaces satisfying
� �4���%� $ % � , 7 . 7 � ���%� .
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After these preparations we can formulate the following general continuity theorem for
the principle eigenvalue, whose proof is given in Section 18. Note that we allow not only
all coefficients to vary but the domain as well.

Theorem 20. Let (31) be satisfied. Suppose that ��� & � is a sequence of bounded � � do-
mains � � converging towards � , and let � + & � be a representation sequence for ��� & � . Also
suppose that �  � ���%� and � &  � ��� & � such that � + �& � & � converges in

� , 7 . 7 � ���%� to-
wards � . Then 
 � � � ��� & ����� ��� & ����� & � % 
 � � � ��� ����� ��� ������� as ' % � �
Furthermore, if � , resp. � & , is the unique positive eigenfunction of

� � ��� ����� ��� ��� , resp.� � ��� & ����� ��� & ��� , of � �� norm � then + �& � & % � in � �� .

It should be remarked that + �& � & % � in � �� , provided 3 , 4 , and * are replaced by suitably
chosen numbers � , � , and

�
depending on � (cf. Theorem 47).

Example 21. Suppose that � is bounded and
�  �$�E� �R� ��� � . Let + be the flow defined

by (29) and fix � 2 �10 � �
�

such that (30) is true. Let � be an open neighborhood of�
��� � � � ��� � �

� 5 � 7
in � � � � and suppose that

� �  ���� � � �  � ���������  � ���  � * � � � belongs to

� � ���P� � � � ���� �	� � � � � � � ���P� � � � ���� �	� � � � � ���P� � � � � �� � ���P� � � � � � � � ���P� � � � ���� �	� ���
For �O ���� 2,��� � � put

�,����� � � � �  ���� �����  � �  � ������������� �  � ����� � �  ������� * ������� � ����� � �
where  ���� �����,� �  ���� ��
 ����� � � � �  �� �����,� �  �� ��
 ����� � � � �  �����,� �  ��
 ����� � � �
and * �����,� � * ��
 ����� � 
 � � � ����� � � � ��
 ����� � 
 �
with 
 � � � ' � � � + � � 
�� . Note that �,�����  � ����� � � .

Suppose that �����, � ��� � ��� � + � � � � ����� � � � � � � 0 ��� � 2 ��� � �
� �

and put
��� � ��� � � � � � � ���,�����-����� ���,�����-���

so that ��� ���%� � ��� � ��� � � . Then
 � ��� � ��� � ��� � � % 
 � ��� ���R���%� as � % 04�
If � � is the unique positive eigenfunction of ��� � ��� � � satisfying �;� � ��� ,	 
 F�
 � � � then
� + � � � � � % � � in � �� .
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Proof. It is easily verified that � + � � � �,����� % �2� �,� 0 � as � % 0 . Hence the assertion is
a consequence of Theorem 20.

Next we present a second continuity theorem for which we need some preparation.

We recall that the � � manifold � is � � diffeomorphic to a � 0 manifold, the latter being
unique up to � 0 diffeomorphisms (e.g., [46, Theorem II.3.4]). Thus we can assume with-
out loss of generality that � is smooth. Then 
 is a compact oriented smooth hypersurface
in ��� . Hence there exists � �10 such that, setting

	 � � � � N � 4I�/�MN��, O� � � N� O
P� � 4 � � � 	��
the map

	 �
% 
 � �('K�G������� N � 4I�/�MN����% �MN �/4 	 �4� (32)

is a smooth diffeomorphism. In other words, 	 � is a normal tubular neighborhood of 

(cf. [46, Theorem IV.5.2]). Note that � � 	 � is the open � neighborhood of � , that is,

� � 	 � � � L! !� � � 
 >! � �ML � �*��� � 	��
Assume that �� � � � 
P� �('���� �4� � and put


��O� � � N � � �MN��(�/�MN��, O� � � N� O
 	��
Then 
�� is an oriented � � hypersurface in � � being contained in the tubular neighborhood	 � of 
 . There exists a unique � � domain, ��� , in ��� such that it is contained in � � 	 �

and 
�� is its boundary. We also define ���O � � � 
P� 	 � � by

��� �MN�� � � N � � �MN��(�/�MN���� N� O
P�
Suppose that

� &  � � � 
P� �('���� �4����� '  ��,� (33)

and put � & � � ���	� and 
 & � � 
��	� . Assume that

�3� � � �  ���� � � �  � ������� �  � ���  � * � � �  � ���%� (34)

and
� & � � � �  ��� 7 
 & � � � �  ��7 
 & � ������� �  � 7 
 & � ���  
 & � � * 
 & � � � 
 & � �K � ��� & � (35)

for '  �� , where  ��� 7 
 & � �  ��� 7 
 & � � �
for some  ��� 7 
 & �  � � ��� � 	 � � � � � ���� �	� ���
Furthermore, assume that

 ��� 7 
 & � %  ���� in � � ��� � 	 � � � � � ���� �	� � as ' % � � (36)

where  ���� � �1�  ���� for � 8 �G��� 8 � , that

� & % 0 in � � � 
P� �P� and � �& � 
 & � � � � (37)
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and that �
F � � F � ? ������ � � � �  � 7 
 & � '  �� � , � �  
 & � '  � .�� �GL % 0 (38)

as well as
� �& * 
 & � % * in 5 � � 
P� � � � � � (39)

as ' % � .

Observe that conditions (36) and (38) are automatically satisfied if only the boundary
of � is perturbed and � is kept fixed with its coefficients being defined on � � 	 � . Similarly,
if *  � �/2,��� � 	 � � � � � � � and * 
 & � � � * � 
 & for '  �� then condition (39) holds as well.

Theorem 22. Let conditions (33) ' (39) be satisfied. Then
 � � � ��� & ����� ��� & ����� & � % 
 � ��� ���R���%� as ' % � �
Furthermore, if the function � , resp. � & , is the unique positive eigenfunction of ��� ���%� , resp.� � ��� & ����� ��� & � � of norm � in � �� , resp. � �� ��� & � � � � , then, given any compact subset �
of � , �
	 � � � & ' � � � � � � � & ' � � � � 	 �GL % 0 (40)

as ' % � .

This theorem, which we derive in Section 18 from Theorem 20, is — except for regu-
larity assumptions on the Dirichlet boundary — a generalization of the continuity result
in [21], where the Robin boundary and the coefficients are kept fixed and the scalar case is
considered only. Of course, in the case of Dirichlet boundary conditions for a scalar equa-
tion much more general results can be obtained as has been shown by Daners [28], [29] and
others (see the remarks following Theorem 18). Also see [27] for the scalar Robin problem
in a � �� setting.

10. Minimax characterizations

Let � be bounded and suppose that only the weaker hypothesis (16) is satisfied.

In this section we give further characterizations of the principal eigenvalue of ��� ���%� .
Our first theorem is related to point-wise estimates.

Theorem 23. Suppose hat either
� ��� or �  � * � is irreducible. Then
 � ��� ���%� �  
��� � 
O !� � there exist �$ ��(�G� � � and �  �� � �� � �

satisfying
� ���Q' 
 � � ���,� � �@0
	��

Proof. Suppose that 
 � 
 � � ��
 � ��� ���%� . Then
 � ���Q' 
 ���%� ��
 � ' 
 �104�
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Hence, given �  ��(�G� � � , Theorem 8 guarantees the existence of �! 6� � �� � � satisfying� ���Q' 
 � � ���,� �%��� � F � 0 ���
Thus, denoting by 
 �

the above supremum, it follows that 
 � 8 
 �
.

Suppose that � � � � 
 � ' 
 � � 	 � � 0 . Then there exist �2 �(�G� � � and �� � ���� � �
satisfying � � �Q'1� 
 � ' � ��� � ���,� � �104�
Thus � is a positive strict supersolution for ���Q' 
 � � � ���%� . Hence, by Theorem 13,

0�� 
 � ���Q' 
 � � � ���%����
 � ' 
 � � � ��' � �
which is impossible. This proves 
 � ��
 �

.

Corollary 24. Suppose that
� ��� and � � ��� � . Then


 � ��� ���%� �  
���
�GD����

> A�B
CEDGF

�K���ML/�
���ML/� �

where
� � is the set of all �! � �� satisfying ���ML/���10 for L  !� and �,�!	@0 .

Proof. It follows from the preceding theorem by observing that Theorem 15 and the above
proof show that it suffices to take the supremum with respect to all strongly positive � .

This corollary is Theorem 4.1 in [21]. A related result can be found in [20] for the
Dirichlet problem for irreducible cooperative systems.

Now we prove a minimax characterization of 
 � ��� ���%� which is more in the spirit of the
variational characterization of eigenvalues of self-adjoint operators.

Theorem 25. Suppose that
� �T� or �  � * � is irreducible. Fix �3 S�(�G� � � and denote

by � the set of strictly positive �  � �� satisfying �(� ' � � ��� 	@0 . Then


 � ��� ���%� �  
���
�GD	�

> A�B 	��"���-� �
&"���-�/. � (41)

the infimum being taken with respect to all nonzero �� �� �S���� 7 
 �/2 � � � � � .

Proof. Suppose that 
 � 
 � � � 
 � ��� ���%���
Then, as in the proof of Theorem 23, we see that
 � ���Q' 
 ���%���10
and there exists a positive strict ���� supersolution � for ��� ' 
 ���%� . Hence � is strictly
positive by Theorem 15. From Green’s formula we deduce that � is a positive strict � �� su-
persolution for ���Q' 
 ���%� . Consequently,

	��"���-� � 	 
 &"���-�/.;� �  6� � ���� 7 
 �/2 � � � � � �
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and �(� ' � � ���O	10 . Since &"���-�/. �10 for each � �10 by the strict positivity of � , we see that


 8 > A�B
� D 
 � ,� ��� � , ����� 	 � ��

� ��� 	��"���-� �

&"���-�/. �
This implies 
 � � � 
 � ��� ���%� 8 
 �

, with 
 �
denoting the right-hand side of (41).

Suppose that � � ��� 
 � ' 
 � 	 � �10 . Then there exists �! � satisfying

	��"���-� ���Q� 
 � ' � �;&"���-�/.;� �  6� � ���� 7 
 �/2 � � � � � ��5I0 7 �
Hence � is a positive strict � �� supersolution for ��� ' 
 � � � ���%� . By invoking once more
Theorem 13 we arrive at a contradiction as in the final part of the proof of Theorem 23.

11. Concavity of the principal eigenvalue

Suppose again that � is bounded and only assumption (16) is satisfied.

In this section we give an application of the minimax characterization of Theorem 25 to
the study of the behavior of 
 � ��� ���%� as a function of �  � * � . For this we first note that, if� 	 � , the set of all cooperative pairs ��� � ��� is a convex cone in the algebra

� 5�0����R� � � � � �/2 � 
P� �P��� � � � � (42)

Given �  �� � *�� � in (42) for �$� 04��� , we put

��� � ��� � �,� � �(� '�*-�;��� � ��� � � � *;��� � ��� � ��� 0 8 * 8 �G�
where ��� � ��� � � are defined for �O !5I04��� 7 by replacing  in (8) and * in (9) by  � and *�� ,respectively.

Theorem 26. Suppose that �  � � * � � and �  � � * � � belong to (42). Also suppose that either� ��� or ��� � ��� � � is cooperative and irreducible for 0 8 * 8 � . Then
 � ��� � ��� � �,	��(� '�*-� 
 � ��� � ��� � � � * 
 � ��� � ��� � ��� 0 8 * 8 �G� (43)

Proof. Let 	 � be the Dirichlet form of ��� � ��� � � . Fix �6 S�(�G� � � and define � as in the
preceding theorem. Then, given �  � and *  6� 04����� ,

	 � �"���-� � � �(� '�*-� 	 � �"���-� � � * 	 � �"���-� ��� �  6� � ���� 7 
 �/2 � � � � � �
implies > A�B

� 	 � �"���-� �,	��(�%'�*-� > A�B� 	 � �"���-� � � * > A�B� 	 � �"���-� ���
where the infima are taken with respect to�  �� � ���� 7 
 �/2 � � � � � ��5I0 7 �
By passing to the suprema with respect to �@ � we deduce from Theorem 25 that (43)
is true.
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Remark 27. Suppose that
� ��� and ' �  � � * � � and ' �  � � * � � are cooperative. Also sup-

pose that either there exists a subset
�

of � of positive measure such that  � �ML/� and  � �ML/�are irreducible for all L1 �
, or there exists N3 1
 with � , �MN��K� � for 3  5 �G������� � � 7

such that * � �MN�� and * � �MN�� are irreducible. Then ��� � ��� � � is irreducible for 0 8 * 8 � .
In the scalar case the concavity of the principal eigenvalue with respect to  has been

shown in [21] generalizing earlier results of López-Gómez [52] and Berestycki, Niren-
berg, and Varadhan [19] for the case of Dirichlet boundary conditions (also see [18], [44],
and [47]). Note that our proof does not only apply to cooperative irreducible systems but
is, even in the scalar case, much simpler than the earlier ones.

As shown in the scalar case in [21] and [52] (also see the references therein), Theorem 26
is an important tool for studying eigenvalue problems with weight functions. Thanks to
Theorem 26 we can now consider Steklov type eigenvalue problems also where the eigen-
value parameter can occur in the boundary condition as well, that is, problems of the type�K�O��
�� � in �R�$�,��� 
 � � on 
 (44)

with ��� � ��� belonging to (42). By means of the above theorem it can be shown that the map
 �% 
 � ���Q' 
�� ���3' 
 ��� (45)

is convex and analytic on � if
� � � , and on � � if

� �Q� and �  � * � and ��� � ��� are such
that the latter theorem can be applied. The proofs in [21], [44], or [52] carry over without
changes. Since the zeros of the function (45) correspond to eigenvalues of (44) having
positive eigenfunctions, we can thus extend many of the results for the case � � 0 (and� ��� ), known so far and cited above, to (44) (also see [35], [42] for recent developments).

We remind the reader that problems of type (44) occur naturally in the study of parameter
dependent nonlinear boundary value problems of the form�K�O��
 � �ML �-� � in �R�$�,��� 
 �/�ML �-� � on 

with nonlinear boundary conditions (cf. [2] for a study of such problems in the scalar case
and a regular setting).

12. Preparatory considerations

Let

 � � 
 � and



� be Banach spaces such that



�
"$ % 
 � , and suppose that


 � is
ordered and �  & � 
 � � 
 � � . Then � is said to be resolvent positive if there exists -  �
such that

� -%� � �)
 � �('�� � and � 
 � � � 2 � 	10 for 
 � -%�
We denote by 4 � �('�� � the infimum of all such - .

The next two theorems are basically known and included for easy reference only.

Theorem 28.
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(a) The following are equivalent:

(i) � is resolvent positive.

(ii) � 
 � � ��2 �R	10 for 
 � 4 �('�� � , that is, 4 � �('�� � 8 4 �('�� � .
(iii) The semigroup

( �
is positive.

(b) If � is resolvent positive and � ��� � ���� then ':4 � �('�� �  � ��� � .
Proof. (a) It is known (e.g., [8, Remark II.5.1.2] or [25, Proposition 9.2]) that 4 �('�� � equals
the type of '�� , the latter being the infimum of all -S @� such that there exists � 	 �
satisfying

� � � ��*-� � � 
���� � 8 ��� � �
for *@	 0 . Hence the assertion follows from well-known results in semigroup theory
(eg., [25, Proposition 7.1]).

(b) This follows from part (b) of the proof of Proposition 3.11.2 in [15] (by observing
that it is valid without the standing hypotheses of those authors that the positive cone is
normal and generating ).

The positive cone

 �

is said to be generating if

 � 
 � ' 
 �

. It is normal if each
order interval � L �-N � � � 5 /  
 � L 8 / 8 N 7
is bounded. Note, in particular, that


 �
is normal and generating if



is a Banach lattice.

Theorem 29. Suppose that

 �

is normal and generating. Then:

(i) 4 � �('�� �P� 4 �('�� � ;
(ii) If 
O � �('�� � � � and � 
 � � ��2 �*	10 then 
 � 4 �('�� � .

Proof. See [15, Proposition 3.11.2] or [25, Theorem 7.4].

The operator � is said to be inverse positive if �! 

� and �%� 	10 imply �!	10 .

Corollary 30. Let



be a Banach lattice and suppose that � is resolvent positive. If
 � ��� � � 0 then � is inverse positive. Conversely, if � is inverse positive and � is sur-
jective then 
 � ��� � �10 .
Proof. If � is inverse positive then it is injective. Thus 0  � ��� � if, in addition, � is
surjective. Now the assertion is obvious.

Let



be a Banach lattice. Then L1 
 �
is said to be a quasi-interior point of


 �
iff

& +,�-L . � 0 for every +Q �� 
 # � � �95I0 7 . Clearly, � is a quasi-interior point of 5 �� iff � is
strictly positive.
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A positive linear operator �T �R� 
 � is called irreducible iff there exists / �+3�� ��� , with3�� ��� being the spectral radius of � , such that �2�(/ ' ���12 ��L is for each L2 
 � �95I0 7
a quasi-interior point of


 �
. It is strongly irreducible iff � L is for each L3 
 � �
5I0 7 a

quasi-interior point of

 �

. Clearly, every strongly irreducible operator is irreducible.

The semigroup
( �

is said to be strongly irreducible iff � � ��*-� has this property for each*��10 .
Theorem 31. Suppose that



is a Banach lattice and � is resolvent positive. Then the

following are equivalent:

(i) There exists 
 � ' 
 � such that � 
 � � ��2 � is irreducible.

(ii) � 
 � � ��2 � is for each 
 ��' 
 � strongly irreducible.

(iii)
()�

is strongly irreducible.

Proof. It follows from [65, App. 3.1] that the preceding definition of a positive irreducible
bounded linear operator is equivalent to the one used in [25, Section 7.1]. Hence the asser-
tion is implied by [25, Proposition 7.6 and Corollary 7.8].

Suppose that


 � "$ % 
 2 � � � 2 �  '& � 
 � � 
 2 � ��� � 2 � � � � � � � � (46)

Then we denote for �6 5 'K�G� 0 7 by
� � � 
 � the algebraic eigenspace of the eigenvalue 


of � � .
Lemma 32. Let (46) be satisfied. Then

��
���� 2 � � � ��
���� � ���
Furthermore, � 2 � � 
 �P� � � � 
 ��� 
! ��
���� � ���
Proof. (i) It is clear that � 
���� � �)
 ��
���� 2 � � and

� � � 
 � 
 � 2 � � 
 � for 
O ��
4��� � � .
(ii) Suppose that there exist 
! � and L �-N� 
 � satisfying

� 2 � LO� 
4L�' N � (47)

Fix -1 '� �('�� � � � � �('�� 2 � � . Then (47) is equivalent to

L�� � - � � 2 � � 2 � � � - � 
 � L�' N � � (48)

From � 2 � � � � it follows that

� - � � 2 � � 2 � � � - � � � � 2 � �
Thus we deduce from � - � 
 � L$'!N� 
 � and (48), thanks to � - � � � � 2 � � 
 � � 
 


� , that
L  


� and, consequently, � � L���
4L ' N .
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(iii) Suppose that 
! � , �  � , and

L  ����� � � 
 '�� 2 � � � � �  ��
Then there exist L � ���������-L �  
 � satisfying L � �1L and

� 2 � L � ��
4L � ' L � � � � 0 8 � 8 � �
where L � � � � � 0 . Thus we deduce from (ii) by backwards induction that L �  


� for
0 8 � 8 � and that

L �  ����� � � 
 '�� � � � � �  �
This implies

� 2 � � 
 � 
 � � � 
 � .
Next we prove a perturbation theorem for resolvent positive generators of analytic semi-

groups.

Proposition 33. Suppose that
�  � 04����� and ��
 ��
 ��� is an interpolation functor of expo-

nent
�
. Put



�K� � � 
 � � 
 � ��� . If �  '�R� 
 � � 
 � � then

� ' �  '& � 
 � � 
 � ���
If � is resolvent positive and �U	@0 then � ' � is also resolvent positive.

Proof. Since �� & � 
 � � 
 � � there exist positive constants � and - such that
� 
 � �/2 � �E� 
 � � � 2 � � � 
���� 7 � � � 8 ��� . � 
 � -%� �$� 04���G�

Thus, by interpolation, there exists � � such that

�E� 
 � � � 2 � � � 
���� 7 ��� � 8 � �
	 � 
 � �/2 � � . � 
 � -%�

Hence we can find - � 	 - such that

� ��� 
 � � � 2 � � � 
���� � 8 � 	 � � . � 
 � - � �
It follows that � ' ��� 
 � � � 2 �  '�R� 
 � � has an inverse on


 � , bounded by
�
, and

� � ' ��� 
 � � � 2 � � 2 � � 0#
� $
� � ��� 
 � � � 2 �  � � . � 
 � - � � (49)

in �R� 
 � � . Hence � . � 
 � - � � 
 � �('�� � � �
and

� 
 � � ' � � 2 � � � 
 � � � 2 � � � ' ��� 
 � � � 2 � � 2 � � . � 
 � - � � (50)

so that

�E� 
 � �1' � � 2 � � � 
���� 7 � � � 8 � � � 	 � 
 � �/2 � � . � 
 � - � � �$� 04���G�
This proves that � ' �  & � 
 � � 
 � � . Furthermore, if � 	 0 and � is resolvent positive,
we deduce from (49) and (50) that � 
 � � ' � �/2 �R	@0 for 
 � - � .
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It should be remarked that the first part of the assertion is well-known (eg., (I.2.2.2) and
Theorem I.1.3.1 in [8]).

The next result shows that the set of resolvent positive operators in & � 
 � � 
 � � is closed.

Proposition 34. Let ��� � � be a sequence in & � 
 � � 
 � � converging in �R� 
 � � 
 � � towards� . If each � � is resolvent positive then � is resolvent positive as well.

Proof. It follows from [8, Corollary I.1.3.2] that there exist � 	 � and - �S0 such that� . �0/ � - � belongs to � �('�� � � � �('�� � � and

�E� 
 � � � 2 � � � 
���� 7 � , � � � 
 � �E� 
 � � � � 2 � � � 
���� � 8 � � . � 
 � -%� �  �,�
Hence we infer from

� 
 � � � � 2 � '1� 
 � � � 2 � ��� 
 � � � � 2 � ��� '�� � �;� 
 � � � 2 � � . � 
 � -%�
that

�E� 
 � � � � 2 � '1� 
 � � � 2 � � � 
���� � 8 � 
 � 2 � � � � �1'�� � � � 
�� , 7 ��� � � . � 
 � -%�
Thus, in particular,

� 
 � � � � 2 � L % � 
 � � � 2 � L
in


 � for 
 � - and L  
 � . Now the assertion is a consequence of the closedness of the
positive cone.

13. The strong maximum principle for the scalar case

In this section we suppose that
� � � and set 
 � � � 
 �� for �O� 04��� , of course. Then

we put � � �!� ��'  ���� ' � ' � � �! �� ' � � �! � �
where  ���� �  ���� �  �� �   5�0 , with �  ���� �ML/�! @ ��� � � being positive definite for a.a.
L  !� . We also put

� � �!� �$#% & � on 
 � �' ��� �+* � on 
 � �
where � is an outward pointing nowhere tangent �$� vector field on 
 � , and * is a � �/2 func-
tion on 
 � . Clearly, in this case the derivative

' � is used in the definition of strong positivity.

The following theorem is the basis for the proofs of the following sections. It slightly im-
proves [3, Theorem 6.1]. Its importance stems from the fact that there is no sign restriction
for * .
Theorem 35. There exists - �  !� such that ��� � � -%��� � � satisfies for - � - � the strong
maximum principle.
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Proof. If � is bounded, this is a reformulation of Theorem 6.1 in [3] (where the statement
is incomplete since the condition ���MN�� � 0 for the validity of

' �����MN����10 is missing). Since

� �� $ % � �� � �%��� ���2� �
the same proof applies if it is only supposed that 
 is compact, provided Lemma 5.1 in [3]
is valid. But this follows easily from the proof of the much more general Theorem B.3
in [5].

Remarks 36.

(a) The proof of [3, Lemma 5.1] is somewhat complicated and perhaps not too transpar-
ent. By restricting the arguments leading to Theorem B.3 in [5] to the relevant cases� � 0 and � �Q� , one gets a simpler and more lucid demonstration.

(b) Suppose that �  � * �$	U0 . Then - � 8 0 . Furthermore, ��� � ��� � � satisfies the strong
maximum principle unless � is bounded, 

� 
 � , and �  � * � � � 04� 0 � .
Proof. This is a consequence of the classical maximum principle.

14. Strong and weak solutions

We return to the case of a general
�  � � and the hypotheses of Section 2. We set

�
�
� 7 � � � 5 � and define linear operators

� � 2 �  '�R� � �� 7 � � � � 2 �� 7 � ��� �� 5I04��� 7 �
by

&"����� 2 � �/.,� � 	��"���-� ��� �"���-� �  � �� � 7 
 �/2 � � � � � �� 7 
 �/2 � � � (51)

and

&"����� 2 � �/.,� � &�� � ���-�/.;� �"���-� �, � �� � 7 ��� � 5 � � (52)

respectively. � 2 � is called � 2 �� 7 � realization of ��� ���%� . We also put � � � ��� and denote
by
� 2 � � 
 � the algebraic eigenspace of 
O � 
���� 2 � � for �  5I04���G� �-7 .

Theorem 37. For �  5 �G� �-7
(i) � � 2 �  & � � �� 7 � � � � 2 �� 7 � � ;

(ii) � 2 � � � 2 � � � � ;
(iii) � ��� 2 � � � � ��� � � and ��
4��� 2 � � � ��
���� � � .

If 
O ��
4��� � � then
� 2 � � 
 �P� � � � 
 � .

Proof. Fix - � 4 �('�� � � and let ��� 
 � �	� � � � �� 2�  be the interpolation extrapolation
scale generated by � 
 � �	� � �,� ��� 5 � ��- � � � � and the complex interpolation functors

� 
 ��
 � � ,
0 � � � � . (We refer to [8, Chapter V] for the general interpolation extrapolation theory,
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and to [7, Section 6] for a summary of the main results.) Then (cf. Theorems 7.1 and 8.3
in [7] and observe that they remain valid if it is only assumed that 
 is compact) we find that
 2 � � � �� � 2 �� 7 � � � 2 � � � �,� 2 � �
where

�� means ‘equal except for equivalent norms’. Hence (i), (ii), and the equality
of � ��� 2 � � and � ��� � � follow from (15) and the general interpolation extrapolation theory
(cf. Theorems V.1.4.6 and V.2.1.3 as well as Corollary V.2.1.4 in [8]). The remaining part
of (iii) is now a consequence of (i), (ii), and Lemma 32.

Remark 38. Suppose that only the weaker assumption (16) is satisfied. Then Theorem 37
remains valid for �$��� and with � 2 � being omitted in (ii).

Proof. Of course, the interpolation extrapolation scale generated by � 5 � ��- � � � � is still
well-defined. However, since in this case the dual of � is not explicitly known, the space
 2 � cannot be identified in terms of a known space of distributions. But it is not difficult
to see that 
 2 ��� � �� � 2 �� 7 �
is still true.

The next theorem concerns the solvability of the nonhomogeneous problem (20) and the
parameter dependent boundary value problem

� 
 � �$� �O� �
in �R�$�,��� � on 
P� (53)

Theorem 39.

(i) Every strong ���� solution of (20) is a weak � �� solution, and each weak � �� solution
is a very weak 5 � solution.

(ii) Suppose that 
O � �('�� � , �  5I04���G� �-7 , and � � �
���  � � 2 �� 7 � � ' � �� . Then (53) has
a unique � �� solution.

(iii) If � � �
���  � 2 �� 7 � � ' � �� then every 5 � solution of (20) is a � �� solution. Similarly,
if � � �
���  !5 � � ' � �� then every � �� solution is a � �� solution.

Proof. (i) is an easy consequence of Green’s formulas.

(ii) First suppose that �$� � . From [5, Theorem B.3] we know that there exists
�
�  '�R� ' � �� � � �� �

satisfying � � � +1�Q+ for +  ' � �� . Set � � � � � � . Then � is a � �� solution of (53) iff��� �1� ' � satisfies
� 
 � �$� � ��� in �R�$���$� 0 on 
P�

where
�O� � � '1� 
 � �$� �  !5 � �

that is, iff � 
 � � � � ��� in 5 � . This proves the assertion if �$� � .
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Suppose that ��� � . The trace operator is a continuous retraction from the space � ��
onto � �/2 ��� �� � 
�� , that is, there exists

�  '� � � �/2 ��� �� � 
���� � �� �
with � � +�� + for +2 � �/2 ��� �� � 
�� (e.g., [5, (B.21)–(B.23)]). Set � � � � �(� ' � � � . Then
� is a � �� solution of (53) iff � � � � ' �  � �� satisfies
 & +,����. � 	�� +,���4� � & +,� � .�' 
 & +,� � . ' 	�� +,� � ��� +3 � ���� 7 
 �/2 � � � (54)

and
�(� ' � � � � � 04� (55)

thanks to � �*� � . Since 	 is a continuous bilinear form on �S���� 7 
 �/2 � � � � � �� , the right-hand

side of (54) defines an element � in � 2 �� 7 � . Thus (54) and (55) are equivalent to�� � �� 7 
 �/2 � � � � � 
 � � 2 � � � � � �
Now the assertion for �$��� follows from � ��� 2 � � � � ��� � .

Finally, assume that �$� 0 . Note that

�(�%' � � '+*  � � � �� � 7 ��� � � �/2 ��� � �� � � 
 � ���E�
Hence

� '+* � # �(� ' � �  � � � 2 ��� �� � 
 � ��� � 2 �� 7 � �E�
Similarly, � �  '� � � ���� 7 � � � � � 2 ��� � ���� � 
 � � �
and, consequently, � # �  � � � 2 �/2 ��� �� � 
 � ��� � 2 �� 7 � �E�
From this and (22) we infer that � is an 5 � solution of (53) iff

� 
 � � 2 � � �O��� �
where

�O� � � � � '+* � # � � '@��� � � � # � �� � 2 �� 7 � �
Thus � ��� 2 � �P� � ��� � implies the assertion in this case also.

(iii) Suppose that � � �
���  � 2 �� 7 � � ' � �� and � is an 5 � solution of (20). Then there
exists - �@0 such that 
 � � � - � 
! '� �('�� ���
Hence (20) is equivalent to

� 
 � � �$� �!� �
� in �R�$�,��� � on 
P� (56)

where
�
� � � � � -P�! � 2 �� 7 � �

Thus (ii) implies that (56) has a unique � �� solution � . From (i) we infer that � is an
5 � solution of (56). Since it is unique, by (ii), it follows that �O� � , that is, �! � �� 7 � . This
proves the first assertion. The second one follows by similar arguments.
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Remark 40. If we presuppose only condition (16) then Theorem 39 is valid with any
reference to 5 � solutions being omitted.

Proof. This follows from the above proof and Remark 38.

15. Resolvent positivity

The next theorem is the basis of all the following positivity results.

Theorem 41.

(i) � 2 �� 7 � and � 2 �� 7 � are 1 � 2 4 and the natural injection maps (19) are positive.

(ii) � � �� 7 � � � is dense in � � �� 7 � � � for ' � 8 � � � 8 � .
(iii) � 2 � are resolvent positive for �  5I04���G� �-7 .

Proof. (1) First we assume that

  !5�0O���R� � � � ���� �	� � and *  � �/2 � 
P� � � � ���� �	� ���
Then Theorem 35 applies to the boundary value problem ��� , ��� , � for � 8 3 8 � . Hence
there exists - � �@0 such that

� 
 � � � � 2 � � 	@04� 
 � - � �$�  �" � � (57)

where " � �T"����R� � � � is the space of all smooth � � valued functions with compact
support in � . Since � 
 � � � ��2 �R '�R� 5 � � and " � is dense in 5 �� it follows that (57) is true
for all �  O5 �� . Thus � � is resolvent positive.

The same arguments show that � � , the 5 � � realization of ��� � ��� � � , is also resolvent
positive. Note that 5 ���� is generating since 5 ��� is a Banach lattice. Thus, fixing 
 � 4 �('�� �-�
and setting

� � ��� 
 � � � � 2 � 5 ���� �
it follows from Theorem 28 that

� 
Q� � �� � 7 ��� � � and � �� � 7 ��� � � ' � �
Hence � � ���� 7 � � � � is generating, thus total. Now (cf. the proof of Theorem 37) Theo-
rems V.1.5.12, V.2.3.2, V.2.7.2, and Corollary V.2.7.3 in [8] imply that (i)–(iii) are true
in this case.

(2) We consider the general case. First we observe that �S�� 7 � and � 2 �� 7 � are independent
of  and * . Hence it follows from step (1) that they are 1 �32 4 , the injection maps

� �� 7 � $ % 5 � $ % � 2 �� 7 �
are positive, � � �� 7 � � � is dense in 5 �� , and the latter cone is dense in � � 2 �� 7 � � � .
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Recall (25) and (26). Define ��� � ��� � � by replacing  and * in the definition of ��� ���%�
by  � and * � , respectively. Then step (1) implies that � � 2 � , the � 2 �� 7 � realization of

��� � ��� � � , is well-defined, belongs to & � � �� 7 � � � 2 �� 7 � � , and is resolvent positive.

Fix 4K ��(� 	 � ����� and put

� .� 7 � � � � .� 7 
 �/2 � � � � � � �  � .� �,�(�%' � � � � � 0 	 �
Then [7, Theorem 7.2] implies that

� .� 7 � ���� � 2 �� 7 � � � �� 7 � � 
 � � . � � � 7 �where ��
 ��
 ��� 7 
 are the real interpolation functors for 0 � � ��� and � 8 � 8 � .

By the trace theorem, � . � � � � � .� 7 �  '� � � .� 7 � � 5 � � 
 � � � � (58)

and � #�  '� � 5 � � 
 � ��� � 2 �� 7 � �E� (59)

where � � � � � � � ���� 7 
 �/2 � � �  � � � ���� 7 
 �/2 � � � � 5 � � � 
 � ���E�
Consequently, setting

� �!� �  � � � � #� � * � � . � � �  � .� 7 � �
it follows from �  � � * � �, O5�0O���R� � � � � � � 5�0O� 
P� � � � � � ,

� .� 7 � $ % 5 � $ % � 2 �� 7 � � (60)

and (58) and (59) that �  ��R� � .� 7 � � � 2 �� 7 � � . Furthermore, � 	 0 thanks to the posi-
tivity of �  � � * � � , of the trace operators � . and � � , and of the injection maps (60), and
thanks to the fact that 5 �� and � � 2 �� 7 � � � are the dual cones of the positive cones of 5 � �
and � ���� 7 
 �/2 � � � , respectively. Note that

� ��� ��� � 2 � ' � � � �%� 	��"���-� ��� �"���-� �  � ���� 7 
 �/2 � � � � � �� 7 
 �/2 � � � �
so that � 2 � � � � 2 � ' � �
Hence Proposition 33 guarantees that � 2 � is resolvent positive.

From Theorem 37 we infer that

� 
 � � 2 � � 2 � � � 
 � � 2 � � 2 � � � 
 � � � � 2 � � 
 � 4 �('�� � ���
Thus � � is resolvent positive as well. The same arguments apply to the boundary value
problem ��� � ��� � � and guarantee that � �� is resolvent positive. Thus we see, as in step (1),
that � � 2 �� 7 � � � is a proper cone, that is, � 2 �� 7 � is an 1 �32 . Now the remaining assertions
follow by the arguments of step (1).

Remark 42. Suppose that only the weaker assumption (16) is satisfied. Then Theorem 41
remains true if all assertions involving � 2 �� 7 � and � 2 � are omitted.
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Proof. This follows from Remark 38.

16. Proofs of the weak maximum principles

Now it is not difficult to prove the theorems presented in Sections 4 and 5.

Proof of Theorem 6 (a) Theorem 41(iii) guarantees that � is resolvent positive. Thus (3)
and (4) follow from Theorems 28 and 29, since 5 � is a Banach lattice.

(b) If ��� ���%� is inverse positive on ���� then � is inverse positive. Thus, if � is surjective
then 
 � �@0 by Corollary 30.

From (52) we infer that ��� ���%� satisfies the very weak maximum principle iff � 2 � is
inverse positive. Suppose that 
 � � 0 . Then � is inverse positive by Corollary 30. Since
 � ��
 � �('�� 2 � � by Theorem 37(iii), it follows that

0  '� ��� 2 � ���
Also suppose that �! !5 � and � 2 � � 	10 . Then Theorem 41(ii) guarantees the existence of
a sequence � � � � in 5 �� converging in � 2 �� 7 � towards

� � �,� 2 � � . Hence the sequence �M� � � ,
where � � � � ��� 2 � ��2 � � � , converges in 5 � towards �2� ��� 2 � ��2 � �

. Since � 2 � � � by
Theorem 37(ii), it follows that ��� 2 � ��2 � � � 2 � . Thus � �  � �� 7 � and

�%� � � � � 	@04�
Consequently, � � 	10 by the inverse positivity of � . Hence Theorem 41(i) implies � 	10 .
This shows that � 2 � is inverse positive and proves (2).

(c) Suppose that �! � �� satisfies assumption (18). Then we define
�  6� � 2 �� 7 � � � by

&"��� � .,� � 	��"���-� ��� �� � �� � 7 
 �/2 � � � �
We also set

��� � �(� ' � � ���! � � �/2 ��� �� � 
 � � � � $ % � ' � �� � � �
By Greens’s formula,

&�� � ���-�/.P� 	��"���-� � � � � � '@��� '+* ������� � �
� &"��� � . � � '+* ��� � � '@��� ��� � 	10

for �  6� � ���� 7 � � � � . Thus �!	10 if (i) is true. Hence (i) implies (ii).

Suppose that �! ���� satisfies ���K� ���,� �P	10 . Then

� � �
��� � � ���K� ���,� �P �� 5 � � ' � �� � � $ % � � 2 �� 7 � � ' � �� � �
by (13). From Green’s formula we infer that

	��"���-� � � &"�����K�/. � & � � �����,�/.�� ��&"��� � . � &"� ��� � �4.���	10
for �6 �� � �� � 7 
 �/2 � � �4� � . Thus �  � �� $ % � �� satisfies (18) so that � 	 0 if (ii) is true.
This shows that (ii) implies (iii).
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Now suppose that � is surjective and ��� ���%� is inverse positive on � �� . Then � is inverse
positive. Hence 
 � �10 by (2), so that

0  '� ��� 2 � � � � ��� ���
From the second part of (b) we know that � 2 � is inverse positive. Thus (iii) implies (i).
This proves (1).

Proof of Remark 7(b) Replace in the second part of step (b) of the preceding proof the
very weak maximum principle by the weak one and � 2 � by � 2 � . Then it follows that the
inverse positivity of � implies the one of � 2 � . Hence from (51) and (18) we deduce that
 � �10 implies that ��� ���%� is inverse positive.

Similarly, by replacing in the beginning of the last paragraph of the preceding proof � 2 �
by � 2 � , we see that (iii) of Theorem 6 implies (ii).

Proof of Theorem 8. It is an easy consequence of Theorems 6 and 39 that

(i) � (iv) � (iii) � (ii) �
Suppose that (ii) is true. Then it is obvious that ��� ���%� is inverse positive. Given

�  !5 � , it
follows from (ii) that there exists � �  � �� 7 � satisfying �%� � � � �

, where
� �

(resp,
� 2 )

is the positive (resp. negative) part of
�

. Thus, setting � � � � � ' � 22 � �� 7 � , we see that�%�O� �
. Hence � is surjective. Hence we infer from the second part of Theorem 6(2) that
 � �10 . Thus (ii) implies (i).

It is obvious from this proof that Theorem 8 remains valid if only the weaker assump-
tion (16) is satisfied, provided assertion (iv) is omitted.

17. Bounded Domains

In this section we prove the theorems presented in Sections 6 and 7. We begin with a
simple bootstrapping result.

Proposition 43. Let � be bounded and suppose that only condition (16) is satisfied. Sup-
pose also that �  ���� solves (53). If ��� � � � and � � �
���  O5 
 � ' � �
 then �  � �
 .

Proof. Put 36� � ��� � � 	 �M�
' � �G� if � � � 	 � , and 36� � � otherwise. Then �  5 , by
Sobolev’s embedding theorem. Fix -1� � - ,  � �('�� 
 , � � , where � 
 , � is the 5 , realization
of ��� ���%� . Then (53) is equivalent to

� - � �$� �O� �
� in �R�$�,��� � on 
P�

where
�
� � ��� -6' 
 � � � �  O5 , and �  ' � �, �thanks to the boundedness of � (and the compactness of 
 ). Hence we deduce from Theo-

rem 39(ii) that �  � �, . If 3 � � we repeat this argument to arrive after finitely many steps
at the assertion.
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Proof of Theorem 10 Since � is bounded, embedding (14) is compact. Hence � has a
compact resolvent and the assertions concerning � ��� � follow from the general theory of
linear operators with compact resolvent (e.g., [48]).

Suppose that 
O � , �  O5�0 2 � � �
��� 
 � 0 5+
��

and �  � �� satisfies �%�!��
4��' � . Then Proposition 43 implies that �  � �0 2 . Thus, if
! � ��� � � ��
���� � and �  ��� � 
 � , there exists � � ����������� �  � �� 7 � satisfying � � � � and

�%� � ��
4� � ' � � � � � 0 8 � 8 � �
where � � � � ��0 . Hence we deduce from what has just been shown, by backwards induc-
tion, that �  � �0 2 .

Proposition 44. Let � be bounded and suppose only that condition (16) is satisfied. Also
suppose that either

� � � or �  � * � is irreducible. If � � � then every positive strict
� �� supersolution for ��� ���%� is strongly positive.

Proof. Define, as in the proof of Theorem 41, ��� � ��� � � by replacing �  � * � in ��� ���%�
by �  � � * � � . Then Theorem 35 implies the existence of - � 0 with - �U' 
 � such that
� - � � � ��� � � satisfies the strong maximum principle.

Suppose that � is a positive strict ���� supersolution for ��� ���%� . Then � belongs to
� � �� � � ��5I0 7 and

� � �
��� � �����K� ���,� �P 6� 5 � � ' � �� � � ��5I0 7 �
Consequently, � satisfies

� - � � � � �O� � - �! � � � � �
in �R�$� � �O� � * � � ��� � � on 
P� (61)

Note that � � - �! � � � � � � � * � � ��� � � � �104� (62)

thanks to � 	@0 and the positivity of  � , * � , and the the trace operator.

If
� � � then (62) reduces to � -P� � � �
����� 0 . Hence (61) and the strong maximum

principle imply the strong positivity of � .

Suppose that
� � � . Then there exists 4  !5 �G������� � � 7 such that � � . �
� . � ��0 . Hence,

by looking at equations number 4 of system (61), we deduce from Theorem 35 that � . is
strongly positive. Fix any 3  5 �G�������;� � 7 . Then the irreducibility of �  � * � guarantees the
existence of 4 �  5 �G�������;� � 7 , � 8 � 8 � , with 4 � ��4 and 4 � � 3 such that

�  ��
 � � � * ��
 � 
 ���10 for �
�������, � � 4 � �/4������������ �"3��/4 � 2 � ��	��
Thus we infer from (62) and � . �ML/��� 0 for all L@ 2� � 
 . � that component 4 � of (62) is
nonzero. Thus, by looking at equations number 4 � of system (61) and invoking Theorem 35
once more, we see that � . , is strictly positive. Now we repeat these arguments with � 4 � �/4��
replaced by � 4 � �/4 � � , etc. to find that � , is strongly positive. Since this is true for each
index 3 it follows that � is strongly positive.
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Proof of Theorem 12 Since the spectrum of � is independent of � we can assume that
���@� .

Fix - � ' 
 � . Then (23) is equivalent to

//�O� � - � � � 2 � � � / � ��� 	 � - � 
 ��� (63)

for 
 ���'4- . From � ��� �4
 � . � 
!	 
 � � it follows that
. � / �@0 if 
! � ��� � .

Put 
 � � � �  � � � �%� � �(� ' � � ���O� 0
	��
Then



is an ordered Banach space whose positive cone has nonempty interior. Indeed,

every strongly positive � belongs to
> A � � 
 � � . Also set

	�� � 	 � � ��� - � � � 2 � � 
 �
Then the compactness of the embedding � �� 7 � $ % 


implies that 	 is a compact endo-
morphism of



. Thus we infer from Theorem 41, Proposition 44, and


 $ % 5 � that 	 is
strongly positive, that is, 	 � 
 � ��5I0 7 � 
 > A � � 
 � ���
Consequently, the Krein-Rutman theorem (cf. [1, Theorem 3.2]) implies that the spectral
radius 3$� � 3 � of 	 is positive and a simple eigenvalue with a positive eigenvector. More-
over, it is the only eigenvalue of 	 with a positive eigenvector. Clearly, �� 


satisfies3I�3� 	%� iff �2 � �� 7 � and � satisfies (63) with /1� � 3 . But this is equivalent to the fact
that � is an eigenfunction of � to the eigenvalue
 � � ��'4- � � 	 3��
Thus � ��� � �� � and 
 � is an eigenvalue of � with a positive eigenfunction � � . From (63)
we also deduce that � � is a positive strict supersolution of � - � � ���%� . Hence � � is strongly
positive by Proposition 44.

Suppose that there are � � ���������-� �  � �� 7 � satisfying

�%� � ' 
 � � � � � � � � � 0 8 � 8 � �
where � � � � � � 0 . Then 3I� � ' 	%� � � 3 	%� � � � � 0 8 � 8 � �
Thus, if � 	�� , it follows from 	%� � � 3I� � that3I� � 2 � ' 	%� � 2 � � 3 � � � � (64)

Since 3 is a simple eigenvalue of 	 there exists �� 3� such that � � � � � � . The Krein-
Rutman theorem guarantees also that there exists an eigenvector + of the dual 	 #  '�R� 
 # �
to the eigenvalue 3 satisfying & +,����. � 0 for �O 
 � �
5I0 7 . By applying the functional +
to (64) it follows that 3 � �,& +,�-� � . ��&"3�+ ' 	 # +,�-� � 2 � . � 04�
Hence �1� 0 . Thus we find by backwards induction that � � � 0 for � 8 � 8�� , which
shows that ��� � 
 � �P� ����� � 
 � '�� ���
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Hence the equivalence of the eigenvalue problem for � with (63) and the simplicity of 3
imply that 
 � is a simple eigenvalue of � .

Assume that 
  �� �('�� � � � with 
 �� - . Note that � 
 � � � � � �
for

�  

is

equivalent to � �
-�' 
 ' 	��P�O� �

-�' 
 	 � � (65)

Suppose that - � 
 . Then (65) has for each
� �U0 precisely then a positive solution if

� 	 � - ' 
 � � 3 (cf. [1, Theorem 3.2(iv)]), that is, if 
 � - '�� 	 32� ' 
 � . Hence, if
� 
 � � ��2 �R	@0 and - � 
 then it follows that 
 � ' 
 � . Clearly, given any 
O O� , we can
fix - � 
 such that the above arguments apply. (Note that 
 � is independent of - although	 � 	 � and 33� 3 � depend on this choice.) This shows that ' 
 � � 4 � �('�� � . Hence
Theorem 29 implies ' 
 � ��4 �('�� � ��' 
 � .

Lastly, suppose that 
� � �('�� � �
5 
 � 7 satisfies
. � 

� 
 � . Then it follows from [39,

Theorem 2.4] (also see [16, Corollary C-III.2.12] or [25, Theorem 8.14]) that
 � ��� ��� ? 
! � ��� �
for �� �� . But this contradicts the fact that � ��� � is contained in a symmetric sector around
the real axis with an angle of opening less than � , as follows from �� & � � �� 7 � � 5 � � . Thus
 � is the only eigenvalue of � with

. � 
���
 � .
Proof of Theorem 15 Thanks to Proposition 44 it suffices to show that every positive strict
� �� supersolution is strictly positive.

Fix - � 
 � and put �T� � � - � � � 2 �  �R� 5 � ���
Then � 	S0 . By repeated application of Proposition 43 we deduce from Proposition 44
that there exists �  � such that � � � is strongly positive whenever � � � and � � 0 .
Consequently, given / � 3�� ��� ,

�2�(/�' ��� 2 � ��� 0#
� $ �

/ 2 � � � �
is for each �! 6� 5 �� � � 5I0 7 a quasi-interior point of 5 �� .

Set 
!� � -�'1� 	 / and note that 3�� ���P�Q� 	 � - � 
 � � implies 
 ��' 
 � . Furthermore,

� 
 � � � 2 � � / �2�(/O' ��� 2 � �
Hence � 
 � � ��2 � is strongly irreducible, thus irreducible. Now Theorem 31 implies that
� 
 � � ��2 �;� is for each 
 � ' 
 � and each �6 � 5 �� � �
5I0 7 a quasi-interior point of 5 �� ,
hence strictly positive.

Let � be a positive strict ���� supersolution for ��� ���%� . Set

� � �
��� � � ���K� ���,� � �104�
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Fix - � �(' 
 � � � 0 and put
�
� � � -P� � �

. Then
�
� �S0 and the above considerations

show that � � � � - � � � 2 � �
�

is a strictly positive element of 5 � . Since �� �� ' � �� � � and
 � � - � � �P� - � 
 � ��� � �104�
it follows from Theorem 8 that there exists a unique �  �� � �� � � satisfying

� - � �$� � � 0 in �R� � � � � on 
P�
Since ��� � � � we see that � is strictly positive.

Proof of Theorem 13 Suppose that 
 � � 0 . Then 0  �� ��� � so that � is surjective.
Hence it follows from Theorem 6(1) and (2) that ��� ���%� is inverse positive and that this is
equivalent to (ii) and (iii). The inverse positivity of ��� ���%� and Proposition 44 imply that
��� ���%� satisfies the strong maximum principle. From this we deduce that

(i) � (ii) � (iii) � (iv) �
(iv) � (i) Suppose that 
 � 8 0 and let � � be a positive eigenfunction of ��� ���%� . Then�K� � ��
 � � � 8 0 in �R�$�,� � � 0 on 
P�

Hence � �  �� �0 2 ��5I0 7 and the strong maximum principle imply ' � � � 0 , which is
impossible. Thus 
 � �10 .

(i) � (v) Every positive eigenfunction to the eigenvalue 
 � is a positive strict ���� su-
persolution, hence a positive strict 5 � supersolution.

(v) � (i) Recall that � � � � # , where � is considered as an unbounded operator in 5 � .
Hence � ��� � � � � ��� � . Note that ��� � ��� � � satisfies condition (7) also and the irreducibility
of �  � * � implies the one of �  � � * � � . Thus 
 � is also the principal eigenvalue of ��� � ��� � �
and it has a strongly positive eigenfunction + �  � �0 2 .

Let � be a positive strict 5 � supersolution for ��� ���%� . Fix - ��' 
 � and put
��!� � � - � � � 2 � � �

Then
��! 6� � �� 7 � � � by Theorem 41(iii). From � 2 � � � and

� - � � 2 � � 2 � � � - � � � 2 �
we deduce that

� � �,� ��O� � 2 � � - � � 2 � � 2 � ��� � - � � 2 � � 2 � ��� 2 � � ���@04�
where the last inequality sign is also a consequence of Theorem 41(iii) and Theorem 37(iii).
Hence

�� is a positive strict ���� supersolution for ��� ���%� , and
�

belongs to 5 �� � 5I0 7 . Thus
the strict positivity of + � implies

0 �Q& + � � � .P��& + � ��� ��/.P� &�� # + � � ��/.P��
 � & + � � �� .
and & + � � �� . �@0 . Hence 
 � �@0 .
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Proof of Remark 14 It suffices to replace in the last paragraph of the preceding proof � 2 �
by � 2 � .
Proof of Theorem 11 Thanks to Theorem 12 we can assume that

� � � and �  � * � is
reducible. Thus we can also assume that � �  � � � * � � �! has a block triangular structure of
the form (24). If the first diagonal block is either one-dimensional or irreducible then we
can apply Theorem 12 to the reduced system obtained by setting � � � �I���������-� � equal to 0 .
This guarantees the existence of a real eigenvalue of ��� ���%� with a positive eigenfunction.
If � � �

and the first diagonal block is reducible we can repeat this argument to arrive
at the existence of at least one real eigenvalue of ��� ���%� with a positive eigenvector. Thus
� ��� ���%� ���� and 
 � is an eigenvalue of ��� ���%� .

Fix - � ' 
 � . Then � - � � ��2 � is a positive compact endomorphism of 5 � , and
� 	 � - � 
 � � is its spectral radius. Hence the Krein-Rutman theorem (e.g., [1, Theorem 3.1])
guarantees that � - � � �/2 � has a positive eigenfunction � � to the eigenvalue � 	 � - � 
 � � .Thus � � is a positive eigenfunction of � to the eigenvalue 
 � .

Finally, if ��� ���%� is inverse positive then � is injective. If � is not surjective then 0  
� ��� � . Thus

����� ��� � �� 5I0 7 since � ��� �$� � 
���� � . This being impossible, � is surjective
and the last assertion follows from Theorem 6(2).

18. Domain perturbations

In this section we prove Theorems 20 and 22. For this we need some preparation.

We fix ����� � �  � �G� � � satisfying

�
� 8 ? > A � �� � �� # � (66)

with a strict inequality sign if � # � � ,

�
� 8 ? > A � �� � �� � �

� �
�
� # � �

� � (67)

with a strict inequality sign if either �K� � or � # � � , and

�� 8 ? > A � �
��'1� �

�
��'@�

�
� �

�
��'@�

�
� # � (68)

with a strict inequality sign if either � � � or � # � � . Then we define a Banach space�
� 7 
I7 � ���%� by

�
� 7 
I7 � ���%� � ����� � ���R� � � � ���� �	� � � � � � � 5 � � 5�0 �;���R� � � � ���� �	� � �� � 5 
 � 5�0 �;���R� � � � � � � 5 � � 
P� � � � � � � � � 
P� � � � ���� �	� ���

Given
�6� � � �  ���� � � � � � �  � ���������  � ���  � * � � �  � � 7 
I7 � ���%���
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we put
	���� �;�"���-� �,� � & ' � ���  ���� ' � �/. � &"���  �� ' � � �! �/. � &"� ��� � * ���/.��

for �"���-� �  � ���� � � �� .

For Banach spaces



and
�

we write �R� 
 � � � �P� for the Banach space of all continuous
bilinear maps


 � � % � , endowed with its usual norm.

Given
�  �R� 
 � � � �P� , let ��� be the unique linear operator in �R� � � 
 # � satisfying

& ��� � ����. � � � ��� � � ��� ��� � � �  
 � � �
It follows that the map

�R� 
 � � � � � % �R� � � 
 # ��� � �% ����� (69)

is a linear isometry.

Lemma 45. The map
�
� 7 
I7 � ���%� % �R� � �� � � � �� � �P��� � �% 	���� ���

is well-defined, linear, and continuous.

Proof. This follows from Sobolev embeddings and the trace theorem.

Suppose now that � is bounded. Let � � be a bounded � � domain in ��� with boundary 
 �
and trace operator � � . Also suppose that � � is a boundary identification map for � � . We set

�T� � � and � � � � �
and denote by �ML �����������-L���� and �MN���������� �-N���� the standard Euclidean coordinates of �
and � , respectively. Then � and � are compact oriented � -dimensional Riemannian
� � manifolds with boundary and the standard Euclidean metric

��
 � 
 � ��� � �GL ��� �GL � and ��
 � 
 ��� � � �GN ��� �GN � �
respectively.

Also suppose that +1� � % � is an orientation preserving ��� diffeomorphism satisfy-
ing + �� � � � � . Then

+ �  '� >! � � �
 7 
 �/2 �� � �� ��� � � � � ��� � �
 7 
 �/2 � � � � � �  5 'K�G� 04��� 7 � �  6�(�G� � ��� (70)

with inverse
+ � � ��� + 2 � � � �

Indeed, this is easily verified if �  65I04��� 7 , and follows by duality if �$�Q'K� .
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Put
��
 � 
 � � � � + � � �GN ��� �GN � � � � ��� �GL ��� �GL � � (71)

where

� ��� � �
� ' +' L � �

�
�

' +' L � � � � � 8 �G��� 8 � �
Then � � � � � � ��
 � 
 � � � is an oriented � -dimensional Riemannian ��� manifold with
boundary, and + is an orientation preserving ��� diffeomorphism from � onto � . The
volume element, - � , of � is given by

- � � + � - �3� � ���GL � � 
�
�
 � �GL � (72)

with
��� � ���O� ��
 � � � � ��� � �

Since � and � are compact, there exists a constant � 	 � such that � 2 � 8 � � 8 � . Hence

5+
�� ��� � � � � � 5+
4� ������� = � � � � � �� 5+
�� � 8 � 8 � � (73)

where ��� = � is the Lebesgue volume measure on � induced by - � .

Moreover, +�� is an orientation preserving � � diffeomorphism from
' � � 
 onto'

� � 
 � , and
' � is an �M� '3��� -dimensional Riemannian ��� manifold, oriented by means

of the outer unit normal, and with the volume element

-�� � � + �

� -�� �%�
There exists a unique �  � �E� 
P� �P� satisfying

-�� � ��� -�� � �
the Jacobian of + � . Consequently,

��� = � � ��� ��� � (74)

By means of local coordinates and the compactness of 
 one finds a constant � � 	�� such
that � 2 �� 8 � 8 � � . Hence

5+
4� ' ��� � � � � � 5+
4� ' ������� = � � � � � � �� 5+
4� 
���� � 8 � 8 � �
Given a Riemannian manifold

�
, we denote by 	 �
 � � � the Banach space of all � �
 vector

fields on
�

for � 8 � 8 � and � �U04��� , and
����� 
�
 is the gradient operator on

�
. We

identify
H
�  �	 �
 � � � with

� � � ��������� � � �, � �
 ��� � � � � �
by setting H

� � � � ' 	 ' N � �
Hence + �

H � , the push forward of
H �@ �	 � � � � , is given by

+ �
H �3� + � � ' +P�;� H � � + 2 � ��� (75)

where
' +3 � �E� �R� ��� � � � is the derivative of + . It follows that

+ �  � >! � 	 �
 � � ���
	 �
 � � ���G� � 8 � 8 � � �$� 04���G�
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and that its inverse is given by

+ � � � � + 2 � � � � � H
� �% + � � ' + 2 � �;� H� � +P���G�

Since
+ � � + 2 � � � + 2 � � +�� > 
 F �

the chain rule implies
+ � � ' + 2 � � ' +����G�

Consequently,

+ � H
� ��� ' +P� 2 � � H� � +P��� �  	 �
 � � ��� � 8 � 8 � � �$� 04���G� (76)

Also note that � � ��� � � � ' +P� � ' +,�
Hence � � ��� � � � � � ��� � 2 � � � ' +P� 2 � � � ' +P� 2 � � � �
where we identify � � � � and �R� ����� by means of the standard basis. Thus, using the rep-
resentation of

����� 
 � in the L -coordinates, it follows that

����� 
 � � � � ���
' �' L � '' L � ��� ' +P� 2 � � � ' +P� 2 � � � ����� 
 � � �  	 �
 ���%��� (77)

for � 8 � 8 � , where we write
����� 
 � � ����� 
 � and, later, ��
 � 
 �,� � ��
 � 
 � � .

Observe that

� H � � H� � � � + � � + �
H � � + �

H
� ��� � � H � � H� �  	 �
 � � � � � 	 �
 � � ��� �$� 04���G� (78)

for � 8 � 8 � . Thus, given
�  � �
 ��� � � �P� and

H �@ �	 �
 � ���%� , the definition of the gradient

implies � ����� 
 � � + � � � �
�
H � � � � ��� + � � � H �3� + � � � � � H �3� + � � � � � + �

H �,���
� + � � ����� 
 � � � + �

H �,���2��� + � ����� 
 � � � H � � � �
using standard properties of the pull back and push forward operators. (We refer to [10]
for the theory of differential forms and vector fields as well as the elementary Riemannian
geometry used in this section). Hence����� 
 � � + � � ����� 
 � � + �  � � 	 �
 � � ���
	 �
 � � ���E� � 8 � 8 � � (79)

Now suppose that
� �
� � � �  � ��� � � �  � � ������� �  � � ���  � � *� � � � �  � ��� �P�

such that
+ �

� � � � � �
where � is a fixed boundary identification map for � . Put

	�O� � 	���� � �
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and observe that

	� � �#
,	$ � 	� , �with

	� , � �� � � � �P� �
F �
�
� ����� 
 � �� , � � � , ����� 
 � � � , ��� � �� , � � H  � , � ����� 
 � � � , ��� � �#

.%$ �  � ,/. � � .  � �GN� �
�� � � �� , � � , �# .%$ � *� ,/. � � �� . - ��

for � 8 3 8 � and
� �� � � � �  � ���� � � � � � � � � �� � � � � � ���

where � � , � � �  � ,��� � � H  � , � � �  � , � ������� �  � ,� ��� � 8 3 8 � �
Note that (73), (78), and (79), imply
� ����� 
 � � + � � , � �

� � � , ����� 
 � � + � � , � � � � + �

� ����� 
 � � , �
�
� + � � � � , + � � ����� 
 � � , � � � � (80)

for �"���-� �  � ���� � � �� . From (75)–(77) we deduce that

+ � � � � , + � � ����� 
 � � , ���*� � ' +P� 2 � � + � � � , � � ' +P� 2 � � � ����� 
 � , �
By inserting this in (80) and recalling (71) and the representation (77) of

����� 
 � in the
L -coordinates we arrive at� ����� 
 � � + � � , � �

� � � , ����� 
 � � + � � , � � � � + �

� ����� 
�� , �
�
� � ' +P� 2 � � + � � � , � � � ' +P� 2 � � � ����� 
 � , ���

Similarly, � H  � , �
�
����� 
 � � + � � , ��� � � + �

� � ' +P� 2 � � H  , � +P� �
�
����� 
,� , �E� (81)

Now, using (72), (74), (80), (81), and the (global) transformation theorem (e.g., [10, The-
orem XII.2.3]), we see that

	� , � + � ��� + � � � �
�
F
� � ����� 
�� , �

�
� � ' +P� 2 � � + � � � , � � ' +P� 2 � � � ����� 
 � , �

� � , � � � ' +P� 2 � � H  � , � +P� �
�
����� 
 � , � � �#

.%$ � � +
�  � ,/. � � .�� � � ���GL

� �
� � � , � , �# .%$ � � +

�

� *� ,/. � ��� . � ���
(82)

for � 8 3 8 � and �"���-� �  � ���� � � �� .

Set  � ,��� 7 � � � � �
�
� ' +P� 2 � � + � � � , � � � ' +P� 2 � � � � ��� (83)
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and  � ,� 7 � � � � �R� ' +P� 2 � �  � ,� � +P� (84)

for � 8 �G��� 8 � , as well as

 � �O� � � �,+ �  � � *� ��� ��� + �

� *� � (85)

Then
� � �O� � � �  � ��� 7 � � � �  � ��7 � ���������  � � 7 �����  � �/� *� � � � �  � ���%��� (86)

Also set
+ � 	� �M� ���4� � � 	� � + � � � + � �4��� �"���-� �  � ���� � � �� �

Then it follows from (82) that
+ � 	��� 	���� � � ��� (87)

that is, + � 	� is the Dirichlet form of
� � ��� �/����� ��� ����� .

Given �"���-� �  O5 � � � 5 � , we deduce from (72) and the transformation theorem that

& + � ��� + � �/. � � 
 � 7 �
. � � �

�
+ � � 
 + � � - �

�
�
�
+ � �"��
 �

� ���GL � � 
�
�
 � �GL � �
�

�
F ��
 �

� � �GL�� &"��� � � � .;�
Thus, thanks to (70) and a density argument,

& + � ��� + � � . � � ,� � � , � �� � 	� 
 F � 7 � . � ��&"��� � � � . � � ,� � � , ����� 	 � �"��� � �  � �� � 7 
 �/2 � � � � � �� 7 
 �/2 � � � �
Hence, denoting by � 2 � ��� � � the � 2 �� 7 
 �/2 �� � �� ��� � � � � � realization of

� � ��� � ����� ��� � ��� , etc., we

obtain from (87) and 	��� 	���� � � that

� ����� 2 � ��� � � � � � � � ,� � � , ����� 	 � 	���� � � �;�"���-� �P� + � 	���� � �;�"���-� � � 	���� � �;� + � ��� + � � �
� � + � ����� 2 � ��� � � + � � � � � ,� � � , � �� � 	� 
 F � 7 � . �
� � + � ��� + �

� + � � � 2 � ��� � � + � � � � � � ,� � � , � �� � 	�
� � ��� � � � + � � � 2 � ��� � � � + � � � � � � ,� � � , ����� 	

for
�"���-� �  � ���� 7 
 �/2 � � � � � �� 7 
 �/2 � � � �

This shows that

+ � � � 2 � ��� � � � + � � �� � � 2 � ��� � � ��� (88)

Next we give an easy proof of a perturbation theorem for simple eigenvalues.
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Theorem 46. Let

 � and



� be Banach spaces such that



�
$ % 
 � . Suppose that � is a

topological space and ����
 �  � � � � �R� 
 � � 
 � �-���
Also suppose that L �  � and � � is an isolated simple eigenvalue of � � � �����ML � � . Then,
given a corresponding eigenvector � � of norm � in



� , there exist an open neighborhood� � � � � of �ML � � � � ��� � � in � � � � 
 � and a map
� � ��
 ����� ��
 ���  � � � � � � � � such that� � �ML � ����� �ML � ���*� � � � ��� � ��� � � �ML/� � � , �Q�G�

and ���ML/� � �ML/� � � �ML/� � �ML/�
for L� � . Furthermore, � �ML/� , resp. � �ML/� , is, for L� � , the only eigenvalue, resp. eigen-
vector, of ���ML/� in � , resp. � .

Proof. Since � � is an isolated simple eigenvalue of � � , it follows that � � , considered as
a linear operator in


 � , has a nonempty resolvent set. Consequently, � � is closed in

 � .

Thus spectral theory implies that

 � � � � � � > ? � � � ' � � ��� (89)

Furthermore, � #� , the dual of � � (in

 � ), has � � as a simple eigenvalue as well, and

there exists a unique eigenvector � #� of � #� to the eigenvalue � � satisfying &�� #� ��� � . �T� .
In addition, > ? � � � ' � � � � � �K 
 � � &��I#� ����.P� 0 	
(e.g., [48, Sections III.6.5 and III.6.6]).

Now we define a � � map
� �3�R� 
 � � 
 � � � � � � 


� �
% � � 
 �

by
� � � � � �P���E��� � � � &�� #� ����.�'@�G�	� � ' �0� �E�

Note that
� � � � � � � � ��� � ���R� 0

and '
�

� � � � � � � � ��� � ���G� �P���E�P� � &�� #� ����.;�	� � ' � � �%' �0� � �E� � �P���E�, � � 

� �

Hence
'
�

� � � � � � � � ��� � ��� � �P���E� � 0 implies &�� #� ����.P� 0 , that is,

�K > ? � � � ' � � � and � �%' � � � � �0� � �
Thus we deduce from (89) that

� �P���E�P� 04�
which shows that the linear operator

'
�

� � � � � � � � ��� � ��� is injective. From (89) we also infer
that this map is surjective. Hence'

�
� � � � � � � � ��� � ���K '� >! � � � 


� �
� � 
 � �
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by the open mapping theorem. Now the implicit function theorem guarantees the existence
of an open neighborhood

� � � � � of � � � � � � ��� � � in �R� 
 � � 
 � � � � � 

� and a map

�O � ��� � � � � � � such that� � � � �P���E� �  � � � � � and
�4� � � � �P���E� � � 0 iff �U � and � �P���E� � � � � ���

Since ����
 �, � � � � �R� 
 � � 
 � ��� there exists an open neighborhood � of L � in � such that��� � � 
 � . Thus the assertion follows by setting� � �ML/����� � �ML/���K� � � � ���ML/���G� � �ML/�,� �,� � �ML/� 	 � � � �ML/� � � ,
for L! � .

This proof is a modification and an extension to the infinite dimensional case of the one
of [6, Proposition (26.24)]. An alternative proof of Theorem 46 can also be derived from
the general perturbation results in [48, Section IV.3.4].

After these preparations we are ready to derive the theorems stated in Section 9. In fact,
instead of Theorem 20 we prove the following more precise version.

Theorem 47. Let the hypotheses of Theorem 20 be satisfied with the exception that it is
assumed that

+ �& � & % � in
�
� 7 
I7 � ���%��� (90)

Then the assertions of Theorem 20 are valid, except that + �& � & % � in � �� .

Proof. It follows from + & % > 
 F in � �E� �R� ��� � that
' + & % � in � � � � ��� � � � and� ��� � % � in � � �R� �P� as well as � � � % � in � � 
P� �P� . Hence we deduce from (90) and

(83)–(86) that
� & 7 � � % � in

�
� 7 
I7 � ���%��� (91)

This implies
+ �& 7 � � & � � (92)

for all sufficiently large ' . Thus we can assume that (92) is true for all '  �� . Now we infer
from (91), (92), and Lemma 45 that

	���� & 7 � �-� % 	���� � in �R� � ���� 7 
 �/2 � � � � � �� 7 
 �/2 � � � � �P�;�
Consequently, (69) and (88) imply, setting ��� ���%� � � � � ��� ����� ��� � � ,

� & � � + �& � � 2 � ��� & � � + & 7 � % � 2 � in �R� � �� 7 � � � 2 �� 7 � ��� (93)

Since, by (70),
+ �&  '� >! � � �� 7 � 
 � � � ��� & � � � ��� � �� 7 � � � �$��� �G�

with inverse + & 7 � , we see that

� � � & �P� � � � 2 � ��� & � �
and ����� � 
 ' � & �P� + �& ������� � 
 '�� 2 � ��� & ��� �E� 
! �,�
for '  �� .
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Set
�T� � � � > 
 F ��� ��	 � � � + & ��� & � � '  �� 	 �

Endow � with the topology induced by � � � �R� � � � � � � 7 
I7 � ���%� . Put
 � � � � 2 �� 7 � and


� � � � �� 7 � �

and define ���ML/�, '�R� 
 � � 
 � � by

���ML/� � � #% & � 2 � if LO�1L � � � � > 
 F ��� ���
� & if L ��1L � �

Then (93) implies ����
 �� �� � � � �R� 
 � � 
 � � � . Furthermore, Theorem 12 guarantees that
� � � � 
 � ��� ���%� is a simple isolated eigenvalue of ���ML � � and that � � � �1� is a correspond-
ing eigenvector. Thus Theorem 46 guarantees the existence of an eigenvalue � & of � & and
corresponding eigenvector � & such that � & % � and � & % � � in � �� 7 � with � � & � � ,� � � .
From the upper semicontinuity of the spectrum (e.g., [48, Theorem IV.3.1]) it easily fol-
lows that

� & ��
 � � � ��� & ����� ��� & ����� & �
for all sufficiently large ' . Finally, � 	 0 implies � & �Q+ �& � & , where � & is a positive eigen-
function of

� � ��� & ����� ��� & ��� , since 
 � � � ��� & ����� ��� & ����� & � is also a simple eigenvalue of� � ��� & ����� ��� & ��� by Theorem 12.

Clearly, �"3��/4G��*-� , defined in (31), is an admissible choice for �
����� � � � if � � �
. Hence

Theorem 20 is a particular case of Theorem 47.

In order to prove Theorem 22 we prepare the following technical lemma, where we use
the notations introduced in Section 9.

Lemma 48. Suppose that �� � � � 
P� �('���� �4��� and � � ��0 8 � 	 
 . Then there exists an ori-
entation preserving � � diffeomorphism +1� � % � � satisfying + � 
�� ��� and + �ML/�P� L
for L! � with 
 >! � �ML � 
�� 	 � � � ��0 .

Proof. Denote by <�2 � � � 
P� �('K�G����� � the image of � under the � � diffeomorphism � of

(32) and let <
 be the graph of <� . Then <
 is an oriented �M�!'1��� -dimensional � � manifold
lying in 
 � � ' < � � < �  , where < � � ���� <���� 0 ��� 	 
 . Fix �  � � � �,� � 04��� � � satisfying � � 4��P���
for

� 4 � 8 < � and � � 4�� � 0 for
� 4 � 	 � < � , and being strictly decreasing on

� < � � � < � � and
even. Then

<���R
 � �('K�G����� % 
 � �('K�G������� �MN ��*-���% � N ��* ' � ��*-� <�,�MN�� � (94)

is an orientation preserving � � diffeomorphism onto 
 � �('K�G����� . It satisfies

<�R�MN ��*-� � �MN ��*-� for N� O
 and
� * � 	 � < � and <� � <
 � � 
 � 5I0 7 �

Let <+ be the restriction of <��2 � to� �MN ��*-�  !
 � �('K�G����� � * 	10
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and set
�+2� ��� 2 � � <+ � � �

Then
�+ is a � � diffeomorphism from � � 	 � onto ��� � 	 � satisfying

�+ �ML/�
� L for
L  � � 	 � with 
 >! � �ML � 
�� 	 � � � ��0 . Define + � � % ��� by setting + �ML/� � � �+ �ML/�
for L  � � 	 � , and + �ML/�!� � L for L  � �3	 � . Then + is an orientation preserving
� � diffeomorphism possessing the stated properties.

Now we can prove a more precise version of Theorem 22 in which � �� convergence of
the eigenfunction is replaced by � �� convergence.

Theorem 49. Let � be bounded and suppose that conditions (33)–(39) be satisfied, except
that 3 , 4 , and * are replaced by � , � , and

�
, respectively. Then the assertion of Theorem 22

are valid, provided the exponents
�

in (40) are replaced by � .

Proof. We can assume that � � & ��0 8 � 	 
 for all 'O � . For each ' fix an orientation
preserving � � diffeomorphism + � � �

% ���	� such that + & �ML/� � L for L  � with
 >! � �ML � 
�� 	 � � � & ��0 . Lemma 48 guarantees that this is possible, and it follows from (94)
and � & % 0 in � �E� 
P� �P� that + & % > 
 F in � ��� � � ��� � as ' % � . It is easily verified that
+ �& � & % � in

�
� 7 
I7 � ���%� . Hence Theorem 47 implies the assertion.

Similarly as above, it is clear that Theorem 49 contains Theorem 22 as a particular case.

19. Elliptic comparison theorems

In this section we study the weak maximum principle under optimal regularity assump-
tions for the coefficients of � and � . More precisely, we assume that

� � , � , and
�

satisfy (66), (67), and (68), respectively;�  ���� �  ����  ���� � ���R� � � � ���� �	� � , � 8 �G��� 8 � ;� � , �ML/�, !� � � � is positive definite for � 8 3 8 � ,

uniformly with respect to L! � ;�  ��  �� 5 � � 5�0 �;���R� � � � ���� �	� � , � 8 � 8 � ;�   �� 5 
 � 5�0 �;���R� � � � � � , *  !5 � � 
P� � � � � � ;� '  and ' * are cooperative;� � is a boundary characterization map for � .

� """"""""""""""""�
""""""""""""""""�

(95)

Then we define ��� ���%� and its Dirichlet form as before. Note that

� �� 7 � � � � �� 7 
 �/2 � � � and � 2 �� 7 � � � � � �� 7 � � #
are still well-defined.
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It follows from Lemma 45 that

	  '�R� � �� � 7 
 �/2 � � � � � �� 7 
 �/2 � � � � �P���
Hence there exits a unique � 2 �  '�R� � �� 7 � � � 2 �� 7 � �
satisfying

&"����� 2 � �/.P� 	��"���-� ��� �"���-� �  � �� � 7 
 �/2 � � � � � �� 7 
 �/2 � � � �
the � 2 �� 7 � realization of ��� ���%� .

Observe that in the present situation � � ���� � �
15 � , in general, so that the 5 � realization
of ��� ���%� cannot be defined as in the earlier sections and is not useful for our purposes.

Theorem 50. Let (95) be satisfied. Then

� 2 �  '& � � �� 7 � � � 2 �� 7 � �
and is resolvent positive.

Proof. In [9] it is shown (by an amplification of the proof of [4, Theorem 2.1], where � is
supposed to be bounded and more regularity is required for the lower order coefficients)
that � 2 �  & � � �� 7 � � � 2 �� 7 � � .

Choose a sequence � �  � �4���%� converging in
�
� 7 
I7 � ���%� towards

�6� � � �  ���� � � �  � ������� �  � ���  � * � � �E�
Since " is dense in 5 
 for � 8 � � � , it is clear that such a sequence exists. Then
Lemma 45 and (69) imply that

� 2 � ��� � � % � 2 � in �R� � �� 7 � � � 2 �� 7 � ���
By Theorems 37 and 41 we know that

� 2 � ��� � �  '& � � �� 7 � � � 2 �� 7 � �
and is resolvent positive. Thus Proposition 34 implies that � 2 � is also resolvent positive.

Clearly, definition (18) of the weak maximum principle is valid in the present situation
also, as is the definition (21) of a (weak) �S�� solution.

Corollary 51. Let assumption (95) be satisfied and suppose that
 � ��� 2 � �P�Q':4 �('�� 2 � ���104� (96)

Then

(i) ��� ���%� satisfies the weak maximum principle in �S�� ;
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(ii) The boundary value problem�K�O� �
in �R�$�,��� � on 


has for each � � �
���  � 2 �� 7 � � ' � �� a unique � �� solution � , and

� 	@0 if � � �
��� 	104�
Proof. (i) follows from Theorems 28 and 50.

(ii) Assumption (96) guarantees that 0  � ��� 2 � � . Thus the proof of case � � � of
Theorem 39(ii) applies to give the unique solvability. The last part of the assertion is a
consequence of (i).

Remarks 52.

(a) Note that Theorem 28(b) guarantees that 
 � �('�� 2 � � belongs to � ��� 2 � � if the latter
set is not empty. However, we do not know whether this is true, in general, even if the
domain is bounded (in which case � 2 � has a compact resolvent) and even if

� ��� .

(b) In the weak setting studied above it is natural to consider operators of the form
<�K� � ��' ' � �  ���� ' � � � <  �� � � �! �� ' � �! � �

where <  �� � � % � � � ���� �	� satisfy appropriate regularity assumptions. It is not difficult
to determine these optimal conditions and to show that Theorem 50 and its corollary
hold in this case also. Note that the corresponding boundary operator is now —
formally — given by

<� �!� � � � '+* � � � � 
�<  �� � �+* � � � �(� ' � � � �
We leave the details to the interested reader.

The scalar case � � � � has been studied by many authors (see [23], [24], [38], [49],
[61], [68], [73]–[75], and the references therein). However, in all those papers only the case
�$� � is considered. In that situation one can, of course, weaken the regularity conditions
on 
 considerably, and it suffices to assume that the  ��� are only bounded and measurable
(in fact, Trudinger [73]–[75] considers even the case of nonuniformly elliptic equations).
It is well-known that this is no longer true if � �� � . We do not know of any work dealing
with weak maximum principles in a � �� setting, except for [7, Theorem 8.7], where the
resolvent positivity of � 2 � is proved if

� � � and the lower order coefficients satisfy
stronger regularity assumptions.

Now we can easily derive a comparison theorem for semilinear elliptic boundary value
problems. For this we recall that, given a � -finite measure space �
� � � � and Banach spaces


and
�

, a function
� � � � 
 % �

is said to be a Carathéodory function if
� �ML ��
 �%� 
 % �

is continuous for � -a.a. L! � , and
� ��
 ��� � � � % �
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is � -measurable for each �$ 

. We denote by

� � � �
� � 
 � � � the set of all such functions.

We assume that

� �  � � � ��� � � � � � � � , � �  � � � � 
 � � � � � � � ;� 3��/4K 6�(�G� � � with3 8 �M� � �G� 	 �M��' �G� and 4 8 � 	 �M��' �G� if ���@� ;� � �  O5 , � ���R� � � � and � �  O5 . � � 
P� � � � , where 3 � �/4 �  � �G� � �
satisfy 3 � 	@� � 	 �M� � �G� and 4 � 	 ���M�O'@��� 	 � ;� � � ��
 ��� � � 8 � � � � � � � , , � � � ��
 ��� � � 8 � � � � � � � . , �$ !� � ,

where � and � are positive constants;� � �  � �/2 ��� �� � 
P� � � ���

� """""""""""""""""�
"""""""""""""""""�

(97)

We also set
�/��
 ��� �,� ���(�%' � � � � � � � � ��
 ��� ��� �$ O� � �

as well as � �M� � � � �4� 
 �-����
 � � ��� �M� � � � � � 
 ��������
 � � �
Then Sobolev embeddings, the trace theorem, and an obvious duality argument imply that� � �M� ����� �M� ���  � 2 �� 7 � � ' � �� � �  � �� �
A function

�� is said to be a � �� supersolution of the nonlinear boundary value problem�K�O� � �ML �-� � in �R�$�,��� �/�ML �-� � on 
 (98)

if
��! � �� and � �� 	 � �ML � ��/� in �R�$� ��O	 �/�ML � �� � on 


in the weak sense, that is,

	��"��� �� � 	 � ��� � � �� � � � � � ����� � �� � � � for �  6� � �� � 7 
 �/2 � � � � � �
�(� ' � � � �� 	Q�(� ' � � � � on 
P�

� �
� (99)

If both inequalities in (99) are reversed then
�� is said to be a �S�� subsolution of (98).

Theorem 53. Let (95) and (97) be satisfied and suppose that
 � ��� 2 � ���104�
If � is a � �� subsolution and

�� is a � �� supersolution of (98) such that
� � � � ����� � � � � 8 � � � �� ����� � �� � �

then
� 8 �� �
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Proof. The assumptions imply that
�� ' �  � �� satisfies

	��"��� �� ' � � 	10 for �� �� � �� � 7 
 �/2 � � � � � �
�(� ' � � ��� �� ' � � 	10 on 
P�

Hence the assertion follows from Corollary 51.

It should be clear to the reader that in order to guarantee the validity of the very weak
maximum principle the regularity assumption on  in (7) can be weakened also. We refrain
from giving details.
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54. López-Gómez, J., Spectral Theory and Nonlinear Functional Analysis, Chapman &
Hall/CRC Research Notes in Mathematics 426, Chapman & Hall/CRC, Boca Raton,
FL, 2001.
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